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 The important aspects of this study are to estimate the mechanical parameters of 
reservoir rock including Uniaxial Compressive Strength (UCS) and friction (FR) 
angle using well log data. The aim of this research is to estimate the UCS and FR 
angle (φ) using new deep learning (DL) methods including Multi-Layer Perceptron 
(MLP), Long Short-Term Memory (LSTM), Convolutional Neural Network (CNN), 
and CNN + LSTM (CL) by well log and core test data of one Iranian hydrocarbon 
field. As only 12 UCS and 6 FR core tests of single well in this field were available, 
they were firstly calculated, and then generalized to other depths using two newly 
derived equations and relevant logs. Next, the effective input logs' data for predicting 
these parameters have been selected by an auto-encoder DL method, and finally, the 
values of UCS and φ angle were predicted by the MLP, LSTM, CNN, and CL 
networks. The efficiency of these four prediction models was then evaluated using a 
blind dataset, and a range of statistical measures applied to training, testing, and blind 
datasets. Results show that all four models achieve satisfactory prediction accuracy. 
However, the CL model outperformed the others, yielding the lowest RMSE of 
1.0052 and the highest R² of 0.9983 for UCS prediction, along with an RMSE of 
0.0201 and R² of 0.9917 for φ angle prediction on the blind dataset. These findings 
highlight the high accuracy of deep learning algorithms, particularly the CL 
algorithm, which demonstrates superior precision compared to the MLP method. 
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1. Introduction  

Reservoir studies are a major part of reservoir 
management. One of the important aspects of this  
study is to estimate two important geomechanical 
parameters of reservoir rock including Uniaxial 
Compressive Strength (UCS) and friction angle. 
These are of the most practical geomechanical and 
engineering parameters, which is an urgent 
requirement for petroleum engineers in most 
designs and modeling related to the wellbore 
stability, creating Earth Geomechanical Model 
(EGM), reservoir depletion, and its cap rock 
integrity, and hydraulic fracturing projects. 
Compressive strength is the bearing capacity of an 
object, building material or structure against 
compressive forces. When the compressive 
strength of a material is reached, that material will 
be destroyed. Usually, the UCS of rock samples is 

determined by using the UCS test in the laboratory. 
In this experiment, the strain of the rock sample is 
measured by increasing the uniaxial compressive 
force. The stress at the moment of failure is 
considered as the maximum resistance of the rock. 
Another method for predicting UCS is to use index 
tests (such as point load test). Determining the 
uniaxial compressive strength in the laboratory 
requires core samples of appropriate quality, which 
are time-consuming and expensive to prepare 
based on the necessary standards. On the other 
hand, the results of the laboratory values also 
strongly depend on the dimensions of the sample, 
loading, human errors and other external factors. 
Furthermore, due to the impossibility of preparing 
suitable samples from weak, broken and crushed 
rocks, indirect estimation of UCS seems necessary 
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in most practical cases.  Friction angle (φ) is the 
angle at which a rock unit can tolerate shear stress.  

The principles of UCS estimation are usually 
done by using statistical methods such as simple 
linear regression, non-linear multiple regression or 
by experimental methods for indirect estimation. 
Some of these studies are mentioned below: Cargill 
and Shakoor (1990), provided a relationship 
between UCS value with parameters such as 
Schmidt hammer (Rn) and point load index. The 
results showed that there is a strong correlation 
between point load index and UCS [1]. Tuğrul and 
Zarif (1999) proposed a simple regression analysis 
to obtain relationships between UCS and other rock 
properties including p wave velocity (Vp), point 
load index, and tensile strength using Brazilian test 
[2]. Karakus and Tutmez (2006) used a multi-
variate regression model to present a relationship 
for estimating UCS based on several parameters 
that the parameters were such as return values of 
Schmidt's hammer (Rn), point load index, and p 
wave velocity (Vp) [3]. Yagiz (2011), estimated 
the UCS by non-destructive testing using 
parameters of Schmidt hardness (Rn), p wave 
velocity (Vp), effective porosity and dry density 
[4]. Singh et al. (2013), proposed an experimental 
relationship between the point load index and UCS 
for some Indian rocks [5]. Aladejare (2020) used 
experimental models to estimate UCS. He used the 
data of return values of Schmidt hammer (Rn), 
point load index, block punch index (BPI), 
effective porosity, and density as input for 
experimental estimation of UCS. Then he 
compared the estimated values of UCS obtained 
from experimental equations with regression 
methods and concluded that experimental methods 
are less accurate than regression methods due to the 
different behavior of rocks in each region [6]. 

In addition, in recent years, various researchers 
used artificial intelligence (AI) methods to estimate 
geomechanical parameters (e.g. Hazbeh et al.  
(2024), predicted shear wave velocity [7], Mollaei 
et al. (2024), predicted brittleness index [8], 
Mollaei et al. (2024) estimated shear wave velocity 
[9], and etc.) and UCS using parameters such as 
point load index, p-wave velocity, and Schmidt 
hammer hardness using core test dataset, which 
some of the most important them are mentioned 
here. Gokceoglu (2002) presented a fuzzy 
triangular diagram to predict the uniaxial 
compressive strength of Ankara agglomerates from 
their lithological composition. He used the values 
account for VAF, variance calculation, and RMSE 
calculation to control the performance of triangle 
prediction capacity, which achieved good results 

[10]. Yılmaz, and Yuksek (2008) predicted the 
UCS using Artificial Neural Network (ANN). They 
predicted UCS and elastic modulus using Multiple 
Regression (MR), ANN, and Adaptive Neural 
Fuzzy Inference System (ANFIS) models [11]. 
Tiryaki (2008) presented a method to predict the 
strength of healthy rock for mechanical drilling 
using multi-variate statistics, ANN, and regression 
trees. He used bivariate correlation and curve 
fitting tests to estimate the UCS for the rocks [12]. 
Sarkar et al. (2010) used artificial neural network 
method to predict the UCS with the input 
parameters of dynamic wave velocity, durability 
index, p-wave velocity, and density [13]. Dehghan 
et al. (2010) predicted the UCS and elastic modulus 
using regression and ANNs [14]. Manouchehrian 
et al. (2012), investigated the usage of ANN and 
multivariate statistics to estimate the UCS using 
textural characteristics of rock [15]. Rabbani et al. 
(2012) predicted the UCS by artificial neural 
network [16]. Singh and Verma (2012) used an 
intelligent algorithm to correlate UCS with 
parameters such as porosity, tensile strength, and 
point load index in schistose rocks [17]. Yesiloglu-
Gultekin et al. (2013) presented research entitled 
predicting the UCS of granite by different non-
linear tools, and comparing their performance, in 
which three different methods of multi-variate 
regression analysis, ANN, and ANFIS were used to 
estimate this parameter [18]. Majdi and Rezaei 
(2013) used an artificial neural network and Multi-
Variable Regression Analysis (MVRA) models in 
order to predict UCS of rock surrounding a 
roadway using 93 laboratory datasets. The UCS 
estimation was based on the rock type, Schmidt 
hardness, density and porosity as input parameters 
[19]. Mishra and Basu (2013) estimated UCS using 
Regression Analysis (RA) and Fuzzy Inference 
System (FIS) [20]. Rezaei et al. (2014) predicted 
the UCS using fuzzy logic [21]. Mohamad et al. 
(2015) predicted the UCS using a hybrid particle 
swarm optimization (PSO)-based ANN model and 
160 laboratory test data [22]. Armaqhandi et al. 
(2018) estimated the UCS of rock on 20 sandstone 
samples in Malaysia by using the Gene Expression 
Programming (GEP) algorithm. In this research, in 
order to show the capability of this algorithm, the 
model was compared with linear regression, and 
the results showed that the GEP model is more 
accurate for estimating UCS [23]. To predict UCS, 
Saeedi et al. (2018) used input parameters 
including Brazilian Tensile Strength (BSI), point 
load index, and P-wave velocity across various 
rock types. In their study, they applied multiple 
regression analysis, ANN, and ANFIS to predict 
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UCS. The findings indicated that the multiple 
regression approach was less accurate than both the 
artificial neural network and the adaptive neuro-
fuzzy inference system [24]. Rezaei and 
Asadizadeh (2020) employed a combination of 
intelligent techniques including ANFIS, genetic 
algorithm (GA), and PSO, to predict rock UCS. 
These models were developed using laboratory 
datasets from 93 core samples, spanning a range of 
rock strengths from weak to very strong [25]. 
Rezaei and Asadizadeh (2020) use the new 
combinations of intelligent techniques including 
ANFIS, genetic algorithm (GA), and PSO in order 
to predict rock UCS. These models were 
constructed based on the collected laboratory 
datasets upon 93 core specimens ranging from 
weak to very strong rock types. They concluded the 
ANFIS-GA model was more accurate than the 
PSO-based ANFIS and MR models [25]. Wang 
and Wen (2019) estimated the UCS with the GEP 
algorithm using the return values of the Schmidt 
hammer (as an input parameter) [26]. Fattahi 
(2020) predicted the UCS with Relevance Vector 
Regression (RVR), improved by the Cuckoo 
Search (CS) and Harmony Search (HS) algorithms 
that introduced to forecast UCSWR. The HS and 
CS algorithms are combined with RVR to 
determine the optimal values for the RVR 
controlling factors [27]. Hassan and Arman (2022) 
estimated the UCS of carbonate rock by using a 
simple, measured Schmidt Hammer (SHVC) test on 
core sample and a unit weight (γn) of carbonate 
rock [28]. Dadhich et al. (2022) used machine 
learning (ML) algorithms to estimate the uniaxial 
compressive strength of rock using point load 
strength, porosity, Schmidt rebound hardness, 
block punch index, and specific gravity [29]. 
Afolagboye et al. (2023) used four ML models of; 
Random Forest (RF), Relevance Vector Machine 
(RVM), Support Vector Machine (SVM), and 
ANN to predict the UCS values of Precambrian 
basement rocks [30]. Ibrahim et al. (2024) 
estimated uniaxial compressive strength (UCS) and 
tensile strength (T0) using random forest (RF) and 
decision tree (DT) models, based on well-logging 
data from a Middle Eastern reservoir [31].  

Additionally, only a few researchers have 
concentrated on predicting the φ angle and 
cohesion of soil samples using ML methods. 
Among them, Allush et al. (2017) predicted rocks' 
uniaxial compressive strength and rock's φ angle 
using ML algorithms such as ANFIS, SVM, and 
ANN [32]. Pham et al. (2021) estimated the soil’s 
φ angle using 245 laboratory test data points and a 
deep neural network (DNN) optimized with a PSO 

algorithm [33].  Hiba et al. (2022) predicted 
friction angle and adhesion using well log data and 
machine learning algorithms including RF and DT 
[34]. Faraj et al. (2022) estimated FR angle with 
density and gamma neutron logs using Plumb's 
correlation [35]. Shahani et al. (2022) estimated φ 
angle and adhesion using ML method (Lasso 
regression (LR), ridge regression (RR), decision 
tree (DT), and SVM and logs data [36]. Ngoyan et 
al. (2024) utilized Bayesian backpropagation 
regularization algorithm to predict soil's φ angle 
[37].  

As stated previously, most studies conducted 
for this purpose have utilized various intelligent 
methods, primarily based on laboratory test data 
from rock and occasionally soil samples. Given 
that such data are often unavailable for 
geomechanical studies of hydrocarbon reservoirs, 
it is essential to estimate the values of these 
important geomechanical parameters across the 
entire reservoir interval or its wells using well log 
data and more advanced, powerful deep learning 
methods. As accurate estimation of these 
parameters is very important for modeling and 
geomechanical studies; this study try to introduce 
methods for estimating these parameters using 
deep learning algorithms and well log data with 
high accuracy, and low-cost continuously. On this 
basis, here four algorithms of MLP, CNN, LSTM, 
and CL are used to predict UCS and φ angle. To 
achieve the goal, a set of well logs and core data 
was chosen from a vertical well in one of the 
hydrocarbon fields in southern part of Iran. In the 
first step, one type of Auto-encoders deep network 
was used to select the effective features related to 
these parameters. Subsequently, the selected logs 
were utilized as input parameters of the model to 
predict the UCS and φ angle using four MLP, 
LSTM, CNN, and CL algorithms. Finally, the 
performance of these four algorithms have been 
evaluated using a blind dataset, and their results 
compared with each other using various statistical 
measures. This study marks the first use of the 
Auto-encoder algorithm for feature selection. It is 
also the first time a hybrid DL approach, known as 
CL, is utilized alongside with other deep learning 
models to predict rock's φ angle and UCS values 
along the entire well path using selected well log 
data. Moreover, there is a noticeable gap in the 
literature regarding the estimation of rocks' φ angle 
with DL methods, especially using hybrid models 
like CNN + LSTM (CL). This underscores the 
essential need for further research in this area. 
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2. Material and Methods 
2.1. Methods 
2.1.1. Multi-layer perceptron neural network 

A Multi-Layer Perceptron (MLP) neural 
network will be obtained by stacking several 
perceptron. In such a network, we will have several 
layers of neurons. Figure 1 shows an example of a 
MLP neural network: the first layer is known as the 
input layer. The data is transferred sequentially 
through one or more intermediate (or hidden) 
layers. At each layer, the data undergoes a series of 
mathematical transformations, which, gradually 
extract and refine features. Ultimately, the 
transformed data reaches the output layer, where 
the network produces its final output based on the 
learned patterns in the data [38].  

 
Figure 1. Schematic of an MLP neural network 

structure [39]. 

The MLP network employs two: the 
feedforward propagation and backpropagation 
training methods. In the first training process, input 
feature nodes (neurons) are multiplied by 
corresponding weights and biases to produce 
output values that pass through non-linear 
activation functions across all hidden layers. 
Backpropagation, on the other hand, adjusts these 
weights to minimize loss by applying gradient 
descent after predicting the target and computing 
the loss in the forward pass. In an MLP, each 
layer's output becomes the input for the subsequent 
layer, establishing a layered architecture that 
processes data progressively from the primary 
input layer through hidden layers to the output 
layer. The network's adjustable weights are the 
core of this process: they are applied to the 
connections between neurons and adjusted based 
on the desired classification or clustering outcome 
of the network. These weights are dynamically 
adjusted during the training process through 

backpropagation, an algorithm that minimizes 
error by fine-tuning weights in response to the 
network’s performance. As the data is passed 
through each node, it is also processed by an 
activation function. This function introduces non-
linearities, which allow the MLP to model complex 
relationships within the data that linear functions 
alone could not capture. Examples of commonly 
used activation functions include the sigmoid, 
Rectified Linear Unit (ReLU), and tanh functions, 
each offering unique benefits for handling various 
data patterns. The combination of weights, 
activation functions, and layer connections forms 
the basis of the MLP’s machine learning process. 
According to Figure 1, the training process of an 
MLP neural network is illustrated by the following 
equation: [39]. 

ݕ = ݂( ݓ





ݕ݉ +  ) (1)ݓ

Here, ym represents the predicted value at the 
mth output layer, yl  denotes output of the lth 
hidden layer, wlm  is the weight connecting the lth 
hidden layer to the mth output layer, wm  indicates 
the weight at the mth output layer, f is the 
activation function, i is the input layer, and m is 
the output layer. 

2.1.2. Recurrent neural networks 

Recurrent Neural Networks (RNNs) are a 
powerful type of deep learning network, 
particularly useful for sequential data such as time 
series. One of the main problems of RNN is 
gradient vanishing when learning from long-term 
sequences, which reduces the learning ability of the 
algorithm. In fact, simple RNNs cannot learn long-
term sequences, and this problem led to the 
creation of recurrent neural networks with long 
short-term memory (LSTM). LSTM networks are 
a type of RNN designed with specific 
modifications that enable them to capture long-
term dependencies and effectively manage long-
term memory. The key difference between an 
LSTM and a traditional RNN lies in the structure 
of the LSTM unit, which includes additional 
components specifically engineered to handle the 
vanishing gradient problem. This structure allows 
LSTMs to selectively remember or forget 
information over extended sequences, making 
them highly effective for tasks that require memory 
retention over long periods. In one LSTM block we 
have three inputs (x, h and c). x is the input at time 
(sequence) t, and h, like simple RNN, is the 
"hidden state" that receives from the output of the 
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previous time (previous sequence) as memory. The 
input c is a "cell state" that controls how much 
information from the previous long sequences and 
which ones are affected in the block. Any LSTM 
block can be divided into three main parts [39]. In 
Figure 2, part (1) is called the forget gate. This part 
of the block decides which part of the previous long 
information (past long sequences) is useful in the 
current block and which part is not. In this part, 
"current input (x)" and "previous hidden state (h)" 
are combined (by weights) and given to the 
sigmoid activation function, and then the output is 
multiplied by "cell state (c)". In this part, the 
learning is done by the weights of a small internal 
neural network, when combining x and h, so that 

they can adjust their multiplication c. Section (2): 
This section decides what new information should 
be added to "Cell State (c)" for later use. This part, 
which is called "input gate", is made by combining 
"current input (x)" and "previous hidden state (h)" 
and combining it by the weights of small internal 
neural networks with the output of the previous 
part (forget gate). In section (3) in Figure (3), there 
is an "output port" that specifies the outputs. These 
outputs are a combination of "cell state (c) that has 
been updated" combined with "current input (x)" 
and "previously hidden state (h)". At this stage, 
there is also an internal neural network for learning. 
The outputs h and c are used in the next time (t+1), 
that is, in the next sequence of the same example. 

 
Figure 2. Structure of an LSTM block [41]. 

In summary, LSTMs improve upon traditional 
RNNs by incorporating memory-management 
mechanisms through the forget, input, and output 
gates. These components work together to balance 
long-term and short-term memory within the 
network, enabling LSTMs to capture dependencies 
over extended time steps without encountering the 
vanishing gradient problem. By retaining and 
updating relevant information across sequences, 
LSTMs are highly effective in tasks that require an 
understanding of long-term contextual 
information, such as time-series forecasting. 

2.1.3. Convolutional neural network 

Convolutional Neural Networks (CNNs) are 
among the most powerful deep learning methods. 
CNNs leverage a series of specialized layers that 
are trained to automatically extract and learn 
hierarchical features from data, producing highly 
accurate models for image classification, object 
detection, and more [42]. Figure 3 illustrates a 
typical CNN architecture, which consists of three 

main types of layers: the convolutional layer, 
pooling layer, and fully connected layer. Each layer 
performs a unique function, contributing to the 
network’s ability to learn complex patterns. In 
CNNs, training typically involves two main stages: 
the feed-forward stage and the backpropagation 
stage. In the first stage, the input data is fed through 
the network and each neuron performs a point-wise 
multiplication between its parameters (or weights) 
and the input data. This process, known as the 
convolution operation, extracts feature from the 
input data at various levels of abstraction. The final 
output of the feed-forward stage is the predicted 
result, which is subsequently used to compute the 
network error. This error is calculated by 
comparing the network’s output to the true label 
using an error function or loss function (e.g. mean 
squared error or cross-entropy loss). Once the error 
is determined, the network begins the second 
(backpropagation) stage to optimize its parameters. 
The gradient of the error is then calculated with 
respect to each parameter using the chain rule, and 
each parameter is adjusted based on its contribution 
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to the total error. This iterative process—known as 
gradient descent—continues until the error reaches 
a minimum, allowing the network to learn and 
improve its accuracy with each pass. After each 
backpropagation pass, the feed-forward stage 

repeats, with updated parameters. Training 
completes once the network reaches a pre-defined 
number of iterations or the error falls below a 
threshold.  

 
Figure 3. Schematic of CNN structure [42]. 

A CNN is structured as a hierarchical neural 
network, where convolutional layers are combined 
with pooling layers, followed by fully connected 
layers. Each of these layer types plays a distinct 
role: convolutional layers are the core feature 
extraction layers of a CNN. Each convolutional 
layer applies kernels (or filters) that convolve 
across the input image or preceding feature maps. 
The convolution operation emphasizes relevant 
patterns, such as edges, textures, or complex 
shapes, creating feature maps that represent learned 
aspects of the input data. As data passes through 
successive convolutional layers, these feature maps 
capture increasingly abstract patterns and 
structures within the data. Pooling layers typically 
follow convolutional layers and serve to down 
sample the feature maps, reducing their spatial 
dimensions. This reduction minimizes the number 
of parameters and computations within the 
network, helping control over fitting and enhancing 
computational efficiency. Common types of 
pooling include max pooling, which selects the 
maximum value within a region, and average 
pooling, which computes the average value. By 
retaining only the most significant information, 
pooling layers contribute to a more compact, 
resilient representation of features. After the final 
pooling layer, the feature maps are flattened into a 
1D feature vector in preparation for the final 
classification or regression task. Fully connected 
layers then take this vector as input and further 
process it to produce the network’s output. Each 
node in a fully connected layer connects to all 

activations in the previous layer, enabling the 
network to combine features and make more 
complex decisions based on the patterns it has 
learned [43]. 

2.2. Data presentation 

The data of this research is related to one well 
of a hydrocarbon field in the southwest of Iran. 
This field is one of the largest oil fields in the 
Zagros basin, which is located in the eastern part of 
the structural area of Dezful embayment. This field 
is extended with a northwest-southeast trend in the 
western to central part and a northeast-southwest 
trend in the eastern part. The surface outcrop of this 
field is the Aghajari formation. The Asmari 
formation, the Bangestan and Khami groups are the 
hydrocarbon reservoirs in this field. Asmari 
formation is the most important reservoir rock of 
this field, which is divided into 6 reservoir layers. 
Reservoir layers one, two, three are mainly 
composed of dolomitic carbonates, so the density 
of fractures (especially in layer one) (90% 
dolomite) is higher. In the fourth, fifth and sixth 
reservoir layers of this field, due to the increase of 
shale and marl layers, as well as the decrease in 
fragility, the density of fractures decreases. The 
total available log data are 16330, which located in 
the depth range of 3551.072 to 3799.789 meters 
and 12 laboratory samples of UCS and, 6 
laboratory samples of φ angle have been available. 
The available well logs include sum gamma ray 
(SGR), Corrected Gamma Ray (CGR), sonic travel 
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time (DT), density (RHOB), resistivity (LL7), 
neutron porosity (NPHI), CALIPER, primary (P-
wave) velocities (Vp), and the photoelectric factor 

(PEF). Table 1 presents a subset of these data logs, 
while Table 2 shows core sample data for uniaxial 
compressive strength and internal friction angle. 

Table 1. Part of the available data logs. 
DEPTH 

(m) 
CALIPER 

(in) 
CGR 

(GAPI) 
SGR 

(GAPI) 
Vp 

(m/s) 
PEF 
(B/E) 

LL7 
(ohm.m) 

RHOB 
(kg/m3) 

NPHI 
(v/v) 

DT 
(us/ft) 

3551.682 9.602 5.656 28.5242 5644.444 3.4137 166.3624 2740 0.1 106 
3551.834 9.6429 8.4385 31.2987 5750.943 3.4341 115.5674 2720 0.1 104 
3551.987 9.7065 8.296 33.9424 5861.539 3.2612 64.433 2720 0.09 102 
3552.139 9.6377 7.5697 35.947 5976.471 3.0593 40.084 2730 0.08 109 
3552.292 9.5352 7.7178 37.2299 5976.471 3.0598 30.8807 2750 0.07 108 
3552.444 9.5681 6.123 38.0726 5976.471 3.1447 26.2336 2770 0.06 109 
3552.596 9.5648 4.4124 39.0551 5861.539 3.0769 26.9877 2780 0.06 110 
3552.749 9.5716 3.0685 40.7509 5750.943 2.9428 32.131 2780 0.07 111 
3552.901 9.5845 2.6307 43.2706 5750.943 2.806 34.8453 2780 0.08 113 
3553.054 9.483 3.8246 46.2761 5644.444 2.7705 33.9128 2770 0.09 114 
3553.206 9.4224 5.6863 49.3887 5644.444 2.7451 34.4455 2770 0.1 114 
3553.358 9.414 6.3645 52.2282 5644.444 2.7313 33.7904 2760 0.1 114 
3553.511 9.414 7.5808 54.713 5644.444 2.8674 32.8393 2750 0.1 113 
3553.663 9.414 9.0363 57.1157 5750.943 3.0285 38.2476 2740 0.1 112 
3553.816 9.4439 9.1963 59.8346 5861.539 3.0128 52.8836 2730 0.09 111 

Table 2. Values of laboratory samples of UCS and φ angle. 
Number Depth (m) laboratory UCS (Mpa) laboratory φ (deg) 

1 3553.054 90.052 43.89 
2 3553.511 90.733 43.14 
3 3555.644 80.518 40.96 
4 3556.559 82.561  
5 3557.626 75.751  
6 3558.083 74.616 38.90 
7 3558.997 89.825 42.40 
8 3559.302 92.095 43.14 
9 3560.216 92.549  

10 3560.826 90.96  
11 3561.588 85.512  
12 3562.655 88.236  

 
2.2.1. Feature selection 

The relations between UCS and φ angle with 
conventional logs is a very complex nonlinear 
problem, which is the result of the interaction of 
many elements in the earth system, that makes it 
difficult for us to analyze and predict UCS and φ 
angle. Selecting the most sensitive logs, rather than 
utilizing all available conventional logs for model 
training and prediction, can decrease data 
processing requirements and enhance the model's 
speed and efficiency [44]. Moreover, feature 
selection also increases the prediction precision 
and universal applicability of the model. Therefore, 
in order to simplify the model structure, improve 
the modeling ability, enhance the model prediction 
efficiency, and alleviate the interference of the 
non-main parameter variables of the model to the 
prediction results, it is necessary to select the 
feature. So far, methods such as Pearson's or 
Spearman's correlation coefficient have been 

mainly used to select effective features. In this 
article, an Auto-encoder deep learning algorithm 
was employed as a novel approach for selecting the 
most relevant features for input data in four 
predictive: MLP, LSTM, CNN, and CL models. 
From the available log data—SGR, CGR, DT, 
RHOB, RT, NPHI, CALIPER, Vp, and PEF—the 
Auto-encoder algorithm identified four specific 
logs (Vp, RHOB, CALIPER, and NPHI) for UCS 
prediction. Similarly, it selected Vp, LL7 (RT), 
SGR, and NPHI as inputs for φ angle estimation. 
Figure 4 shows the process of feature selection 
using the above deep learning Auto-encoder code. 

2.2.2. Data splits 

Prediction reliability is one of the main 
concerns in the performance evaluation of 
supervised DL algorithms [40, 41]. Here, 16,330 
well log data points were available within the depth 
range of 3551.072 to 3799.789 meters. Initially, 
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24% of these data points were set aside from the 
end of the dataset as blind data. From the remaining 
12,330 data points, 80% were used as training data, 
while 20% served as test data. To prevent over 
fitting, a validation split of 0.1 was applied to the 
training dataset. 

 

 
Figure 4. The workflow of feature selection using 

Auto-encoder algorithm. 

2.2.3. Normalization 

For reducing the prediction error from the 
difference of order of magnitude between the input 
data, the original data need to be preprocessed. 
Here, the Min-Max Normalization method was 
used to normalize the original data to [0,1] range, 
in order to eliminate the dimensional difference. 

2.2.4. Optimization function 

To optimize the algorithms, several optimizer 
functions—including Adam, Adamax, Nadam, 
RMSprop, Ftrl, SGD, and Adadelta—were 
evaluated. As shown in Figure 5, the Adam 
optimizer demonstrated the highest accuracy for 
estimating uniaxial compressive strength and 
internal friction angle. Adam optimization 
algorithm is an adaptive learning rate optimization 
algorithm based on gradient stochastic objective 
function optimization [45]. This optimizer 
combines the advantages of two popular 
optimization methods: AdaGrad [46] for sparse 
gradient problems and RMSprop [47] for nonlinear 
and non-fixed optimization problems. Figure 5 
presents a comparison of the CL algorithm’s results 
for blind data of uniaxial compressive strength and 
internal friction angle across various optimizer 
functions. 

 
Figure 5. A comparison of the R² (coefficient of determination) values obtained for UCS (a) and φ angle (b) predictions 

with various optimizer functions using the CL algorithm for blind data.  

3. Model Evaluation 

The performance of the DL models for UCS and 
φ angle prediction are conducted by calculating 
widely used statistical measures as expressed in 
Eqs. 2, 3, 4, 5, 6, and 7. Here, mean absolute 
percentage error (MAPE), mean absolute error 
(MAE), mean squared error (MSE), root mean 
square error (RMSE), normalized RMS error 
(NMSRE), and coefficient of determination (R2) 
were used to evaluate the performance of model 
prediction. 

ܧܵܯ =
1
݊

(ܼ௦௨ௗ − ܼௗ௧)ଶ


ୀଵ

 (2) 

ܧܵܯܴ =  (3) ܧܵܯ√

ܧܵܯܴܰ =
ܧܵܯܴ

(௦௨ௗܼ)ܺܣܯ − (௦௨ௗܼ)ܰܫܯ
 (4) 

ܧܣܯ =
1
݊ หܼ௦௨ௗ − ܼௗ௧ห



ୀଵ

 (5) 
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ܧܲܣܯ =
100

݊
 ฬ

ܼ௦௨ௗ − ܼௗ௧

ܼ௦௨ௗ
ฬ



ୀଵ

 (6) 

ܴଶ = 1 −
∑ ൫ܼ௦௨ௗ − ܼௗ௧൯

ଶ
ୀଵ

∑ ൫ܼ௦௨ௗ − ܼ௩൯
ଶ

ୀଵ

= 1 −
ܧܵܯ

ଶߪ  (7) 

4. Results and Discussion 

According to the core data of uniaxial 
compressive strength and internal friction angle in 
Table 2, it is necessary to generalize these 
parameters to all depth ranges of study. In order to 
generalize these samples to the entire target range 
(3551.072 to 3799.789 meters), at first the UCS 
and φ angle were calculated with the Christaras 
relation (equation 8) [48] and Plumb relation 
(equation 9) [49] using the relevant available logs. 
Then for the depths where the laboratory samples 
of UCS and φ were recorded, the relationship 

between the UCS and φ obtained from the logs data 
and laboratory results was determined. As seen in 
Figures 6 and 7, the derived equation for 
experimental and empirical UCS is a second-
degree equation with an R² of 0.9806, while for φ 
angle, it is a linear equation with an R² of 0.9084. 
These two new equations, shown in Figures 6 and 
7, were subsequently applied to extend the existing 
core test UCS and φ angle across the entire depth 
range under study using the related logs. 
Considering the high correlation coefficient 
obtained for uniaxial compressive strength and 
internal friction angle, then the calculated method 
has appropriate accuracy, and as a result, its 
generalization to all depth ranges will have 
appropriate accuracy. Considering the limited 
number of laboratory data in hydrocarbon fields, if 
more data are available, the results of the 
algorithms can be obtained with better accuracy if 
more data is available 

 

ܵܥܷ = 9.95 ܸ
ଵ.ଶଵ (8) 

߮ = 26.5 − 37.6 × (1 − ܫܪܲܰ − ௌܸ ) + 62.1 × (1 − ܫܪܲܰ − ௌܸ )ଶ (9) 

௦ܸ =
ܴܩ − ܴܩ

௫ܴܩ − ܴܩ
 (10) 

 

  
Figure 6. Relation between UCS_Log and UCS_lab. Figure 7. Relation between φ _Log and φ lab. 

As stated in section 2.2.1, the UCS values were 
estimated with the conventional data logs of Vp, 
RHOB, CALIPER and NPHI and the values of φ 
angle were estimated with the data logs of Vp, RT, 
SGR and NPHI by using MLP, LSTM, CNN and 
CL algorithms. The log data for each case was 
divided into three parts, training, test, and blind, 
according to the procedure described in paragraph 
2.2.2. Figure 8 shows the flowchart for UCS and φ 
estimation using four aforementioned algorithms. 

Table 3 shows the parameters used in each of 
these MLP, LSTM, CNN and CL algorithms for 

UCS and Table 4 shows these parameters for φ 
angle prediction. Here, hyperparameters such as 
the optimizer function, batch size, learning rate, 
activation function, number of layers, kernel size, 
hidden layer, padding, Dropout, strides and other 
parameters have been tested and determined in 
algorithms by trial-and-error method. As an 
example, the selection of the best optimizer 
function for UCS and φ angle prediction displayed 
previously in Figure 5. 

Tables 5 display UCS prediction errors (PE) 
and accuracies respectively based on the training 
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(80%) subsets. Here, the measured data are the data 
that were generalized to all depth ranges according 
to the available core samples. According to Table 
5, for UCS training data, four algorithms have a 
low error, where the MSE values each of the four 
predicting models are equal to ܧܵܯெ = 0.1444,
ௌ்ெܧܵܯ = 1.4149, ேேܧܵܯ =
0.1214, ܧܵܯ = 0.0651, respectively. 

Tables 6 display φ angle prediction errors and 
accuracies respectively based on the training (80%) 
subsets. 

Table 7 displays the UCS prediction errors (PE) 
and coefficient of determination based on the test 
(20%) subset for four algorithms. Figures 9 provide 
a comparison for measured and predicted UCS 
using four algorithms for train and test data. 
According to Figure 9 and Table 5 and 7, for UCS 
train and test data, four algorithms MLP, LSTM, 
CNN and CL have a low error and high coefficient 
of determination, where the R2 values for train data 
are equal to ܴெ

ଶ = 0.9997, ܴௌ்ெ
ଶ =

0.9977, ܴேே
ଶ = 0.9998, ܴ

ଶ = 0.9999, and R2 

values for test data are equal to ܴெ
ଶ = 0.9974,

ܴௌ்ெ
ଶ = 0.9956, ܴேே

ଶ = 0.9994, ܴ
ଶ = 0.9996  

respectively. 

 
Figure 8. Workflow of UCS and φ angle prediction 

using MLP, LSTM, CNN, and CL algorithms and log 
data. 

Table 3. The required parameters determined and tested in each of the algorithms for UCS prediction. 

Other Description Network 
architecture 

Number of 
hidden layers 

Optimization 
function Iteration learning 

rate 
Bath 
size Model 

First hidden layer= 50 nodes 
Second hidden layer=50 nodes 
Activation function=Relu 

4-50-50-1 2 Adam 100 0.001 256 MLP 

First hidden layer=200 nodes 
Second hidden layer=100 nodes 
Dropout=0.2 

4-200-100-1 2 Adam 300 0.001 256 LSTM 

First layer the number of filters=128 
Second layer the number of filters=256 
third layer the number of filters=512 
Kernel size=3, Padding= same 
Activation function=Relu, Strides=1 

4-128-256-512-1 3 Adam 300 0.001 256 CNN 

For CNN layer: 
First layer the number of filters=128 
Second layer the number of filters=256 
Kernel size=3, Padding= same 
Activation function=Relu, Strides=2 
For LSTM layer: 
First hidden layer=64 nodes 
Dropout=0.2 
Second hidden layer=32 nodes 
Dropout=0.2 

4-128-256-64-32-1 4 Adam 300 0.01 512 CL 

 
Table 8 displays the φ angle prediction errors 

and coefficient of determination based on the test 
(20%) subset for four algorithms. Figures 10 
provide a comparison for the measured and 
predicted φ angle using four algorithms for train 
and test data. According to Figure 10 and Table 6 
and 8, for φ angle train and test data, four 
algorithms MLP, LSTM, CNN, and CL have a low 

error and a high coefficient of determination, 
where the R2 values for train data are equal to 
ܴெ

ଶ = 0.9983, ܴௌ்ெ
ଶ = 0.9940, ܴேே

ଶ =
0.9975, ܴ

ଶ = 0.9987, and R2 values for test data 
are equal to ܴெ

ଶ = 0.9764, ܴௌ்ெ
ଶ =

0.9861, ܴேே
ଶ = 0.9897, ܴ

ଶ = 0.9973,  
respectively. 
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Table 4. The required parameters determined and tested in each of the algorithms for φ prediction. 

Other description Network 
architecture 

Number of 
hidden layers 

Optimization 
function Iteration learning 

rate 
Bath 
size Model 

First hidden layer = 500 nodes 
Second hidden layer =100 nodes 
Activation function = Relu 

4-500-100-1 2 Adam 300 0.01 50 MLP 

First hidden layer = 200 nodes 
Second hidden layer = 100 nodes 
Dropout=0.2 

4-200-100-1 
 2 Adam 200 0.01 50 LSTM 

First layer the number of filters = 128 
Second layer the number of filters = 256 
third layer the number of filters=512 
Kernel size=3, Padding= same 
Activation function=Relu, Strides=1 

4-128-256-512-1 3 Adam 200 0.01 50 CNN 

For CNN layer: 
First layer the number of filters=128 
Second layer the number of filters=256 
Kernel size=3, Padding= same 
Activation function=Relu, Strides=2 
For LSTM layer: 
First hidden layer=64 nodes 
Dropout=0.2 
Second hidden layer=32 nodes 
Dropout=0.2 

4-128-256-64-32-1 4 Adam 300 0.01 50 CL 

 
Table 5. UCS prediction errors for training data 

records using four algorithms. 
PE MLP LSTM CNN CL 

MAE 0.1841 0.8085 0.2705 0.1352 
MAPE 1.5523 5.5421 0.5669 0.7862 
MSE 0.1444 1.4149 0.1214 0.0651 
RMSE 0.3801 1.1895 0.3485 0.2552 
NRMSE 0.0035 0.0110 0.0032 0.0023 
R2 0.9997 0.9977 0.9998 0.9999 

Table 7. UCS prediction errors and coefficient of 
determination for test data. 

PE MLP LSTM CNN CL 
MAE 0.5817 1.2700 0.4140 0.2862 
MAPE 0.8287 2.7277 0.7331 0.5829 
MSE 1.8988 2.2533 0.4522 0.3065 
RMSE 1.3779 1.5011 0.6724 0.5536 
NRMSE 0.0151 0.0201 0.0073 0.0060 
R2 0.9974 0.9956 0.9994 0.9996 

Table 6. Internal friction angle prediction errors for 
training data using four algorithms.  

PE MLP LSTM CNN CL 
MAE 0.3267 0.5384 0.3388 0.0491 
MAPE 1.2062 2.4101 1.5149 0.4536 
MSE 0.1538 0.6119 0.2319 0.0037 
RMSE 0.3921 0.7822 0.4815 0.0610 
NRMSE 0.0092 0.0183 0.0113 0.0081 
R2 0.9983 0.9940 0.9975 0.9987 

Table 8. Internal friction angle prediction errors 
and coefficient of determination for test data.  
PE MLP LSTM CNN CL 

MAE 1.2560 0.5543 0.4873 0.1064 
MAPE 4.5164 1.9126 2.1156 2.1869 
MSE 2.4007 0.8780 0.8328 0.0219 
RMSE 1.5494 0.9370 0.91260 0.1480 
NRMSE 0.0363 0.0252 0.0245 0.0127 
R2 0.9764 0.9861 0.9897 0.9973 

 
At this stage, the validation of the algorithms 

has been applied to previously unseen (blind) data. 
Table 9 depicts the predicted UCS errors and 
coefficient of determination based on the blind 
subsets of data, selected from the 400 data records. 
To estimate uniaxial compressive strength, error 
values for blind data are equal to ܧܵܯெ =
47.2230, ௌ்ெܧܵܯ = 8.1027, ேேܧܵܯ =
1.9375, ܧܵܯ = 1.0105, and determination 
coefficient values are equal to ܴெ

ଶ = 0.9186,
ܴௌ்ெ

ଶ = 0.9860, ܴேே
ଶ = 0.9966, ܴ

ଶ = 0.9983. 

Figure 11 shows a comparison of the predicted 
UCS using four algorithms with the measured UCS 
values for blind dataset.  

Table 9. UCS prediction errors for blind data 
records using four algorithms. 

PE MLP LSTM CNN CL 
MAE 5.8694 1.8388 1.2671 0.8974 
MAPE 15.4218 13.9033 2.9906 1.9769 
MSE 47.2230 8.1027 1.9375 1.0105 
RMSE 6.8719 2.8465 1.3919 1.0052 
NRMSE 0.0640 0.0265 0.0129 0.0093 
R2 0.9186 0.9860 0.9966 0.9983 
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Figure 9. Comparison of the predicted UCS using four algorithms with the measured UCS for train and test data. (a), MLP 

algorithm. (b), LSTM algorithm. (c), CNN algorithm, (c), CL algorithm. Blue log (measured UCS for training (original 
data)), orange log (predicted UCS for training data), green log (measured UCS for test data (original data)), red log 

(predicted UCS for test data). 

 
Figure 10. Comparison of the predicted φ angle using four algorithms with the measured φ angle for train and test data (a), 
prediction of φ angle using MLP algorithm (b) prediction of φ angle using LSTM. (c), prediction of φ angle using CNN. (c), 
prediction of φ angle using CL. Blue log (measured φ angle for training (original data)), orange log (predicted φ angle for 

training data), green log (measured φ angle for test data (original data)), red log (predicted φ angle for test data). 
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Figure 11. Comparison of the predicted UCS values using four (MLP, LSTM, CNN and CL) deep learning algorithms 
with the measured UCS values of the blind dataset. (a), UCS prediction using MLP. (b), UCS prediction using LSTM. 

(c), UCS prediction using CNN, (c), UCS prediction using CL.  

Figure 12 shows the coefficient of 
determination of the blind data of the  UCS 
measured and the UCS predicted by four 
algorithms. According to the values of Table 9 and 
considering the prediction errors and the 

coefficient of determination, it can be concluded 
that the most robust and best method of UCS 
prediction is the CL algorithm and the weakest 
performance for this case related to the MLP 
algorithm.  

 

 
Figure 12. Display of coefficient of determination of blind data for measured and predicted UCS using four algorithms. 

(a) R2 using MLP algorithm (b) R2 using LSTM algorithm (c)R2 using CNN algorithm (c) R2 using CL algorithm 
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Table 10 depicts the predicted φ angle errors 
and coefficient of determination based on the blind 
sub-sets of data. To estimate φ angle, error values 
for blind data are equal to ܧܵܯெ = 5.5839,
ௌ்ெܧܵܯ = 3.0233, ேேܧܵܯ =
1.9882, ܧܵܯ = 0.0230,  and determination 
coefficient values are equal to ܴெ

ଶ = 0.9117,
ܴௌ்ெ

ଶ = 0.9522, ܴேே
ଶ = 0.9686, ܴ

ଶ = 0.9917. 
Figure 13 shows a comparison of the predicted 

φ angle using four algorithms with the measured φ 
angle for blind data. Figure 14 shows the 
coefficient of determination of the blind data of the  
measured and the predicted φ angle for four 
algorithms. According to the values of Table 10, 
and considering the prediction errors and the 

coefficient of determination, it can be concluded 
that the most robust and best method of φ angle 
prediction is the CL algorithm and the weakest 
performance for this case related to the MLP 
algorithm.  

Table 10. Internal friction angle prediction errors 
for blind data records using four algorithms. 
PE MLP LSTM CNN CL 

MAE 1.5556 1.2357 0.8901 0.1333 
MAPE 4.5404 4.2019 3.3746 1.3088 
MSE 5.5839 3.0223 1.9882 0.0230 
RMSE 2.3630 1.7385 1.4100 0.1517 
NRMSE 0.0636 0.0468 0.0379 0.0201 
R2 0.9117 0.9522 0.9686 0.9917 

 

 
Figure 13. Comparison of the predicted φ angle values using four (MLP, LSTM, CNN, and CL) deep learning 

algorithms with the measured φ angle values of the blind dataset (a) φ prediction using MLP (b), φ prediction using 
LSTM (c) φ prediction using CNN (d), φ prediction using CL.  
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Figure 14. Display of coefficient of determination of blind data for φ measured and φ predicted using four algorithms 

(a) R2 using MLP algorithm (b) R2 using LSTM algorithm (c) R2 using CNN algorithm (c) R2 using CL algorithm. 

To further assess the performance of the four 
deep learning models, a sub-set of the estimated 
UCS and φ angle values from the blind dataset, 
along with the actual values, is presented in Figure 

15. As illustrated in Figure 15, while all the deep 
learning algorithms perform sufficiently well, the 
CL model yields more accurate estimates for both 
UCS and φ angle compared to the other models. 

 

 
Figure 15. Comparing the estimated values of UCS and φ angle with four algorithms MLP, LSTM, CNN, and CL and 

real data (a) Uniaxial compressive strength (b) internal friction angle 
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In addition, the test plot of 10 selected absolute 
errors (Figure 16) and the overall RMS error plot 
(Figure 17) for UCS and φ angle predictions using 
the four deep learning models—MLP, LSTM, 

CNN, and CL—and their comparison with actual 
data show that the CL algorithm achieves the 
lowest absolute and RMS error among the models 
in prediction. 

 
Figure 16. The absolute error diagram of 10 selected samples of uniaxial compressive strength and internal friction 

angle predicted by four algorithms MLP, LSTM, CNN, and CL and real data of blind dataset (a) Uniaxial compressive 
strength (b) internal friction angle. 

 
Figure 17. The overall RMSE diagram of uniaxial compressive strength and internal friction angle estimation using 

four algorithms MLP, LSTM, CNN and CL for blind data (a) Uniaxial compressive strength (b) internal friction angle. 

Finally, Table 11 presents the results of various 
methods previously developed by researchers for 
determining the uniaxial compressive strength and 
internal friction angle of rock and soil, along with 
the results of three (Cheristaras [48] (equation 8), 
Yaser and Erdogan [56], (Equation 11) and Tercan 
[57], (Equation 12)) empirical methods and four 
intelligent models applied in this study for 
comparison. As shown, the four intelligent 
methods used in this study demonstrate very low 

error rates and high correlation coefficients in 
predicting these geomechanical parameters when 
compared to actual data. This indicates the strong 
accuracy of the deep learning methods introduced 
here, especially with the application of the CL 
hybrid approach. 

UCS = 21.677 ܸ + 0.0648 (11) 

UCS = 7.1912 ܸ + 26.258 (12) 
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Table 11. Comparing the results of several previous studies with the results obtained from current study. 

Reference ML /empirical methods Input variables Param
eter 

Statistical evaluation parameters 
MSE MAE RMSE R2 

Gokceoglu and Zorlu 
[10] FIS*, MR 

Apparent Porosity, Vp, Schmidt 
Hardness, Tensile Strength, Point 
Load Index, Block Punch Index 

UCS   13.6 0.8124 

Dadhich et al [29] ANN*, MLR, RFR 
Point load strength, porosity, Schmidt 
rebound hardness, block punch index, 
and specific gravity. 

UCS  9.79  0.92 

Xu et al [50] SSA-XGBoost*, XGBoost, 
SVM, RF, … 

Porosity, Schmidt rebound number, 
Vp and point load 
strength 

UCS  14.79 19.85 0.84 

Kochukrishnan et al 
[51] LR, SWR* 

Ultrasonic Pulse Velocity 
(UPV), Schmidt Hammer Rebound 
Number (N), Brazilian Tensile 
Strength (BTS), and Point Load Index 
(PLI) 

UCS  2.71 3.6 0.99 

Zhao et al. [52] XGBoost-ABC*, RF, ANN Rock density, P-wave velocity, and 
point load strength index UCS  3.76 4.78 0.93 

Daniel et al. [53] EL*, AdaBoost, GBDT, 
XGBoost, LightGBM, RF, ET* 

Schmidt hammer 
rebound number, P-wave velocity, and 
point load index data, 

UCS  4.0656 5.2024 0.9854 

Niu et al. [54] KNN, KNIM*, KNAF 

Schmidt hammer rebound number, 
bulk 
density, bulk tensile strength, dry 
density test, 
(Vp), and point load index test 

UCS 19.245  4.387 0.986 

Kalabarige et al. [55] 
VR*, DT, SVM, LR, KNN, 

LGBM, XGB, RF, ETR, 
BagXGB, BagETR 

cement (C), LP, FA, GGBS, SFs, 
RHA, MP, BP, CA, fine aggregate 
(Fa), RCA, W, SP, and VMA 

UCS 21.74 3.42 4.66 0.9243 

This research (using 
Cheristaras [48] Eq.) ܷܵܥ = 9.95 ܸ

ଵ.ଶଵ Vp UCS 248.0327 12.1019 15.7490 0.5201 

This research (using 
Yaser and Erdogan 
[56] Eq.) 

UCS = 21.677 ܸ + 0.0648 Vp UCS 2144.471 44.4911 46.3084 0.0314 

This research (using 
Tercan [57] Eq.) UCS = 7.1912 ܸ + 26.258 Vp UCS 398.2935 17.3208 19.9572 0.2294 

Khanlari et al [56] MVR, ANN* 
Percentages of passing the No. 200 (≠ 
200), 40 (≠40) and 4 (≠4) sieves, 
plasticity index (PI), and density (ρ) 

φ  1.92 2.26 0.792 

Iyeke et al. [57] ANN 

Grain size distribution, plastic limit, 
liquid limit, specific gravity, 
compaction, shear box tests and 
triaxial compression 
tests 

φ  4.34 4.77 0.805 

Mohammadi et al. [58] MLR, MLP* 
Atterberg limits, density, 
percentages of gravel, sand, silt, clay 
and passing the sieves No. 200 

φ  6.137 9.285 0.814 

Pham et al. [33] DNN, PSO_DNN* 

soil state, standard penetration test 
value, 
unit weight of soil, void ratio, 
thickness of soil layer, top elevation 
of soil layer, and bottom elevation of 
soil layer 

φ  1.425 1.936 0.935 

Shahani et al. [36] LR, RR, DT, SVM* 
P-wave velocity in (m/s), density in 
(gm/cc), UCS in (MPa), and tensile 
strength in (MPa) 

φ 1.7958 1.0021 1.3401 0.912 

This research (for 
blind data) MLP, LSTM, CNN, CL* Vp, RHOB, CALIPER, and NPHI 

logs and core data UCS 1.0105 0.8974 1.0052 0.9983 

This research (for 
blind data) MLP, LSTM. CNN, CL* Vp, LL7 (RT), SGR, and NPHI logs 

and core data φ 0.0230 0.1333 0.0201 0.9917 

 * The algorithm with the best result       
 

It should be noted that previous studies 
mentioned in Table 11 have mainly focused on 
using laboratory tests conducted on rock/ soil or 
concrete samples, which are either limited or rarely 
available for oil reservoir studies. However, in this 
study, as an alternative to relying on only limited 
core sample test results, conventional well log data 

was used to predict the specified rock parameters. 
The deep learning algorithm is one of the new and 
high-accuracy methods for predicting UCS and φ 
angle. In this study, four algorithms (MLP, LSTM, 
CNN and CL) are used to predict UCS and φ angle 
values. The results show the high accuracy of 
LSTM, CNN and CL algorithms for UCS and φ 
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angle prediction. Therefore, the accuracy and 
robustness of the prediction results of these 
algorithms have more advantages than MLP 
algorithm and traditional empirical models. 

5. Conclusions 

Uniaxial compressive strength and friction 
angle of rock are of the most practical 
geomechanical and engineering parameters, which 
is an urgent requirement for engineers in most 
designs and modeling tasks. In this study, some 
models are established for predicting UCS and φ 
angle values based on three MLP, LSTM, CNN 
and CL algorithms. To achieve the goals, first, the 
auto-encoder algorithm was used to select the 
effective features. Based on the acquired results, 
the best effective features logs for UCS predication 
were the values of density, neutron, sonic and 
caliper logs while for φ angle prediction the 
neutron, sonic, resistivity and gamma ray logs were 
selected as the best feature logs. In the next step, 
the model was defined and trained using four: 
MLP, LSTM, CNN and CL algorithms. To 
estimate the uniaxial compressive strength, the 
structure of the MLP model including two hidden 
layers and each layer including 50 nodes, the 
LSTM model including two layers where the first 
layer has 200 nodes and the second layer has 100 
nodes and the dropout is 0.2, and for CNN model 
consists of three layers, 128 filters of the first layer, 
256 filters of the second layer and 512 filters of the 
third layer were selected and for CL model consists 
of four layers, two CNN and two LSTM layers 
were selected. To estimate the internal friction 
angle, the number of layers was chosen similar to 
uniaxial compressive strength, but in the MLP 
model, the first layer has 500 nodes and the second 
layer has 100 nodes. Although other parameters 
such as batch size, learning rate and iteration were 
chosen differently for these two parameters. To 
ensure the results of the algorithms, the evaluation 
of the models was done with some errors 
parameters and R2 value. In the next step, the four 
models were also applied on the blind dataset, their 
error values obtained as; ܧܵܯெ = 47.2230,
ௌ்ெܧܵܯ = 8.1027, ேேܧܵܯ =
1.9375, ܧܵܯ = 1.0105  and their R2 values 
as; ܴெ

ଶ = 0.9186, ܴௌ்ெ
ଶ = 0.9860, ܴேே

ଶ =
0.9966, ܴ

ଶ = 0.9983 for the UCS prediction. For 
the φ angle of blind data, ܧܵܯெ = 5.5839,
ௌ்ெܧܵܯ = 3.0233, ேேܧܵܯ =
1.9882, ܧܵܯ = 0.0230 and R2 values of; 
ܴெ

ଶ = 0.9117, ܴௌ்ெ
ଶ = 0.9522, ܴேே

ଶ =
0.9686, ܴ

ଶ = 0.9917 were obtained. Moreover, 

the UCS and φ angle are predicted by the proposed 
and  traditional empirical models. It has been 
demonstrated that the introduced and deigned 
LSTM, CNN and CL deep learning models, 
outperforms the MLP and traditional empirical 
models in their prediction accuracy and robustness. 
While MLP method achieved relatively 
satisfactory results in UCS and φ angle prediction, 
but  compared to the LSTM, CNN and CL 
algorithms, it shows less accuracy and more error. 
In short, it can be stated that the designed CNN, 
LSTM and CL deep learning models have much 
better performance than the MLP model for UCS 
and φ angle continuous prediction using the 
relevant well log data. Despite the limited number 
of core samples used in this study, various 
evaluation methods demonstrated the effectiveness 
of the proposed DL models, especially the 
accuracy of the CL hybrid algorithm for predicting 
UCS and φ angle values from conventional well 
log data. Certainly, if data from additional wells in 
diverse geological locations and more core and log 
samples were available, these DL models could 
yield results that generalize more effectively to the 
broader geological conditions of the oil field. It is 
therefore recommended to apply the proposed and 
other deep learning algorithms with an expanded 
dataset of uniaxial compressive strength and 
internal friction angle, along with integrating 
geological information into the data, to achieve 
even higher prediction accuracy. 
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AFT  Alibaba and the Forty Thieves 
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ANFIS  Adaptive neuro-fuzzy inference  
ANN  Artificial neural network  
APSO  Aarticle swarm optimization algorithm 
with adaptive learning strategy  
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CFM  Committee fuzzy machine 
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CL  CNN+LSTM 
CNL   Compensate neutron log  
CNN   Convolutional neural network 
DBN  Deep Belief Network 
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DNN   Deep neural network 
DSI  Dipole Shear Sonic Imaging 
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FFANN   Feedforward artificial neural network 
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φ  Friction angle 
GA  Genetic algorithm 
GBR  Gradient boosting regression 
GBRT  gradient boosted tree regressor 
GEP  Gene expression programming 
GR   Gamma ray log  
GRA   Grey relational analysis LSTM Long 
short-term memory networks 
GRG  Generalized reduced gradient 
GRNN   General regression neural network 
HTS  hydraulic tensile strength 
IMRFO  Improved Manta-Ray Foraging 
Optimization 
KNN  K-Nearest Neighbour 
LightGBM light gradient boosting machine 
LSSVM  Least-squares support-vector machines 
LSTM  Long short-term memory networks 
MAE   Mean absolute error  
MAPE  Mean absolute percentage error 
MF  Memetic firefly 
MGGP  multi-gene genetic programming 
ML  Machine learning technique  
MLEM  Multi extreme learning machine 
MELM  Multi-layer Extreme Learning Machine 
MLP  Multi-layer perceptron 
MPMR  minimax probability machine regression 
MSE  Mean square error 
NARX  Nonlinear autoregressive network with 
exogenous inputs 
NEUT  Neutron porosity 
NF  neuro-fuzzy 
NRMSE  Normalized Root Mean Squared Error 
OFIS  Optimized fuzzy inference 
ONN  Optimized neural network 
OSVR  Optimized support vector regression 
PERM   Permeability log  
PSO   Particle swarm optimization  
R2   Coefficient of determination 
RHOB   Density log  
RMSE   Root mean square error  
RNN   Recurrent neutral network  
RS   Shallow lateral resistivity log  
RT   Formation true resistivity 
RVM  relevance vector machine 
SFIS  Surgeon's fuzzy inference 
SML  Single machine learning 
SSA-XGBoost Sparrow Search Algorithm- Extreme 
Gradient Boosting 
SVM   Support vector machine 
SVR  Support vector regression  
UCS  uniaxial compressive strength 
Vs   Shear wave velocity  
Vp   Compressional wave velocity 
XGB  extreme gradient boost 

References  
[1] Cargill, J. S., & Shakoor, A. (1990, December). 
Evaluation of empirical methods for measuring the uniaxial 
compressive strength of rock. In International Journal of 

Rock Mechanics and Mining Sciences & Geomechanics 
Abstracts (Vol. 27, No. 6, pp. 495-503). Pergamon. 

[2] Tuğrul, A., & Zarif, I. H. (1999). Correlation of 
mineralogical and textural characteristics with engineering 
properties of selected granitic rocks from 
Turkey. Engineering geology, 51(4), 303-317. 

[3] Karakus, M., & Tutmez, B. (2006). Fuzzy and multiple 
regression modelling for evaluation of intact rock strength 
based on point load, Schmidt hammer and sonic 
velocity. Rock mechanics and rock engineering, 39, 45-57. 

[4] Yagiz, S. (2011). P-wave velocity test for assessment of 
geotechnical properties of some rock materials. Bulletin of 
Materials Science, 34, 947-953. 

[5] Singh, R., Vishal, V., Singh, T. N., & Ranjith, P. G. 
(2013). A comparative study of generalized regression 
neural network approach and adaptive neuro-fuzzy 
inference systems for prediction of unconfined 
compressive strength of rocks. Neural Computing and 
Applications, 23, 499-506. 

[6] Aladejare, A. E. (2020). Evaluation of empirical 
estimation of uniaxial compressive strength of rock using 
measurements from index and physical tests. Journal of 
Rock Mechanics and Geotechnical Engineering, 12(2), 
256-268. 

[7] Hazbeh, O., Rajabi, M., Tabasi, S., Lajmorak, S., 
Ghorbani, H., Radwan, A. E., & Molaei, O. (2024). 
Determination and investigation of shear wave velocity 
based on one deep/machine learning technique. Alexandria 
Engineering Journal, 92, 358-369. 

[8] Mollaei, F., Moradzadeh, A., & Mohebian, R. (2024). 
Estimation brittleness index in carbonate environments 
using log and lithology data and deep learning 
techniques. Italian journal of engineering geology and 
environment, (1), 49-66. 

[9] Mollaei, F., Moradzadeh, A., & Mohebian, R. (2024). 
Novel approaches in geomechanical parameter estimation 
using machine learning methods and conventional well 
logs. Geosystem Engineering, 27(5), 252-277. 

[10] Gokceoglu, C., & Zorlu, K. (2004). A fuzzy model to 
predict the uniaxial compressive strength and the modulus 
of elasticity of a problematic rock. Engineering 
Applications of Artificial Intelligence, 17(1), 61-72. 

[11] Yilmaz, I., & Yuksek, A. G. (2008). An example of 
artificial neural network (ANN) application for indirect 
estimation of rock parameters. Rock Mechanics and Rock 
Engineering, 41(5), 781-795. 

[12] Tiryaki, B. (2008). Predicting intact rock strength for 
mechanical excavation using multivariate statistics, 
artificial neural networks, and regression 
trees. Engineering Geology, 99(1-2), 51-60.  

[13] Sarkar, K., Tiwary, A., & Singh, T. N. (2010). 
Estimation of strength parameters of rock using artificial 
neural networks. Bulletin of engineering geology and the 
environment, 69, 599-606. 

[14] Dehghan, S., Sattari, G. H., Chelgani, S. C., & 
Aliabadi, M. A. (2010). Prediction of uniaxial compressive 



Mollaei et al. Journal of Mining & Environment, Published online 

 

20 

strength and modulus of elasticity for Travertine samples 
using regression and artificial neural networks. Mining 
Science and Technology (China), 20(1), 41-46. 

[15] Manouchehrian, A., Sharifzadeh, M., & Moghadam, 
R. H. (2012). Application of artificial neural networks and 
multivariate statistics to estimate UCS using textural 
characteristics. International Journal of Mining Science 
and Technology, 22(2), 229-236. 

[16] Rabbani, E., Sharif, F., Koolivand Salooki, M., & 
Moradzadeh, A. (2012). Application of neural network 
technique for prediction of uniaxial compressive strength 
using reservoir formation properties. International journal 
of rock mechanics and mining sciences, 56, 100-111. 

[17] Singh, T. N., & Verma, A. K. (2012). Comparative 
analysis of intelligent algorithms to correlate strength and 
petrographic properties of some schistose 
rocks. Engineering with Computers, 28, 1-12. 

[18] Yesiloglu-Gultekin, N., Gokceoglu, C., & Sezer, E. A. 
(2013). Prediction of uniaxial compressive strength of 
granitic rocks by various nonlinear tools and comparison of 
their performances. International Journal of Rock 
Mechanics and Mining Sciences, 62, 113-122. 

[19] Majdi, A., & Rezaei, M. (2013). Prediction of 
unconfined compressive strength of rock surrounding a 
roadway using artificial neural network. Neural Computing 
and Applications, 23, 381-389. 

[20] Mishra, D. A., & Basu, A. (2013). Estimation of 
uniaxial compressive strength of rock materials by index 
tests using regression analysis and fuzzy inference 
system. Engineering Geology, 160, 54-68. 

[21] Rezaei, M., Majdi, A., & Monjezi, M. (2014). An 
intelligent approach to predict unconfined compressive 
strength of rock surrounding access tunnels in longwall 
coal mining. Neural Computing and Applications, 24, 233-
241. 

[22] Mohamad, E. T., Jahed Armaghani, D., Momeni, E., 
& Alavi Nezhad Khalil Abad, S. V. (2015). Prediction of 
the unconfined compressive strength of soft rocks: a PSO-
based ANN approach. Bulletin of Engineering Geology 
and the Environment, 74, 745-757. 

[23] Armaghani, D. J., Safari, V., Fahimifar, A., Mohd 
Amin, M. F., Monjezi, M., & Mohammadi, M. A. (2018). 
Uniaxial compressive strength prediction through a new 
technique based on gene expression programming. Neural 
Computing and Applications, 30, 3523-3532. 

[24] Saedi, B., Mohammadi, S. D., & Shahbazi, H. (2018). 
Prediction of uniaxial compressive strength and elastic 
modulus of migmatites using various modeling 
techniques. Arabian Journal of Geosciences, 11, 1-14. 

[25] Rezaei, M., & Asadizadeh, M. (2020). Predicting 
unconfined compressive strength of intact rock using new 
hybrid intelligent models. Journal of Mining and 
Environment, 11(1), 231-246. 

[26] Wang, M., & Wan, W. (2019). A new empirical 
formula for evaluating uniaxial compressive strength using 
the Schmidt hammer test. International Journal of Rock 
Mechanics and Mining Sciences, 123, 104094. 

[27] Fattahi, H. (2020). A new method for forecasting 
uniaxial compressive strength of weak rocks. Journal of 
Mining and Environment, 11(2), 505-515. 

[28] Hassan, M. Y., & Arman, H. (2022). Several machine 
learning techniques comparison for the prediction of the 
uniaxial compressive strength of carbonate 
rocks. Scientific reports, 12(1), 20969. 

[29] Dadhich, S., Sharma, J. K., & Madhira, M. (2022). 
Prediction of uniaxial compressive strength of rock using 
machine learning. Journal of The Institution of Engineers 
(India): Series A, 103(4), 1209-1224. 

[30] Afolagboye, L.O., Ajayi, D.E. and Afolabi, I.O. 
(2023). Machine learning models for predicting unconfined 
compressive strength: A case study for Precambrian 
basement complex rocks from Ado-Ekiti, Southwestern 
Nigeria, Scientific African. 

[30] Afolagboye, L. O., Ajayi, D. E., & Afolabi, I. O. 
(2023). Machine learning models for predicting unconfined 
compressive strength: A case study for Precambrian 
basement complex rocks from Ado-Ekiti, Southwestern 
Nigeria. Scientific African, 20, e01715. 

[31] Ibrahim, A. F., Hiba, M., Elkatatny, S., & Ali, A. 
(2024). Estimation of tensile and uniaxial compressive 
strength of carbonate rocks from well-logging data: 
artificial intelligence approach. Journal of Petroleum 
Exploration and Production Technology, 14(1), 317-329. 

[32] Alloush, R.M., Elkatatny, S.M., Mahmoud, M.A., 
Moussa, T.M., Ali, A.Z. and Abdulraheem, A. (2017). 
Estimation of Geomechanical Failure parameter from well 
logs using artificial intelligence techniques, SPE. 

[32] Alloush, R. M., Elkatatny, S. M., Mahmoud, M. A., 
Moussa, T. M., Ali, A. Z., & Abdulraheem, A. (2017). 
Estimation of geomechanical failure parameters from well 
logs using artificial intelligence techniques. In SPE Kuwait 
Oil and Gas Show and Conference (p. D031S010R002). 
SPE. 

[33] Pham, T. A., Tran, V. Q., & Vu, H. L. (2021). 
Evolution of deep neural network architecture using 
particle swarm optimization to improve the performance in 
determining the friction angle of soil. Mathematical 
Problems in Engineering, 2021(1), 5570945. 

[34] Hiba, M., Ibrahim, A. F., Elkatatny, S., & Ali, A. 
(2022). Prediction of cohesion and friction angle from well-
logging data using decision tree and random 
forest. Arabian Journal of Geosciences, 15(1), 26. 

[35] Faraj, A. K., Abdul Hussein, H. A. H., & Abed Al-
Hasnawi, A. N. (2022). Estimation of Internal Friction 
Angle for The Third Section in Zubair Oil Field: A 
Comparison Study. Iraqi Journal of Oil and Gas Research 
(IJOGR), 2(2), 102-111. 

[36] Shahani, N. M., Ullah, B., Shah, K. S., Hassan, F. U., 
Ali, R., Elkotb, M. A., ... & Tag-Eldin, E. M. (2022). 
Predicting angle of internal friction and cohesion of rocks 
based on machine learning 
algorithms. Mathematics, 10(20), 3875. 

[37] Nguyen, T., Shiau, J., & Ly, D. K. (2024). Enhanced 
earth pressure determination with negative wall-soil 



Mollaei et al. Journal of Mining & Environment, Published online 

 

21 

friction using soft computing. Computers and 
Geotechnics, 167, 106086. 

[38] Alavi, A.H., Gandomi, A.H., Mollahassani, A., Akbar 
Heshmati, A., & Rashed, A. (2010). Modeling of maximum 
dry density and optimum moisture content of stabilized soil 
using artificial neural networks. Journal of Plant Nutrition 
and Soil Science, 173(3), 368-379. 

[39] Phyo, P. P., & Byun, Y. C. (2021). Hybrid ensemble 
deep learning-based approach for time series energy 
prediction. Symmetry, 13(10), 1942. 

[40] Hochreiter, S. & Schmidhuber, J. (1997). Long short-
term memory. Neural Comput. 9 (8), 1735–1780.  

[41] Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, 
B. R., & Schmidhuber, J. (2016). LSTM: A search space 
odyssey. IEEE transactions on neural networks and 
learning systems, 28(10), 2222-2232. 

[42] Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., & 
Lew, M. S. (2016). Deep learning for visual understanding: 
A review. Neurocomputing, 187, 27-48. 

[43] Lecun, Y., Bottou, L., Bengio, L. & Haffner, P. (1998). 
Gradient -based learning applied to document recognition", 
Proceedings of the IEEE, 86,(11), 2278 –2324.  

[44] Anemangely, M., Ramezanzadeh, A., Amiri, H., & 
Hoseinpour, S. A. (2019). Machine learning technique for 
the prediction of shear wave velocity using petrophysical 
logs. Journal of Petroleum Science and Engineering, 174, 
306-327. 

[45] Kingm, D.P., & Ba, J. (2014). Adam: A Method for 
Stochastic Optimization. https://arxiv. org/abs/1412.6980. 

[46] Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive 
subgradient methods for online learning and stochastic 
optimization. Journal of machine learning research, 12(7), 
2121–2159. 

[47] Tieleman, T. & Hinton, G. (2012). Lecture 6.5‐
rmsprop: Divide the gradient by a running average of its 
recent magnitude. COURSERA: Neural networks for 
machine learning, 4(2), 26-30. 

[48] Christaras, B. (1997). Landslides in iliolitic and marly 
formations. Examples from north-westem 
Greece. Engineering Geology, 47(1-2), 57-69. 

[49] Plumb, R. A. (1994). Influence of composition and 
texture on the failure properties of clastic rocks. 
In SPE/ISRM Rock Mechanics in Petroleum 
Engineering (pp. SPE-28022). SPE. 

[50] Xu, B., Tan, Y., Sun, W., Ma, T., Liu, H., & Wang, D.  
(2023). Study on the prediction of the uniaxial compressive 
strength of rock based on the SSA-XGBoost model. 
Sustainability 15, 5201. 

[51] Kochukrishnan, S., Krishnamurthy, P., Yuvarajan, D., 
& Kaliappan, N. (2024). Comprehensive study on the 
Python-based regression machine learning models for 
prediction of uniaxial compressive strength using multiple 
parameters in Charnockite rocks. Scientific Reports. 

[52] Zhao, J., Li, D., Jiang, J., & Luo, P. (2024). Uniaxial 
Compressive Strength Prediction for Rock Material in 
Deep Mine Using Boosting-Based Machine Learning 
Methods and Optimization Algorithms. CMES-Computer 
Modeling in Engineering & Sciences, 140(1). 

[53] Daniel, C., Yin, X., Huang, X., Busari, J. A., Daniel, 
A. I., Yu, H., & Pan, Y. (2024). Bayesian optimization-
enhanced ensemble learning for the uniaxial compressive 
strength prediction of natural rock and its 
application. Geohazard Mechanics, 2(3), 197-215. 

[54] Niu, L., Cui, Q., Luo, J., Huang, H., & Zhang, J. 
(2024). Unconfined compressive strength prediction of 
rock materials based on machine learning. Journal of 
Engineering and Applied Science, 71(1), 137. 

[55] Kalabarige, L. R., Sridhar, J., Subbaram, S., Prasath, 
P., & Gobinath, R. (2024). Machine Learning Modeling 
Integrating Experimental Analysis for Predicting 
Compressive Strength of Concrete Containing Different 
Industrial Byproducts. Advances in Civil 
Engineering, 2024(1), 7844854. 

[56] Yasar, E., & Erdogan, Y. (2004). Correlating sound 
velocity with the density, compressive strength and 
Young's modulus of carbonate rocks. International 
Journal of Rock Mechanics and Mining Sciences, 41(5), 
871-875. 

[57] Tercan, A. E., & Ozcelik, Y. I. L. M. A. Z. (2006). 
Canonical ridge correlation of mechanical and 
engineering index properties. International Journal of 
Rock Mechanics and Mining Sciences, 43(1), 58-65. 

[58] Khanlari, G. R., Heidari, M., Momeni, A. A., & 
Abdilor, Y. (2012). Prediction of shear strength parameters 
of soils using artificial neural networks and multivariate 
regression methods. Engineering Geology, 131, 11-18. 

[59] Iyeke, S. D., Eze, E. O., Ehiorobo, J. O., & Osuji, S. 
O. (2016). Estimation of shear strength parameters of 
lateritic soils using artificial neural network. Nigerian 
Journal of Technology, 35(2), 260-269. 

[60] Mohammadi, M., Fatemi Aghda, S. M., Talkhablou, 
M., & Cheshomi, A. (2022). Prediction of the shear 
strength parameters from easily-available soil properties by 
means of multivariate regression and artificial neural 
network methods. Geomechanics and 
Geoengineering, 17(2), 442-454. 

 



  چاپ آنلاین  زیستپژوهشی معدن و محیط -نشریه علمی  ی و همکارانملائ
  

 ) ع. مرادزاده(  a_moradzadeh@ut.ac.irنویسنده مسئول مکاتبات:  

 

 
 دانشگاه صنعتی شاهرود 

 

 نشریه مهندسی معدن و محیط زیست 
 www.jme.shahroodut.ac.ir: نشانی نشریه

 
 انجمن مهندسی معدن ایران 

  

) با استفاده از FR(  ی اصطکاك داخل  هی) و زاو UCS(  ي تک محور  ي مقاومت فشار  ن یتخم يبرا  یروش
 ق یعم  ي ریادگ ی   ي هاتمینگار چاه و الگور  ي هاداده

  ان یو رضا محب *مرادزاده ی، علیفرهاد ملائ 

  دانشگاه تهران  ،یمعدن، دانشکدگان فن  یدانشکده مهندس

  چکیده     اطلاعات مقاله
  2024/ 09/ 10:  تاریخ ارسال 

  2024/ 04/12: تاریخ داوري 
  09/12/2024:  تاریخ پذیرش

  
DOI: 10.22044/jme.2024.15006.2859 

  

ا  يهااز جنبه  یکی تخم  نیمهم  فشار  یکیمکان  يپارامترها  نیمطالعه،  مقاومت  از جمله    ي سنگ مخزن، 
 ن ی پژوهش تخم  نیاست. هدف اچاه  نگار    يهابا استفاده از داده  ) FR(   یاصطکاك داخل  هیو زاو  )UCS(  يمحور
UCS  داخلی  زاو و اصطکاك  روش )φ(یه  از  استفاده  یه شامل پرسپترون چندلا قیعم  يریادگی  دیجد  يهابا 

(MLP)ت بلند  مد  ، حافظه کوتاه(LSTM)همامیختی    ی، شبکه عصب(CNN)    شبکه ترکیبی وCNN+LSTM 

(CL)   12از آنجا که تنها    .است  رانیا  یدروکربنیه  دانی م  کی  مغزه  شیچاه و آزما  نگار  يبا استفاده از داده ها 
پارامترها محاسبه  نیابتدا ا ،در دسترس بود دانیم نیچاه در ا  کیاز  FRمغزه  شیآزما 6و  UCSمغزه  شیآزما

د اعماق  به  معادله جد  گریو سپس  دو  از  استفاده  تعم   يهانگار و    دیبا  بعد، داده شدند.    م یمربوطه  مرحله    در 
نتخاب شده و در  ش یادگیري عمیق خود رمزگذار اپارامترها با رو نیا ینیبش ی پ يمؤثر برا  يورود نگار يهاداده
 نیا  ییشدند. کارا  ینیبش یپ  CLو    MLP  ،LSTM  ،CNN  يهابا استفاده از شبکه  φ  هیو زاو  UCS  ریمقاد  تینها

  ، یآموزش  يهاداده   يراب  يآمار  يارهایاز مع  یفیطکور و    يهابا استفاده از مجموعه داده  ینیبش ی چهار مدل پ
 نیدارند. با ا  یبخشتیرضا  ینیبش ی که هر چهار مدل دقت پ  دهدینشان م  ج یشد. نتا  یابیو کور ارز  یشیآزما
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