Document Type : Original Research Paper

Authors

Faculty of Mining, Petroleum & Geophysics Eng., Shahrood University of Technology, Shahrood, Iran

10.22044/jme.2025.14802.2808

Abstract

Consumed energy is the most important issue and concern in industrial ball mills, and includes a major part of the costs of mineral processing plants. By using suitable liners and the optimal lifter count, the energy of the mill is properly transferred to the balls. In Part 1 of this research work, five types of liners, i.e. Lorain, Osborn, Rib, cuboid, and Hi-lo, are examined. These liners all have separate lifters with the same volume. Their difference is in the width, height, and type of lifter profile. First, all types of liners are simulated with four lifters using the Discrete Element Method (DEM). Then the lifter count is increased four by four to fill the entire wall of the mill with lifters. Based on this, Lorain liner from 4 to 24 lifters, Osborn liner from 4 to 120 lifters, Rib liner from 4 to 40 lifters, and cuboid and Hi-lo liners from 4 to 64 lifters are simulated. For the first time, the kinetic (KE) and potential (PE) energies as well as the sum of these two energies (TE) of all the balls are calculated, and compared in the entire duration of the simulation from 0–13s for all the liner types and lifter counts mentioned above. Finally, by using data related to KE, PE, and TE for each type of liner, the optimal lifter count is obtained. Accordingly, 16 to 20 lifters are recommended for the Lorain liner, 64 to 76 lifters for the Osborn liner, 24 to 32 lifters for the Rib liner, 44 lifters for the cuboid liner, and 36 to 44 lifters for the Hi-lo liner.

Keywords

Main Subjects