[1]. Afzal, P., Farhadi, S., Boveiri Konari, M., Meigoony, S., & Saein, L. (2022). Geochemical Anomaly Detection in the Irankuh District Using Hybrid Machine Learning Technique and Fractal Modeling GEOPERSIA Accepted Manuscript Geochemical anomaly detection in the Irankuh District using Hybrid Machine learning technique and fractal modeling. 12. doi: 10.22059/GEOPE.2022.336072.648644.
[2]. Kapageridis, I. K. (1999). Application of artificial neural network systems to grade estimation from exploration data. Citeseer.
[3]. Dutta, S., Bandopadhyay, S., Ganguli, R., & Misra, D. (2010). Machine learning algorithms and their application to ore reserve estimation of sparse and imprecise data. Journal of Intelligent Learning Systems and Applications, 2(02), 86.
[4]. Silva, D. S. F. (2015). Mineral Resource Classification and Drill Hole Optimization Using Novel Geostatistical Algorithms with a Comparison to Traditional Techniques. University of Alberta Libraries. doi: https://doi.org/10.7939/R3VT1GV9M.
[5] Kapageridis, I. K., & Denby, B. (1998). Neural Network Modelling of Ore Grade Spatial Variability, London.
[6] Reilly, D. L., Sco eld, C. L., Cooper, L. N., & Elbaum, C. (1988). Gensep: A multiple neural network learning system with modi able network topology.
[7]. Das Goswami, A., Mishra, M., & Patra, D. (2017). Investigation of general regression neural network architecture for grade estimation of an Indian iron ore deposit. Arabian Journal of Geosciences, 10(4).
[8]. Dutta, S., Bandopadhyay, S., Ganguli, R., & Misra, D. (2010). Machine Learning Algorithms and Their Application to Ore Reserve Estimation of Sparse and Imprecise Data. Journal of Intelligent Learning Systems and Applications, Vol.02No.02, 11. doi: 10.4236/jilsa.2010.22012.
[9]. Farhadi, S., Tatullo, S., Boveiri Konari, M., & Afzal, P. (2024). Evaluating StackingC and ensemble models for enhanced lithological classification in geological mapping. Journal of Geochemical Exploration, 260, 107441. doi: https://doi.org/10.1016/j.gexplo.2024.107441.
[10]. Lippmann, R. (1987). An introduction to computing with neural nets. IEEE Assp magazine, 4(2), 4-22. .
[11]. Vapnik, V. (1963). Pattern recognition using generalized portrait method. Automation and Remote Control, 24, 774-780.
[12]. Alimoradi, A., Angorani, S., Ebrahimzadeh, M., & Shariat Panahi, M. (2011). Magnetic inverse modelling of a dike using the artificial neural network approach. Near Surface Geophysics, 9. doi: 10.3997/1873-0604.2011008.
[13]. Farhadi, S., Afzal, P., Boveiri Konari, M., Daneshvar Saein, L., & Sadeghi, B. (2022). Combination of Machine Learning Algorithms with Concentration-Area Fractal Method for Soil Geochemical Anomaly Detection in Sediment-Hosted Irankuh Pb-Zn Deposit, Central Iran. Minerals, 12(6), 689. 11.
[14]. Burnett, C. C. H. (1995). Application of Neural Networks to Mineral Reserve Estimation. (Ph.D.), University of Nottingham.
[15]. Dutta, S., Misra, D., Ganguli, R., Samanta, B., & Bandopadhyay, S. (2006). A hybrid ensemble model of kriging and neural network for ore grade estimation. International Journal of Surface Mining, Reclamation and Environment, 20(01), 33-45. .
[16]. Xu, S., & Pan, Z. (2020). A novel ensemble of random forest for assisting diagnosis of Parkinson's disease on small handwritten dynamics dataset. International Journal of Medical Informatics, 144, 104283.
[17]. Injadat, M., Moubayed, A., Nassif, A. B., & Shami, A. (2020). Systematic ensemble model selection approach for educational data mining. Knowledge-Based Systems, 105992.
[18]. Fathi, M., Alimoradi, A., & Hemati Ahooi, H. R. (2021). Optimizing Extreme Learning Machine Algorithm using Particle Swarm Optimization to Estimate Iron Ore Grade.
[19]. Mohammadi, I. S., Ghanbari, M., & Hashemi, M. R. (2022). A hybrid graphics/video rate control method based on graphical assets for cloud gaming. Journal of Real-Time Image Processing, 19(1), 41-59.
[20]. Lavecchia, A. (2024). Advancing drug discovery with deep attention neural networks. Drug Discovery Today, 104067.
[21]. Tareq, W. Z. T. (2024). (Artificial) neural networks Decision-Making Models (pp. 329-337): Elsevier..
[22]. Lai, Z., Liang, G., Zhou, J., Kong, H., & Lu, Y. (2024). A joint learning framework for optimal feature extraction and multi-class SVM. Information Sciences, 671, 120656. .
[23]. Ali, L., Javeed, A., Noor, A., Rauf, H. T., Kadry, S., & Gandomi, A. H. (2024). Parkinson’s disease detection based on features refinement through L1 regularized SVM and deep neural network. Scientific Reports, 14(1), 1333.
[24]. Vapnik, V. (1998). Statistical Learning Theory. John Wiley&Sons. Inc., New York, 1. .
[25]. Kecman, V. (2004). Support vector machines basics: School of Engineering, University of Auckland..
[26]. Liu, R., Xu, X., Shen, Y., Zhu, A., Yu, C., Chen, T., & Zhang, Y. (2024). Enhanced detection classification via clustering svm for various robot collaboration task. arXiv preprint arXiv:2405.03026. .
[27]. Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273-297.
[28]. Kecman, V. (2001). Learning and soft computing: support vector machines, neural networks, and fuzzy logic models: MIT press.
[29]. Perrone, M. P., & Cooper, L. N. (1992). When networks disagree: Ensemble methods for hybrid neural networks: BROWN UNIV PROVIDENCE RI INST FOR BRAIN AND NEURAL SYSTEMS..
[30]. Hashem, S., & Schmeiser, B. (1993). Approximating a function and its derivatives using MSE-optimal linear combinations of trained feedforward neural networks: Purdue University, Department of Statistics.
[31]. Hansen, L. K., & Salamon, P. (1990). Neural network ensembles. IEEE Transactions on Pattern Analysis & Machine Intelligence(10), 993-1001.
[32]. Al-Ghoneim, K. A., & Kumar, B. V. (1995). Learning ranks with neural networks. Paper presented at the Applications and Science of Artificial Neural Networks.
[33]. Jacobs, R. A. (1995). Methods for combining experts' probability assessments. Neural computation, 7(5), 867-888.
[34]. Alizadeh Sevari, B., & Hezarkhani, A. (2014). Hydrothermal evolution of Darrehzar porphyry copper deposit, Iran: evidence from fluid inclusions. Arabian Journal of Geosciences, 7, 1463-1477.
[35]. Nateghi, A., & Hezarkhani, A. (2013). Fluid inclusion evidence for hydrothermal fluid evolution in the Darreh-Zar porphyry copper deposit, Iran. Journal of Asian Earth Sciences, 73, 240-251.
[36]. Parsapoor, A., Khalili, M., Tepley, F., & Maghami, M. (2015). Mineral chemistry and isotopic composition of magmatic, re-equilibrated and hydrothermal biotites from Darreh-Zar porphyry copper deposit, Kerman (Southeast of Iran). Ore Geology Reviews, 66, 200-218.
[37]. Parsapoor, A., Dilles, J., Khalili, M., Mackizadeh, M., & Maghami, M. (2014). Stable isotope record of hydrothermal sulfate, sulfide and silicate minerals in the Darreh-Zar porphyry copper deposit in Kerman, southeastern Iran: implications for petrogenesis and exploration. Journal of Geochemical Exploration, 143, 103-115.
[38]. Boskabadi, A., Pitcairn, I., Stern, R., Leybourne, M., Hadizadeh, H., Bezenjani, R. N., & Bagherzadeh, R. M. (2018). Carbonated Ophiolitic Peridotites (Listvenite) from Iran: isotopic evidence and element mobility. Paper presented at the EGU General Assembly Conference Abstracts.
[39]. Alizadeh Sevari, B., & Hezarkhani, A. (2014). Fluid evolution of the magmatic hydrothermal porphyry copper deposit based on fluid inclusion and stable isotope studies at Darrehzar, Iran. International Scholarly Research Notices, 2014(1), 865941.