[1]. Yu, Y., Deng, K. Z., & Chen, S. E. (2018). Mine size effects on coal pillar stress and their application for partial extraction. Sustainability, 10(3), 792.
[2]. Kadkhodaei, M. H., Ghasemi, E., Zhou, J., & Zahraei, M. (2024). Evaluation of underground hard rock mine pillar stability using gene expression programming and decision tree‐support vector machine models. Deep Underground Science and Engineering, 1, 53-73.
[3]. Wessels, D. G., & Malan, D. F. (2023). A limit equilibrium model to simulate time-dependent pillar scaling in hard rock bord and pillar mines. Rock Mechanics and Rock Engineering, 56(5), pp.3773-3786.
[4]. Martin, C. D., & Maybee, W. G. (2000). The strength of hard-rock pillars. International Journal of Rock Mechanics and Mining Sciences, 37, 1239–1246.
[5]. Bieniawski, Z. T., & Van Heerden, W. L. (1975). The significance of in situ tests on large rock specimens. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 12(4), 101–113.
[6]. York, G. (1998). Numerical modelling of the yielding of a stabilising pillar/foundation system and a new design consideration for stabilising pillar foundations. The Journal of The South African Institute of Mining and Metallurgy, 98(6), 281-298.
[7]. Hustrulid, W. (1976). A review of coal pillar strength formulas. Rock Mechanics, 8, 115–145.
[8]. Hoek, E., & Brown, E. T. (1980). Underground Excavations in Rock. Institution of Mining and Metallurgy, 527.
[9]. Salamon, A., & Munro, M. (1967). A study of the strength of coal pillars. Journal of The South African Institute of Mining and Metallurgy, 68, 55–67.
[10]. Hedley, D. G. F., & Grant, F. (1972). Stope-and-pillar design for the Elliot Lake Uranium Mines. Canadian Institute of Mining, Metallurgy and Petroleum. 74-78.
[11]. Bieniawski, Z. T. (1968). The effect of specimen size on compressive strength of coal. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 5(4), 325–335.
[12]. Zhou, J., Li, X., & Mitri, H.S. (2015). Comparative performance of six supervised learning methods for the development of models of hard rock pillar stability prediction. Natural Hazards, 79(1), 291–316.
[13]. Ahmad, M., Al-Shayea, N.A., Tang, X. W., Jamal, A., M. Al-Ahmadi, H., & Ahmad, F. (2020). Predicting the pillar stability of underground mines with random trees and C4.5 decision trees. Applied Sciences, 10(18), 6486.
[14]. Zhou, J., Chen, Y., Chen, H., Khandelwal, M., Monjezi, M., & Peng, K. (2023). Hybridising five neural-metaheuristic paradigms to predict the pillar stress in bord and pillar method. Frontiers in Public Health, 11, 1119580.
[15]. Li, X., Kim, E., & Walton, G. (2019). A study of rock pillar behaviours in laboratory and in-situ scales using combined finite-discrete element method models. International Journal of Rock Mechanics and Mining Sciences, 118, 21–32.
[16]. Jaiswal, A., Sharma, S. K., & Shrivastva, B. K. (2004). Numerical modelling study of asymmetry in the induced stresses over coal mine pillars with the advancement of the goal line. International Journal of Rock Mechanics and Mining Sciences, 41(5), 859–864.
[17]. Ahmed, S. S., Gunzburger, Y., Renaud, V., & AlHeib, M. (2017). The initialisation of highly heterogeneous virgin stress fields within the numerical modelling of large-scale mines. International Journal of Rock Mechanics and Mining Sciences, 99, 50-62.
[18]. Li, X., Kim, E., & Walton, G. (2019). A study of rock pillar behaviours in laboratory and in-situ scales using combined finite-discrete element method models. International Journal of Rock Mechanics and Mining Sciences, 118, 21-32.
[19]. Li, C., Zhou, J., Armaghani, D. J., & Li, X. (2021). Stability analysis of underground mine hard rock pillars via a combination of finite difference methods, neural networks, and Monte Carlo simulation techniques. Underground Space, 6(4), 379-395.
[20]. Salih, A., & Abdul Hussein, H. (2022). Lost circulation prediction using decision tree, random forest, and extra trees algorithms for an Iraqi oil field. Iraqi Geological Journal, 55(2E), 111–127.
[21]. Nilsson, J. N. (2005). Introduction to machine learning. Department of Computer Science, Stanford University Stanford, CA 94305, 209.
[22]. Tawadrous, A. S., & Katsabanis, P. D. (2007). Prediction of surface crown pillar stability using artificial neural networks. International Journal for Numerical and Analytical Methods in Geomechanics, 31(7), 917–931.
[23]. Ding, H., Li, G., Dong, X., Lin, Y. (2018). Prediction of pillar stability for underground mines using the stochastic gradient boosting technique. IEEE Access: Practical Innovations, Open Solutions, 6, 69253–69264.
[24]. Wolpert, D.H. (1992). Stacked Generalisation. Neural Networks. 5(2), 241-259.
[25]. Breiman, L. (1996). Bagging predictors. Machine learning, 24(2), 123–140.
[26]. Smyth, P., & Wolpert, D. (1997). Stacked Density Estimation. Neural Information Processing Systems, 10, 668–674.
[27]. Li, Q., Wu, Z., Wen, Z., & He, B. (2020). Privacy-preserving gradient boosting decision trees. Proceedings of the AAAI Conference on Artificial Intelligence, 34(1), 784–791.
[28]. Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., & Liu, T.Y. (2017). LightGBM: A highly efficient Gradient Boosting Decision Tree. Neural Information Processing Systems, 3146–3154.
[29]. Fafalios, S., Charonyktakis, P., Tsamardinos, I. (2020). Gradient Boosting Trees. Gnosis Data Analysis PC. 1, 1–3.
[30]. Liang, W., Luo, S., Zhao, G., & Wu, H. (2020). Predicting hard rock pillar stability using GBDT, XGBoost, and LightGBM algorithms. Mathematics, 8(5), 765.
[31]. Zhang, Z., & Jung, C. (2019). GBDT-MO: Gradient boosted decision trees for multiple outputs. Computer Vision and Pattern Recognition, 32, 3156-3167.
[32]. Eslami, E., Salman, A.K., Choi, Y., Sayeed, A., & Lops, Y. (2020). A data ensemble approach for real-time air quality forecasting using extremely randomised trees and deep neural networks. Neural Computing and Applications, 32(11), 7563–7579.
[33]. Ghazwani, M., & Begum, M.Y. (2023). Computational intelligence modelling of hyoscine drug solubility and solvent density in supercritical processing: gradient boosting, extra trees, and random forest models. Scientific Reports, 13(1), 10046.
[34]. Schonlau, M., & Zou, R.Y. (2020). The random forest algorithm for statistical learning. The Stata Journal, 20(1), 3–29.
[35]. Hastie, T., Tibshirani, R., Friedman, J., & Franklin, J. (2005). The elements of statistical learning: data mining, inference and prediction. The Mathematical Intelligencer, 27(2), 83–85.
[36]. Chen, T., Xu, J., Ying, H., Chen, X., Feng, R., Fang, X., Gao, H., & Wu, J. (2019). Prediction of extubation failure for intensive care unit patients using light gradient boosting machine. IEEE Access: Practical Innovations, Open Solutions, 7, 150960–150968.
[37]. Dietterich, T.G. (2000). Ensemble Methods in Machine Learning. International Workshop on Multiple Classifier Systems, 1–15.
[38]. Freund, Y., & Schapire, R.E. (1997). A decision-theoretic generalisation of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1), 119–139.
[39]. van der Laan, M., Polley, E., & Hubbard, A. (2008). Super Leaner. UC Berkeley Division of Biostatistics Working Paper Series., 222, 1-20