[1]. Abubaker, A., Baharum, A., & Alrefaei, M. (2015). Automatic clustering using multi-objective particle swarm and simulated annealing. PloS one, 10(7), e0130995.
[2]. Arian, M. (2012). Clustering of diapiric provinces in the Central Iran Basin. Carbonates and Evaporites, 27, 9-18.
[3]. Arian, M., & Noroozpour, H. (2015). Tectonic geomorphology of Iran’s salt structures. Open Journal of Geology, 5(2), 61-72.
[4]. Behbahani, S., & Nasrabadiv, A. M. (2009). Application of SOM neural network in clustering. Journal of Biomedical Science and Engineering, 2(8), 637-643.
[5]. Carter-McAuslan, A., & Farquharson, C. (2020). Application of SOMs and k-means clustering to geophysical mapping: Lessons learned. In SEG Technical Program Expanded Abstracts 2020 (pp. 3843-3846). Society of Exploration Geophysicists.
[6]. Chaudhary, V., Bhatia, R. S., & Ahlawat, A. K. (2014). A novel Self-Organizing Map (SOM) learning algorithm with nearest and farthest neurons Alexandria Eng.
[7]. Czecze, B., & Bondár, I. (2019). Hierarchical cluster analysis and multiple event relocation of seismic event clusters in Hungary between 2000 and 2016. Journal of Seismology, 23(6), 1313-1326.
[8]. Detorakis, G., Chaillet, A., & Rougier, N. P. (2020). Stability analysis of a neural field self-organizing map. The Journal of Mathematical Neuroscience, 10(1), 20.
[9]. Florio, G. (2020). The estimation of depth to basement under sedimentary basins from gravity data: Review of approaches and the ITRESC method, with an application to the Yucca Flat Basin (Nevada). Surveys in Geophysics, 41(5), 935-961.
[10]. Gerber, S., & Horenko, I. (2015). Improving clustering by imposing network information. Science advances, 1(7), e1500163.
[11]. Hua, W., & Mo, L. (2020). Clustering Ensemble Model Based on Self‐Organizing Map Network. Computational Intelligence and Neuroscience, 2020(1), 2971565.
[12]. Jin, R., Kou, C., Liu, R., & Li, Y. (2013). Efficient parallel spectral clustering algorithm design for large data sets under cloud computing environment. Journal of Cloud Computing: Advances, Systems and Applications, 2, 1-10.
[13]. Kim, J., Lee, W., Song, J. J., & Lee, S. B. (2017). Optimized combinatorial clustering for stochastic processes. Cluster Computing, 20, 1135-1148.
[14]. Lowrie, W. (2007) Fundamentals of Geophysics. 2nd Edition, Cambridge University Press, Cambridge, 381.
[15]. Martinsson, J., & Törnman, W. (2020). Modelling the dynamic relationship between mining induced seismic activity and production rates, depth and size: a mine-wide hierarchical model. Pure and Applied Geophysics, 177(6), 2619-2639.
[16]. Mokarram, M., & Najafi, M. Using Self-Organizing Maps for Determination of Soil Fertility. Case Study: Shiraz Plain, 3(9).
[17]. Mythili, S., & Madhiya, E. (2014). An analysis on clustering algorithms in data mining. International Journal of Computer Science and Mobile Computing, 3(1), 334-340.
[18]. Nokhbatolfoghahaei, A., Nezafati, N., Ghorbani, M., & Abdolabadi, B. E. (2019). Evidence for origin and alteration in the dolomites of salt diapirs, Larestan, Southern Iran. Carbonates and Evaporites, 34, 389-403.
[19]. Pace, F., Santilano, A., & Godio, A. (2021). A review of geophysical modeling based on particle swarm optimization. Surveys in Geophysics, 42(3), 505-549.
[20]. Ren, Z., Zhong, Y., Chen, C., Tang, J., Kalscheuer, T., Maurer, H., & Li, Y. (2018). Gravity gradient tensor of arbitrary 3D polyhedral bodies with up to third-order polynomial horizontal and vertical mass contrasts. Surveys in Geophysics, 39, 901-935.
[21]. Riese, F. M., Keller, S., & Hinz, S. (2019). Supervised and semi-supervised self-organizing maps for regression and classification focusing on hyperspectral data. Remote Sensing, 12(1), 7.
[22]. Russo, T., Scardi, M., & Cataudella, S. (2014). Applications of self-organizing maps for ecomorphological investigations through early ontogeny of fish. PLoS One, 9(1), e86646.
[23]. Shafi, I., Ahmad, J., Shah, S., Ikram, A., Ahmad Khan, A., & Bashir, S. (2010). Validity-guided fuzzy clustering evaluation for neural network-based time-frequency reassignment. EURASIP Journal on Advances in Signal Processing, 2010, 1-14.
[24]. Sun, J., & Li, Y. (2012). Joint inversion of seismic traveltimes and gravity data using petrophysical constraints with application to lithology differentiation. ASEG Extended Abstracts, 2012(1), 1-4.
[25]. Sun, S., Yin, C., & Gao, X. (2021). 3d gravity inversion on unstructured grids. Applied Sciences, 11(2), 722.
[26]. Vadoodi, R., & Rasmussen, T. M. (2022). Joint Interpretation of Magnetotelluric and Potential Field Data From North-Eastern Norrbotten, Sweden. Pure and Applied Geophysics, 179(3), 1069-1088.
[27]. Yang, L., Ouyang, Z., & Shi, Y. (2012). A modified clustering method based on self-organizing maps and its applications. Procedia Computer Science, 9, 1371-1379.
[28]. Yin, C., Zhang, S., & Kim, K. J. (2017). Mobile Anomaly Detection Based on Improved Self‐Organizing Maps. Mobile Information Systems, 2017(1), 5674086.