Document Type : Original Research Paper
Authors
State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xu Zhou 221116, Jiangsu Province, China
Abstract
Mudstone is a common rock in underground engineering, and mudstone with fractures, have the certain self-closing capability. In this paper, we employed experiments and numerical analyses to investigate the mechanism of such a characteristic, and also examined the permeability pattern of mudstone overburdens. The experiments were performed with the MTS815.02 testing system, involving material properties under different water contents and their crack-closing behaviors. The principal task of numerical analysis is to determine the permeability of fractured mudstone layers, working with the COMSOL platform. The experimental results show that the Young’s Modulus of water-saturated mudstone is just 2.2% of that of natural mudstone, and the saturated also exhibit a remarkably obvious creep behavior. As the surrounding pressures increase, the permeability coefficient of fractured mudstone decrease exponentially, even dropping by two orders of magnitude corresponding to over 2.0MPa pressures. Based on these experiment outcomes, we can easily infer that rapid or complete fracture-closing is the main reason of permeability drop, and furthermore, both softening and creep are the major factors of self-closure of mudstone fractures, and especially, the softening behavior plays an absolutely fundamental role. The numerical analyses show that either a higher in-situ stress or lower fracture density can obviously become one of the advantageous conditions for fractured mudstone layers to restore towards impermeability. These results are also verified by the engineering observation in Yili No. 4 mine of China. There obviously existed the recovery of water-blocking capacity of overlying strata after a period of time. We hereby recommend this investigation as refences for underground mining or engineering construction involving mudstone.
Keywords
- Fracture closure
- Mudstone
- Strain softening behavior
- Soil water
- · Impermeable restoration of mudstone
Main Subjects