Document Type : Original Research Paper
Authors
Faculty of Mining, Petroleum & Geophysics Engineering, Shahrood University of Technology, Shahrood, Iran
Abstract
In Part 2 of this research work, five types of liners, i.e. wave, step, step@, ship-lap, and ship-lap@, are examined. These liners all have similar connected lifters with different volumes. Their difference is in the width, height, and type of the lifter profile. All the five liner types, from 8 to 64 lifters, are simulated using the Discrete Element Method (DEM). In this research work, for the first time, data from the sum of the kinetic and potential energies of individual balls (79,553 particles) are used to find the appropriate range for the number of lifters. In other words, the kinetic and potential energies of all particles within the system (inside the ball mill) are the basis for determining the appropriate number of lifters. The results suggest that for the wave liner, the appropriate range of the number of lifters is between 8 and 16, for the step, step@, and ship-lap liners; it is between 12 and 20, and for the ship-lap@ liner, it is between 8 and 20. In fact, using the data on the kinetic and potential energies of the balls inside the mill, it is possible to determine the appropriate range of the number of lifters, which is done for the first time in this study. In general, it is suggested that the data on the kinetic and potential energies of the balls can be used to determine the number of mill lifters, and unlike what has been done. So far, by other researchers, the number of mill lifters should not be determined solely by using its diameter or the dimensions of the lifters. Also the effect of mill-rotation direction on the values of kinetic and potential energies in step and ship-lap liners is investigated. It is shown that the step@ and ship-lap@ liners transfer more energy to the balls than the step and ship-lap liners, and have a suitable direction of rotation.
Keywords
- Discrete Element Method
- Industrial ball mills
- Liner type and Lifter count
- Kinetic and potential energies
- mill rotation direction
Main Subjects