[1]. Davy, C. A., Skoczylas, F., Barnichon, J. D., & Lebon, P. (2007). Permeability of macro-cracked argillite under confinement: Gas and water testing. Physics and Chemistry of the Earth, Parts A/B/C, 32(8–14), 667–680.
[2]. Van Marcke, P., & Bastiaens, W. (2010). Excavation induced fractures in a plastic clay formation: Observations at the Hades URF. Journal of Structural Geology, 32(11), 1677–1684.
[3]. Qin, H., Tang, H., Yin, X., Cheng, X., & Li, J. (2024). Study on water–rock interaction failure mechanism and constitutive model of mudstone damaged by pre-peak disturbance. Theoretical and Applied Fracture Mechanics, 133, 104539.
[4]. Pan, D., Liu, C., Liang, D., Zhou, J., & Zhang, L. (2024). Study on time-dependent injectability evaluation of mudstone considering the self-healing effect. Open Geosciences, 16, 16–27.
[5]. Zhang, D., Fan, G., Ma, L., & Wang, X. (2011). Aquifer protection during longwall mining of shallow coal seams: A case study in the Shendong coalfield of China. International Journal of Coal Geology, 86(2), 190–196.
[6]. Li, X., Li, X., Wang, Y., Peng, W., Fan, X., Cao, Z., & Liu, R. (2023). The seepage evolution mechanism of variable mass of broken rock in karst collapse column under the influence of mining stress. Geofluids, 1–10.
[7]. Zhang, C. (2011). Experimental evidence for self-sealing of fractures in claystone. Physics and Chemistry of the Earth, Parts A/B/C, 36(17–18), 1972–1980.
[8]. Abdollahipour, A., Marji, M. F., Bafghi, A. Y., & Gholamnejad, J. (2016). Numerical investigation of effect of crack geometrical parameters on hydraulic fracturing process of hydrocarbon reservoirs. Journal of Mining and Environment, 7(2), 205–214.
[9]. Abdollahipour, A., Marji, M. F., Bafghi, A. Y., & Gholamnejad, J. (2016). A complete formulation of an indirect boundary element method for poroelastic rocks. Computers and Geotechnics, 74, 15–25.
[10]. Ma, T., Rutqvist, J., Oldenburg, C. M., & Liu, W. (2017). Coupled thermal–hydrological–mechanical modeling of CO2-enhanced coalbed methane recovery. International Journal of Coal Geology, 179, 81–91.
[11]. Baghbanan, A., & Jing, L. (2008). Stress effects on permeability in a fractured rock mass with correlated fracture length and aperture. International Journal of Rock Mechanics and Mining Sciences, 45(8), 1320–1334.
[12]. Bastiaens, W., Bernier, F., & Li, X. L. (2007). Selfrac: Experiments and conclusions on fracturing, self-healing and self-sealing processes in clays. Physics and Chemistry of the Earth, Parts A/B/C, 32(8–14), 600–615.
[13]. Wang, L. L., Bornert, M., Héripré, E., Chanchole, S., Pouya, A., & Halphen, B. (2015). The mechanisms of deformation and damage of mudstones: A micro-scale study combining ESEM and DIC. Rock Mechanics and Rock Engineering, 48(5), 1913–1926.
[14]. Nahazanan, H., Clarke, S., Asadi, A., Md. Yusoff, Z., & Kim Huat, B. (2013). Effect of inundation on shear strength characteristics of mudstone backfill. Engineering Geology, 158, 48–56.
[15]. Fukuda, D., Maruyama, M., Nara, Y., Hayashi, D., Ogawa, H., & Kaneko, K. (2014). Observation of fracture sealing in high-strength and ultra-low-permeability concrete by micro-focus X-ray CT and SEM/EDX. International Journal of Fracture, 188(2), 159–171.
[16]. Cao, P., Karpyn, Z. T., & Li, L. (2015). Self-healing of cement fractures under dynamic flow of CO2-rich brine. Water Resources Research, 51(6), 4684–4701.
[17]. Polak, A., Elsworth, D., Yasuhara, H., Grader, A. S., & Halleck, P. M. (2003). Permeability reduction of a natural fracture under net dissolution by hydrothermal fluids. Geophysical Research Letters, 30(20).
[18]. Hearn, N., & Morley, C. T. (1997). Self-sealing property of concrete—Experimental evidence. Materials & Structures, 30(7), 404–411.
[19]. Brunet, J. L., Li, L., Karpyn, Z. T., & Huerta, N. J. (2016). Fracture opening or self-sealing: Critical residence time as a unifying parameter for cement–CO2–brine interactions. International Journal of Greenhouse Gas Control, 47, 25–37.
[20]. Hou, Z. (2003). Mechanical and hydraulic behavior of rock salt in the excavation disturbed zone around underground facilities. International Journal of Rock Mechanics and Mining Sciences, 40(5), 725–738.
[21]. Zhong, Y., Kuru, E., Zhang, H., Kuang, J., & She, J. (2019). Effect of fracturing fluid/shale rock interaction on the rock physical and mechanical properties, the proppant embedment depth and the fracture conductivity. Rock Mechanics and Rock Engineering, 52(4), 1011–1022.
[22]. Vahab, M., & Khalili, N. (2018). X-FEM modeling of multizone hydraulic fracturing treatments within saturated porous media. Rock Mechanics and Rock Engineering, 51(10), 3219–3239.
[23]. Malama, B., & Kulatilake, P. H. S. W. (2003). Models for normal fracture deformation under compressive loading. International Journal of Rock Mechanics and Mining Sciences, 40(6), 893–901.
[24]. Misra, A., & Marangos, O. (2011). Rock-joint micromechanics: Relationship of roughness to closure and wave propagation. International Journal of Geomechanics, 11(6), 431–439.
[25]. Hopkins, D. L. (2000). The implications of joint deformation in analyzing the properties and behavior of fractured rock masses, underground excavations, and faults. International Journal of Rock Mechanics and Mining Sciences, 37(1), 175–202.
[26]. Sevostianov, I., & Kachanov, M. (2008). Normal and tangential compliances of interface of rough surfaces with contacts of elliptic shape. International Journal of Solids and Structures, 45(9), 2723–2736.
[27]. Marache, A., Riss, J., & Gentier, S. (2008). Experimental and modelled mechanical behaviour of a rock fracture under normal stress. Rock Mechanics and Rock Engineering, 41(6), 869–892.
[28]. Matsuki, K., Wang, E. Q., Sakaguchi, K., & Okumura, K. (2001). Time-dependent closure of a fracture with rough surfaces under constant normal stress. International Journal of Rock Mechanics and Mining Sciences, 38(5), 607–619.
[29]. Rutqvist, J., Wu, Y. S., Tsang, C. F., & Bodvarsson, G. (2002). A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock. International Journal of Rock Mechanics and Mining Sciences, 39(4), 429–442.
[30]. Daley, T. M., Schoenberg, M. A., Rutqvist, J., & Nihei, K. T. (2006). Fractured reservoirs: An analysis of coupled elastodynamic and permeability changes from pore-pressure variation. Geophysics, 71(5), 33–41.