[1]. Bogdanowitsch, M., Sousa, L., & Siegesmund, S. (2022). Building stone quarries: resource evaluation by block modelling and unmanned aerial photogrammetric surveys. Environmental Earth Sciences, 81(1), 16-24.
[2]. Akara, M.E., Reeves, D.M., Parashar, R. (2020). Enhancing fracture-network characterization and discrete-fracture-network simulation with high-resolution surveys using unmanned aerial vehicles. Hydrogeol J. 28, 2285–2302.
[3]. Elkarmoty, M., Bonduà, S., & Bruno, R. (2020). A 3D brute-force algorithm for the optimum cutting pattern of dimension stone quarries. Resources Policy, 68, 101761.
[4]. Schneider-Löbens, C., Siegesmund, S., Stein, K. J., & Löbens, S. (2022). Joint analysis as an important tool for an optimizing block extraction of natural stones. Environmental Earth Sciences, 81(3), 94-102.
[5]. Hazrat Hosseini, A., and Mahdavi, (2018). Using genetic algorithm to introduce a new indicator to determine the crushing of building stone quarries and find the optimal extraction direction. Journal of Mining Engineering 13 (41), 92-101.
[6]. Şen, Z., & Eissa, E. A. (1992). Rock quality charts for log-normally distributed block sizes. International journal of rock mechanics and mining sciences & geomechanics, 29, 1, 1-12.
[7]. Kim, B. H., Cai, M., Kaiser, P. K., & Yang, H. S. (2007). Estimation of block sizes for rock masses with non-persistent joints. Rock mechanics and rock engineering, 40(2),169-192.
[8]. Sousa, L. M. O. (2010). Evaluation of joints in granitic outcrops for dimension stone exploitation. Quarterly Journal of Engineering Geology and Hydrogeology, 43(1), 85-94.
[9]. Mosch, S., Nikolayew, D., Ewiak, O., & Siegesmund, S. (2011). Optimized extraction of dimension stone blocks. Environmental Earth Sciences, Vol. 63(7-8): p. 1911-1924.
[10]. Elmouttie, M. K. and Poropat, G. V. (2012). A method to estimate in situ block size distribution. Rock mechanics and rock engineering, 45(3),401-407.
[11]. Saliu, M. A. (2014). Investigating the effect of fracture on rock fragmentation efficiency: a case study of Kopec Granite Quarries, South Western, Nigeria.
[12]. Yarahmadi, R., Bagherpour, R., Kakaie, R., Mirzaie, N. H., & Yari, M. (2014). Development of 2D computer program to determine geometry of rock mass blocks. International Journal of Mining Science and Technology 24(2), 191-194.
[13]. Yarahmadi, R., Bagherpour, R., Sousa, L. M., & Taherian, S. G. (2015). How to determine the appropriate methods to identify the geometry of in situ rock blocks in dimension stones. Environmental Earth Sciences 74(9), 6779-6790.
[14]. Yarahmadi, R., Bagherpour, R., Khademian, A., Mirzaie, H., & Kakaie, R. (2015). Developing a MatLab code for determine geometry of rock mass blocks and its applications in mining and rock mechanic engineering. Journal of Mining and Metallurgy A: Mining 51(1), 41-49.
[15]. Shahvarvarqi Farahani, H., and Babanuri, N., (2015). Optimization of building stone extraction direction using block analysis (Case study: Dingle Kahriz travertine quarry). 4th International Congress of Civil Engineering, Architecture and Urban Development. Tehran, Permanent Secretariat of the Conference.
[16]. Yarahmadi, R., Bagherpour, R., Taherian, S. G., & Sousa, L. M. (2018). Discontinuity modelling and rock block geometry identification to optimize production in dimension stone quarries. Engineering Geology, 232, 22-33.
[17]. Azarafza, M., Ghazifard, A., Akgün, H., & Asghari-Kaljahi, E. (2019). Development of a 2D and 3D computational algorithm for discontinuity structural geometry identification by artificial intelligence based on image processing techniques. Bulletin of Engineering Geology and the Environment, 78, 3371-3383.
[18]. Saleh Abadi. H, Ataei, M, Rafiei, (2021) Determination of the optimal extraction direction in order to maximize building stone excavation using modeling discontinuities (Case study of Capitol travertine quarry), Scientific-Research Journal of Iranian Geological Engineering Association.
[19]. Samarakoon, K. G. A. U., Chaminda, S. P., Jayawardena, C. L., Dassanayake, A. B. N., Kondage, Y. S., & Kannangara, K. A. T. T. (2023). A review of dimension stone extraction methods. Mining, 3(3), 516-531.
[20]. Van Pham, V., Nguyen, T. A., Tran, B. D., Le, H. T. T., Le, T. Q., Nguyen, T. T., & Phan, V. H. (2023). Determining the size and shape of a dimension stone block under consideration on the spatial relationship of joint sets. Journal of Mining and Earth Sciences, 64(3), 59-69.
[21]. Tanzadeh, P., Saein, A. F., & Vatandoust, M. (2023). Fracture analysis at different scales, a crucial technique for optimizing site selection and quarrying of natural stone, Lashotor limestone quarry, Iran. Bulletin of Engineering Geology and the Environment, 82(8), 324.
[22]. Ranjkesh Adarmanabadi, H., Rasti, A., Mojtabai, N., Tabaei, M., & Razavi, M. (2024). Effects of discontinuities on the rock block geometry of dimension stone quarries: a case study. Geomechanics and Geoengineering, 19(2), 110-122.
[23]. Jalalian, M. H., Bagherpour, R., & Khoshouei, M. (2024). Geological investigations and production planning by identification of the discontinuities and rock mass blocks in dimension stone quarries: a case study. Rudarsko-geološko-naftni zbornik, 39(2), 85-95.
[24]. Arian, M., Bagha, N., Khavari, R., & Noroozpour, H. (2012). Seismic sources and neo-tectonics of Tehran area (North Iran). Indian Journal of Science and Technology, 5(3), 2379-2383.
[25]. Razaghian, G., Beitollahi, A., Pourkermani, M., & Arian, M. (2018). Determining seismotectonic provinces based on seismicity coefficients in Iran. Journal of Geodynamics, 119, 29-46.
[26]. Aram, Z., & Arian, M. (2016). Active tectonics of the Gharasu river basin in Zagros, Iran, investigated by calculation of geomorphic indices and group decision using analytic hierarchy process (AHP) software. Episodes, 39(1), 39-44.