
 
 

Journal of Mining and Environment (JME) Published online 

 Corresponding author: mdjavazm@gmail.com (M. Dehghani Javazm) 

 

 
Shahrood University of 

Technology 

 
Journal of Mining and Environment (JME) 

 
Journal homepage: www.jme.shahroodut.ac.ir 

 
Iranian Society of 

Mining Engineering 
(IRSME) 

 
Comparison of Methods for Evaluating Recoverable Reserves of the 
Miduk Copper Deposit using Estimation Techniques and Conditional 
Simulations 
 
Mojtaba Dehghani Javazm*, Mohammadreza Shayestehfar 

Department of mining engineering, Shahid Bahonar University of Kerman, Kerman, Iran 
 

Article Info  Abstract 

Received 5 December 2024 
Received in Revised form 26 
February 2025 
Accepted 8 March 2025 
Published online 8 March 2025 
 
 
 
 
DOI: 10.22044/jme.2025.15386.2956 

 In this work, various methods for evaluating recoverable reserves including 
estimation techniques and conditional simulation have been compared in the Miduk 
copper deposit using data from 55,119 blast holes and 6,178 composite samples from 
exploratory drillings in the supergene and hypogene zones, with a block model 
constructed for the analysis. Four methods were employed: UC, LUC, DCSBG, and 
SGS. The correlation coefficients for UC, DCSBG, and SGS methods in the supergene 
zone, as well as the results from extraction drill holes (extraction blocks) at a cut-off 
grade of 0.15%, were 0.637, 0.527, and 0.556, and the correlation coefficient for 
calculating tonnage and the metal content using UC was 0.364 and 0.629, respectively. 
For the hypogene zone, the correlation coefficients for metal content at a cut-off grade 
of 0.15% were 0.778, 0.788, and 0.790 for UC, DCSBG, and SGS, and at a cut-off 
grade of 0.65%, they were 0.328, 0.431, and 0.458, respectively. By employing The 
LUC method in the supergene zone with a change in SMU and comparing the results 
obtained from the E-Type map, the performance of this method is higher across all cut-
off grades. As the cut-off grade increases in the hypogene zone, the performance of the 
LUC method relative to simulation methods decreases. The LUC method can be used 
to observe the impact of the convergence of results obtained from this method with real 
data from low-grade to high-grade sections, highlighting the necessity of differentiating 
this zone into low and high-grade segments during the estimation process. 
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1. Introduction 

To achieve a suitable and optimal technical and 
economic evaluation of a mining project, all efforts 
must focus on estimating and foreseeing 
recoverable mineral resources (the portion of in-
situ resources that can be economically extracted 
through mining) [1]. To achieve this, estimates of 
average grades and tonnages for economic cutoff 
grades should be prepared and considered for 
selective mining [2]. In the early stages of 
exploration, we often have data that is spaced far 
apart, which complicates the estimation process 
[3]. Ordinary kriging estimation, commonly used 
[4], is a linear estimator that can be utilized for 
estimating grades in larger panels (estimating in 
smaller panels that are not sufficiently supported 
by denser data may lead to smooth and biased 
conditional estimates) [5]. Larger panels, which are 

suitable for data that is widely spaced, often do not 
sufficiently represent the expected selective mining 
during extraction [6]. Selective mining 
(represented by the selective mining unit or SMU) 
depends on the type of deposit and the selected 
equipment and machinery [7]. Non-linear 
techniques, such as uniform conditioning and 
multi-indicator kriging, are commonly used to 
estimate grades at the scale of the smallest mining 
unit, which reflects the mining unit itself [8]. With 
these techniques, the ratio of the mineral material 
that can be economically extracted is estimated by 
determining the distribution of the smallest mining 
units within each panel based on a change model. 
Estimates of average grades and the extractable 
ratios above a specified cutoff grade for each panel 
are provided without precisely defining the spatial 
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positions for this recoverable mineralization. A 
better understanding of the actual spatial positions 
of selective mining units will considerably simplify 
the application of results for mining planning 
purposes and will highlight the technical and 
economic evaluations of the project [9]. The main 
issue arises from the fact that many characteristics 
of deposits do not conform to the prerequisites of 
non-linear methods (for instance, the assumptions 
of definite stationarity). For example, in the case of 
porphyry copper deposits, there is often a high-
grade zone that leads to preferential sampling, 
which can result in losses in the marginal, 
relatively lower-grade sections [10]. Thus, a bi-
faceted problem emerges that includes the presence 
of a large-scale external trend and an irregular 
preferential sampling network. Nevertheless, this 
situation does not significantly affect the results of 
kriging estimates under general conditions. The 
estimated grades will provide a relatively accurate 
local average to some extent. In this case, the 
overall average of estimated grades is close to the 
average of the weighted data (with kriging weights 
or with influence zones), and the arithmetic mean 
of the estimated grades differs from them. 
Therefore, the problems with non-linear methods 
are quite subtle. The hypothesis of stationarity 
plays a fundamental role theoretically. From a 
practical standpoint, the transformation shape that 
is often applied prior to all these methods requires 
a histogram that represents the data conditions 
[11]. 

2. Methodology 

Considering the porphyry nature of the Miduk 
copper mine and the dispersion of grade data in the 
supergene and hypogene zones, estimating the 
reserve and calculating the amount of mineable 
reserve, as well as selecting the best method for 
reserve estimation is of great importance. Due to 
the widespread distribution of grades at different 
points in the mine, it is first necessary to calculate 
the SMU for each zone or for the entire deposit in 

order to find the most suitable method for 
estimating this parameter. By doing this, it will be 
possible to select the economic grade threshold in 
the mining production planning and consequently 
calculate the mineable reserve with high precision. 
Since estimation methods are associated with 
varying errors, choosing the best method is 
inevitable due to its lower estimation error and its 
high validity compared to actual data values [12]. 

In this article, various methods for determining 
the recoverable reserve are employed using 
exploratory, extracted, and geological data, and the 
best method is selected for each zone to specify the 
reserve amount. The calculation of the tonnage and 
average grade of the recoverable reserve based on 
nonlinear geostatistical methods is as follows: 
If v is the selected general block (SMU) 
and Z(v) is its grade, then the recoverable 
resources at grades higher than the cutoff 
grade z for similar blocks will be: 

 Tonnage of mineral material ܶ(ݖ) = ݈௓(௩)ஹ௭  

 Metal content ܳ(ݖ) =  ௓(௩)ஹ௭݈(ݒ)ܼ

A separate Gaussian model is used for support 
transformation. A standard Gaussian variable ࢅ is 
dependent on each raw and primary variable ࢆ. If 
the sample point variable is defined as ࢆ(࢞) =
઴൫ࢅ(࢞)൯, then a block model with its block 
transformation will be defined as ࢆ(࢜) = ઴࢘(࢜ࢅ) 
and determined by the following integral 
relationship: 

઴࢘(࢟) = න ઴ ቀ࢘࢟ + ඥ࢒ − ࢘૛࢛ቁ  (1) ࢛ࢊ(࢛)ࢍ

where the support adjustment factor ࢘  is derived 
from the variance of the blocks. Then, the 
estimation of total resources at the cutoff grade ࢠ is 
as follows: 

Mineral: 

[(ݖ)ܶ]ܧ = ௓(௩)ஹ௭൧݈ൣܧ = ௬ೡஹ௬൧݈ൣܧ = ݈ −  (2) (ݕ)ܩ

Metal content: 

 

[(ݖ)ܳ]ܧ = ௓(௩)ஹ௭൧݈(ݒ)ܼൣܧ = )௬ೡஹ௬Φ௥݈ൣܧ ௩ܻ)൧ = නΦ௥(ݑ)݃(ݑ)݀ݑ
௬

 (3) 

 
where g and G are the probability density 

function and the cumulative distribution function 
of the standard gaussian distribution, respectively, 
and ࢟ is the Gaussian grade threshold related 
to ࢠ via ࢠ = ઴࢘(࢟). As presented in other sources 
on non-linear geostatistical theory, only the main 

points are highlighted here. If the transformed 
grade of the blocks is denoted by ௩ܻ  will ݒ , 
correspond to the selected mining unit size [1]. The 
main issue is to estimate Q = ∑ ݂൫ ௏ܻ೔൯/ܮ , 
where ݂(0) is an estimated function (for example, 
recoverable tonnage or recoverable metal tonnage), 
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and L is the number of blocks within each panel. In 
cases where the number of blocks in each panel is 
very large, L is designated as the blocks that 
represent the overall conditions of the panel. These 
should be selected to provide a uniform 
discretization of the panel [13]. 

2.1. Ordinary Kriging method 

Linear kriging is a technique for predicting a 
regional variable at any spatial location using a 
weighted average of the values of this variable at 
surrounding or encompassing locations [14]. In 
practice, the regional variable is often interpreted 
as a realization of a second-order stationary 
random field with a constant mean and a known 
spatial correlation structure, which is modeled by 
an automatic covariance function or a variogram. 
Simple kriging assumes that the mean value is 
known, while ordinary kriging considers this mean 
value as an unknown parameter, thus allowing for 
stronger estimation in cases where the regional 
variable provides a locally constant mean that 
varies regionally within the studied space. The 
kriging relationship is defined as follows, 
where ܼ௏

∗  is the estimated grade, ߣ௜ is the weight 
attributed to the sample quantity, and ܼ௏೔ is the 
sample grade [15]. 

ܼ௏
∗ = ෍ ௜ܼ௏೔ߣ

௡

௜ୀଵ

 (4) 

2.2. Sequential gaussian simulation 

In sequential simulation, a random path 
traverses all locations once and is defined at that 
single instance, with each location being simulated 
during that single pass. With conditional 
simulation, the realizations that result meet the data 
values at their respective locations. Sequential 
Gaussian simulation assumes that the selected 
random field is multivariate normal, which implies 
that the data used have a normal distribution. 
Before applying sequential gaussian simulation, it 
is necessary to transform the raw initial data into 
standard normal form to ensure that the 
requirement for the normality of the data used is 
met. Sequential direct simulation does not rely on 
the assumption of multivariate normality or 
Gaussian of the raw initial data. Thus, there is no 
need to transform the raw initial data, and the 
simulation is carried out directly on the raw data 
[16]. 

 
Diagram 1. Stages of implementing sequential 

gaussian simulation method. 

2.3. Direct simulation and block simulation 

Sequential simulation of a continuous variable 
generally requires transforming it into a binary or 
gaussian variable, leading to the emergence of 
classic algorithms such as indicator sequential 
simulation or sequential gaussian simulation. In 
1994, André Journel demonstrated convincingly 
that sequential simulation of a continuous variable, 
without any preliminary conversion, results in the 
reproduction of the covariance model. In this 
process, the simulated values are obtained from 
local distributions focused on simple kriging 
estimates with a variance corresponding to the 
variance of simple kriging estimates [17]. 
Unfortunately, this process is unable to reproduce 
the histogram of the original raw variable, which is 
one of the fundamental requirements for any 
simulation method. Therefore, this issue represents 
one of the most significant fundamental limitations 
for the practical application of direct simulation. 
One of the ideas employed is the use of local 
estimates (simple kriging) of variance and mean, 
but not for defining the local conditional 
distribution function; instead, they are used to 
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sample from the overall conditional distribution 
function. The simulated values of the original 
variable are derived from intervals of the overall 
conditional distribution function, calculated using 
the local estimates of variance and mean. One of 
the main advantages of the direct sequential 
simulation method is the ability to jointly simulate 
multiple variables without transforming them. 
Essentially, direct sequential simulation is similar 
to sequential gaussian simulation but lacks the 
standard normal transformation step [18]. Block 
direct simulation is another simulation option that 
aims to simplify the simulation process by 
executing it directly on a support different from the 
original nodes or composites. Journel and 
colleagues originally proposed a block direct 
simulation method in 1978, based on separate 
stages of simulation and conditioning. This method 
relies on using a continuous support transformation 
based on the continuity of the distribution 
technique to convert the point support data to block 
support. Then, conditioning occurs at the block 
support level [19]. The block direct simulation 
computer program is a means for simulating block 
values, while selectively determining related 
values within each block under a distinct Gaussian 
model framework. The complete framework for 
achieving block direct simulations is described as 
follows: 

1. Modeling the anamorphosis of the raw initial 
samples and calculating the gaussian 
transformation data. 

2. Modeling the variogram of the Gaussian data. 

3. Regularizing the gaussian variogram model on 
block support. 

4. Modeling the regularized gaussian variogram. 

5. Calculating the changes in support coefficients 
and the block gaussian variogram related to 
standard normal block gaussian values. 

6. Calculating block direct simulations using the 
modified block variogram and gaussian 
anamorphosis support transformation. 

7. The direct block simulation module consists of 
three main stages: a) Concentrating the data into 
output network blocks, for which a new 
auxiliary file is created. 

8. Conditional simulations (the method of circular 
bands) of block values using the block Gaussian 
variogram model and gaussian data. 

9. The final stage is an elective option and involves 
performing block gaussian transformations 
using block shape or support transformation 
[20]. 

2.4. Uniform conditioning 

Uniform conditioning is a non-linear estimation 
technique that estimates the conditional 
distribution of metal content and tonnage above a 
specified grade within a mining panel. This method 
does not directly estimate grades; however, grades 
are a common output from the metal content-
tonnage distribution or results generated by local 
uniform conditioning. The results of uniform 
conditioning are usually presented as a mineral 
resource that is recoverable at multiple cutoff 
grades. The advantage of uniform conditioning is 
that it can be applied to datasets with widely spaced 
data, as well as across areas that are not absolutely 
steady. Additionally, this method is applicable in 
situations where sufficient data is available for a 
conditional unbiased estimation of the panel's 
average grade. Uniform conditioning serves as a 
tool for calculating recoverable reserves in panels 
for a specified block support in mining 
applications. Moreover, utilizing specific options 
within it, recoverable metal as a secondary variable 
can be computed with the cutoff grade applied to 
the primary variable [21]. 

Before executing uniform conditioning, it is 
necessary to first estimate the grade on the panels 
using kriging, and to calculate the following 
parameters [22]: 

a. Kriged grade estimate 

b. Variance of the kriged values (variance Z*) 

c. For multivariate estimation, the covariance 
between the primary variable and the kriged 
secondary estimates. 

Additionally, the calculated block 
transformation is also necessary for using this 
method. Then, using these values and the 
transformation on block support, uniform 
conditioning can be applied to calculate the three 
parameters: tonnage, metal content, and average 
grades for each variable at each cutoff grade. 

To make various methods comparable to 
reality, it is first necessary to compute the real 
QTM variables on the panel supports. Next, a 
cutoff grade must be selected, and each method 
should be locally compared to the actual data 
(obtained from blasting holes) based on this cutoff 
grade [23]. 

Uniform conditioning with the panel grade is 
used to estimate recoverable resources within a 
selected sub-block in a larger block or panel V, 
conditioned on the panel grade or, in general, the 
estimated panel grade, denoted as ܼ(ܸ)∗. 
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∗[(ࢠ)ࢂࢀ] =  ൯൧∗(ࢂ)ࢆหࢠஹ(࢜)ࢆ࢒൫ൣࡱ
(5) 

∗[(ࢠ)ࢂࡽ] =  ൯൧∗(ࢂ)ࢆหࢠஹ(࢜)ࢆ࢒(࢜)ࢆ൫ൣࡱ

The idea behind uniform conditioning is to 
apply the grade of the panel, which has been 
estimated using ordinary kriging, in order to avoid 
the use of the average value that may be generated 
by certain techniques in case of deviations from 
stationarity. The estimation of metal content at a 
zero (0) cutoff grade must be met as follows: 

[(∗(ܸ)ܼ|(ݒ)ܼ)]ܧ = ܼ(ܸ)∗ As long as ݒ is 
uniformly distributed within ܸ, the first stage 
assumes that the estimated grade of the 
panel ܼ(ܸ)∗ is conditionally unbiased: 

[(∗(ܸ)ܼ|(ܸ)ܼ)]ܧ = ܼ(ܸ)∗ The second stage 
assumes that the transformation of ܼ(ܸ)∗ is 
derived from ܼ(ݒ) [19 ,14]. 

∗(ࢂ)ࢆ = [(∗ࢂࢅ|(࢜ࢅ)઴࢘)]ࡱ = 
(6) 

઴࢘࣋࢜(∗ࢂࢅ)∗ࢂ = ઴(∗ࢂࢅ)ࡿ 

It is assumed that the standard gaussian 
variables ࢂࢅ∗ and ࢜ࢅ are jointly gaussian and 
denote: 

ࡿ = ∗ࢂ࢜࣋࢘ = ,࢜ࢅ)࢒࢘࢕ࢉ࢘  (7) (∗ࢂࢅ

In practice, S is derived from the variance of the 
panel estimate. The previous relationship is used to 
calculate the correlation between the block and the 
panel estimate: 

,࢜ࢅ)࢒࢘࢕ࢉ (∗ࢂࢅ = ∗ࢂ࢜࣋ =  (8) ࢘/ࡿ

Therefore, the tonnage of the mineral and the 
metal content at the cutoff grade ࢠ = ઴࢘(࢟) can be 
calculated as follows [11]: 

 

∗[(ࢠ)ࢂࢀ] = ൯൧∗(ࢂ)ࢆหࢠஹ(࢜)ࢆ࢒൫ൣࡱ = ൯൧∗ࢂࢅஹ࢟ห࢜ࢅ࢒൫ൣࡱ = ࢒ −  (ࢇ)ࡳ

(9) 
∗[(ࢠ)ࢂࡽ] = න઴࢘ ቀ࣋࢜ࢂࢅ∗ࢂ∗ + ඥ࢒ − ૛࢛ቁ(∗ࢂ࢜࣋) ࢛ࢊ(࢛)ࢍ

ࢇ
 

With ࢇ = ∗ࢂࢅ∗ࢂ࢜࣋ି࢟

ට(∗ࢂ࢜࣋)ି࢒૛
 

 
2.5. Local uniform conditioning 

In 2006, Marat Abzalov proposed the Local 
Uniform Conditioning (LUC) method, which 
forecasts economically extractable mineral 
positions by assigning a single grade value to each 
block of size SMU. The LUC method enhances and 
improves upon the local modeling and results 
obtained from Uniform Conditioning (UC). The 
SMU grades are inferred from the common grade-
tonnage relationships obtained from UC [24]. 

The key stages involved in creating and 
implementing a LUC estimate include the 
following: 

 Estimating panel grades using ordinary kriging 

 Fitting a discrete gaussian model to the data 

 Determining support transformation. The 
discrete Gaussian model is used to calculate the 
support transformation. 

 Converting panel estimates and cutoff grades to 
gaussian units. 

 Executing uniform conditioning. 

 Estimating SMU grades using an approximate 
estimation technique like ordinary kriging (used 
for ranking SMUs within each panel). 

 Executing the LUC phase to localize the 
common grade-tonnage relationships derived 
from UC. 

The conventional UC method estimates a 
tonnage and grade of mineralization that can be 
recovered using the Smallest Mining Unit (SMU) 
of size v at any selected cutoff grade. A series of 
grade-tonnage distributions is created by applying 
several cutoff grades for each panel under study. 

Then, the LUC algorithm estimates the average 
grades of the grade classes within each panel and 
at a defined SMU support [25]. A grade class is a 
portion of the panel where the grade is greater than 
a specified cutoff grade (zci ) but less than the next 
cutoff grade (zci+1). The next step involves ranking 
the SMU blocks distributed within each panel in 
order of increasing grades. Finally, the average 
grades of each grade class, inferred from the UC 
model, are assigned to the SMU blocks whose 
ranks correspond to the grade class [26]. 
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3. Case study 

The Miduk copper mine is located 42 
kilometers northeast of the city of Shahrebabak and 
132 kilometers northwest of the Sarcheshmeh 
copper mine. The Miduk area encompasses two 
shallow porphyry copper intrusions, each of which 
has its own local name. One of them is Miduk 
(Lachah), and the other is Sara. The main deposit 
of Miduk is situated about 7 kilometers northwest 
of the village of Miduk. The Miduk porphyry 
copper deposit, aged 12.5 million years, is located 
within Eocene volcanic and pyroclastic rocks 
consisting of andesite, basaltic andesite, and dacite. 
microscopic petrographic studies indicate that this 
body is composed of granodiorite, quartz diorite, 
and diorite [27]. Mineralogically, the associated 
minerals of the Miduk porphyry include 

plagioclase, potassium feldspar, amphibole, 
biotite, and quartz, while sericite, chlorite, epidote, 
and magnetite are also secondary minerals in this 
assemblage. In terms of geochemical 
characteristics, the granodioritic rocks of the 
Miduk porphyry belong to the alkaline and calc-
alkaline magmatic series and are of the meta to 
peraluminous granite type, classified as I-type 
granites. Tectonic studies indicate that the Miduk 
deposit has characteristics typical of deposits 
formed at an active continental margin [28]. 
Additionally, the Miduk copper deposit formed and 
replaced in a tectonic environment following the 
collision of the Central Iranian and Arabian plates, 
during the final stages of orogeny (compressional 
tectonic regime), after the subduction of the Neo-
Tethys oceanic crust had concluded [29].  

 
Figure 1. Location map of studied area, a location of Miduk copper deposit on Urumieh-Dokhtar magmatic arc 

[29]. 

Given the significant extraction of oxidized, 
leach, and supergene zones, only the exploratory 
and extraction data from the supergene and 
hypogene zones have been used as the main 
mineralization zones in the present study. 
Additionally, because blasting data will be used to 
compare different methods, the exploratory data 

has been limited to the levels where blasting data 
has been available in each zone. Figures (2) 
illustrate an overview of the location of these zones 
and the exploratory data pertaining to each of them. 
Aghazadeh et al. (2015) quote a resource at Miduk 
of 500 Mt with 0.8% Cu and 0.007% Mo [30]. 



Dehghani Javazm and Shayestehfar Journal of Mining & Environment, Published online 

 

7 

  
Figure 2. A 3D model of the supergene (red) and hypogene (blue) mineralization zones as the main ore zones 

(below) and the distribution of exploratory data in each of the zones, limited to the levels containing the blasting 
data for each area. 

The Miduk porphyry copper deposit was 
formed due to the injection of a Quartz diorite stock 
into Eocene volcanic and pyroclastic rocks. The 
porphyry-style mineralization in the Miduk 
porphyry stock has created multiple zones, which 
from the surface to depth include the leached zone, 
oxide zone, supergene zone, and hypogene zone. 
Additionally, supergene-oxide and supergene-
hypogene transition zones are also distinguishable 
within this deposit. The leached zone of the Miduk 
porphyry body has formed due to alteration and 
leaching by ferruginous solutions, evidenced by 
mineralization resulting from the dissolution of 
sulfides, which can be easily seen in rock samples. 
The oxide zone has a limited extent within the 
Miduk porphyry deposit, with much of it eroded 
away. The minerals observed in this zone include 
Malachite, Azurite, Tenorite, Chrysocolla, 
goethite, and Calcantite, which appear in both 
disseminated and vein forms. The supergene-oxide 
zone is a transitional zone between supergene and 
oxide, characterized by the paragenesis of oxide 
zone minerals alongside pyrite and chalcopyrite. 
The supergene zone is exposed in some areas of the 
Miduk porphyry copper deposit, and has developed 
in the phyllic alteration section of the porphyry 
body, with mineralization occurring in both vein 
and disseminated forms. In the samples from the 
supergene zone, chalcopyrite, along with pyrite, 
constitutes the primary ores. The supergene-
hypogene zone is a gradual and transitional zone 
located between the supergene and hypogene 
zones, marked by a decrease in Chalcopyrite and 
an increase in Bornite and chalcopyrite from top to 
bottom. Mineralization occurs in both 
disseminated and vein forms, with the alteration of 
Chalcopyrite to covellite and Chalcopyrite 
frequently observed in this zone. In the Miduk 

porphyry deposit, the supergene-hypogene zone 
overlaps with potassium-phyllic alteration zones. 
The hypogene zone in the Miduk porphyry deposit 
generally aligns with potassium-phyllic and 
potassium alteration zones. The mineral 
paragenesis in this zone includes pyrite, 
chalcopyrite, bornite, and to some extent, 
molybdenite and magnetite. Chalcopyrite crystals 
are observed in massive, stringer, and disseminated 
forms. 

3.1. Data description 

For the current work, data from blasting holes 
have been used, separated for each zone. These 
data have been transformed into blocks, the 
smallest units in mining, and were utilized to assess 
the results of nonlinear methods and simulations on 
the panels. During the transfer of block information 
to the panels, the panels that included very few 
blocks were excluded from the analyses conducted 
for the comparison of the results of the present 
work. To evaluate the accuracy of each approach, 
data from 65,535 blasting holes located at different 
levels in parallel spaces, similar to exploration 
holes, have been used. In fact, using data from 265 
exploratory boreholes, one can predict the copper 
grade at the position of 20 thousand blasting holes 
and compare the estimated results with the actual 
values using bar charts and scatter plots. The 
sampling method for extraction holes is one sample 
for every 15 meters, while the sampling in 
exploratory holes is one sample for every 2 meters. 
To ensure the accuracy of sampling and the 
repetition of sampling from each extracted blast, a 
re-assay test has been conducted on 20% of the 
extracted boreholes, and for each exploratory 
borehole, a re-assay test is performed for every 10 
meters. 
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Figure 
3. The zoning of mineralization in the Miduk copper deposit, from top to bottom, includes the leach, supergene, 

and hypogene zone. 

Table 1. Data used from blasting holes and exploratory boreholes 
Zone Quantity Average Grade Variance Minimum grade Maximum grade 
Supergene 27,653 0.23 0.04 0.01 3.05 
Hypogene 14,236 0.54 0.13 0.01 3.05 
Supergene 6,187 (222 boreholes) 0.25 0.06 0.01 
Hypogene 3,495 (226 boreholes) 0.44 0.18 0.01 

 
The methods examined in this writing include 

linear kriging, simulation, direct simulation, block 
simulation, uniform conditioning, and local 
conditioning. 

3.2. Variography of raw exploration Data in the 
supergene and hypogene zones 

This work explores non-linear geostatistical 
estimation methods and conditional simulation 
techniques applicable to mineral deposits. These 
methods are applied to the active Miduk copper 
porphyry deposit for comparison and selection of 
the most effective approach. The efficiency of 
these methods is evaluated by comparing them 
with the actual data obtained from drilling blasts 

conducted over three years. Direct block 
simulation methods and sequential conditional 
simulation, along with a non-linear conditional 
uniform kriging estimation method and local 
uniform conditioning, have been applied to the 
Miduk deposit. To implement the uniform 
conditioning methods, the composite data from the 
exploratory boreholes were divided into the 
supergene and hypogene zones. Subsequently, 
these data were modified by replacing out-of-row 
values and were used for variography. The 
experimental variogram for each zone was 
calculated, and a suitable theoretical model was 
fitted to each, as shown in Figure (3), which 
displays the variogram models of the raw data for 
each zone. 
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Figure 4. Model of variogram for raw exploration data of the supergene zone (top) and hypogene zone (bottom). 

The support change has been carried out from 
the point support of the initial raw data to a block 
support with dimensions of 15×15×15 for each 
SMU. This was done to implement uniform 
conditioning and subsequently use its output for 
local uniform conditioning. A summary of the 
resulting outcomes for each zone can be seen in 
Table (2). 

Table 2. Results of support change calculations for 
the supergene zone (top) and hypogene zone 

(bottom). 
Block support correction calculation: CU 

Punctual variance (Anamorphosis) 0.182971 
Variogram sill 0.219923 
Gamma (v, v) 0.031302 
Real block variance 0.151669 
Real block support correction (r) 0.9224 
Kriged block support correction (s) 0.9224 
Kriged-real block support correction (s) 1 
Zmin block 0.01 
Zmax block 3.58 
Block support correction calculation: CU 
Punctual variance (Anamorphosis) 0.182971 
Variogram sill 0.219923 
Gamma (v, v) 0.031302 
Real block variance 0.151669 
Real block support correction (r) 0.9224 
Kriged block support correction (s) 0.9224 
Kriged-real block support correction (s) 1 
Zmin block 0.01 
Zmax block 3.58 

3.2. Variography of transformed (gaussian) 
data in the supergene and hypogene zones 

To implement sequential gaussian simulation 
and direct block simulation, the initial raw data 
were transformed into gaussian-shaped data, and 

variographies were performed on the transformed 
data. The variogram models and the transformed 
data were then used for the sequential gaussian 
simulation of each zone. For direct block 
simulation, the experimental gaussian variogram 
was calculated as a regularized block variogram. 
Subsequently, an appropriate theoretical model 
was fitted to it and used for the simulations. The 
structured block gaussian variogram models can be 
seen in Figure (4). 

The simulations (both sequential gaussian and 
direct block simulations) are performed on the 
SMU support, their results have been re-blocked 
into a panel support format of (15×90×90) for 
comparability with the uniform conditioning 
method. At this stage, threshold grades similar to 
those defined for uniform conditioning need to be 
established to enable a comparison of results. To 
compare the results against actual data, a 
significant number of blast hole data can be 
utilized. A grid similar to that of the SMUs is 
defined, and the data located within each SMU are 
averaged and assigned to each SMU. Then, by 
defining each of the threshold grades and 
calculating the number of SMUs within each panel 
that exceed the defined threshold, the tonnage of 
the mineral can be obtained as a ratio or percentage 
of the total tonnage of the panel. Using the tonnage 
of each panel and its average grade, the metallic 
content of each panel for the defined threshold 
grade can also be determined. To calculate the 
grade of each panel at the defined threshold grade, 
the averages of the SMUs within each panel that 
exceed the threshold grade are taken. Thus,s for 
each threshold grade, the actual data on grade, 
tonnage, and metallic content for each panel can be 
obtained, which can be used to compare the results 
of non-linear methods and simulations. To increase 
the accuracy of the comparisons, panels with fewer 
than ten SMUs containing grades above the 
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specified threshold (for example, 0.15 percent) are 
disregarded and not considered as actual data. The 
actual data with panel support for the supergene 
and hypogene zones, with the distribution of 
average grade for each panel, are illustrated in 
Figure (5). 

3.3. Uniform conditioning method, direct block 
simulation, and sequential gaussian simulation 
for the supergene zone. 

The results of all three aforementioned 
methods, after the necessary post-processing to 
enable comparability with actual data, were 
analyzed at a cutoff grade of 0.15 percent copper. 
These results were compared with the real data 
(transferred to block support and then averaged, 
calculating the metallic content and recoverable 
tonnage on panel support at cutoff grades similar to 
those used in the results of the three studied 

methods). This comparison was made through 
scatter plots and correlation coefficients, with the 
results for the supergene zone illustrated in Figure 
(6). As can be seen from these results, the 
correlation coefficient of the uniform conditioning 
method's results was better than those of the other 
two simulation methods. The comparison of the 
results of uniform conditioning, direct block 
simulation, and sequential gaussian simulation 
with the actual data from blast holes showed 
correlation coefficients of 0.637, 0.527, and 0.556, 
respectively. 

As the results of the uniform conditioning 
method performed better for the supergene zone on 
panel support, the scatter plots of this method's 
results for the metallic content and recoverable 
mineral tonnage are displayed in Figure (7). The 
correlation coefficients for these results with the 
actual data were 0.629 and 0.364, respectively. 

 

  
Figure 5. Model of regularized block gaussian variogram for the supergene Zone (top) and hypogene zone 

(bottom). 

To more comprehensively evaluate all three 
methods against actual data, various grade-tonnage 
diagrams were prepared to assess different 
parameters of recoverable resources, as shown in 
Figure (8). From the comparison of these diagrams, 
it is evident that the uniform conditioning method 
performs better than the other two simulation 
methods in most cutoff grades for the supergene 
zone. However, both simulation methods yielded 
relatively similar results. The better performance of 
the uniform conditioning method can be attributed 
to the sparse data density (relative to the larger area 
of the supergene Zone) and the relatively narrow 
range of the grade data for the Supergene Zone 
during the current study period. In other words, 
considering that a significant portion of the 
supergene zone has been extracted and the blast 

hole data is limited due to the restricted time frame 
(older data could not be used due to the limited 
model of the ore body and topography used in the 
modeling), the higher-grade areas that were 
previously extracted and located at higher 
elevation levels are unavailable in the present 
study. In fact, the grade range of the content data 
for the supergene zone has not varied significantly, 
which has led to poor results due to the smoothing 
effects of kriging. In contrast, the lack of 
smoothing in the simulations has not been 
prominent for this zone in the current study. 

In addition to the aforementioned factors, 
preferential sampling in higher-grade sections has 
also influenced the obtained results. In fact, more 
dense drilling and sampling from the higher-grade 
areas have increased the density of samples from 
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these sections, which has enhanced the accuracy of 
the kriging-based estimator. This can be clearly 
seen in the greater discrepancies between the 
simulation results and actual data at higher grades 
(cutoff grades exceeding the average grade). 
Meanwhile, the results of the uniform conditioning 
method have shown relatively better performance 
in higher-grade areas for the parameters of 
recoverable tonnage and metallic content 
compared to the simulation methods. Estimations 
and assessments are conducted using exploratory 
data, and the comparisons in the current study are 
based on data obtained from blast holes, which are 
analyzed after exploratory drilling and 
understanding the overall distribution conditions of 
the ore's grade. Thus, during the sampling of blast 
holes, there is an awareness of the position and 
distribution of higher-grade sections, leading to 
more sampling from these areas. Additionally, the 
results of grade analyses for these sections are 

recorded with greater care and precision. However, 
very high-grade sections during the geostatistical 
study of exploratory drill holes are often replaced 
by outlier values through the process of deleting or 
substituting out-of-range values. Yet, in the 
process of assigning the grade data from blast holes 
to SMU blocks and subsequently calculating the 
parameters of grade, tonnage, and metallic content 
for the panels, this process occurs without 
replacing outlier values (very high grades). This 
factor itself significantly affects the 
underestimation of the results of recoverable 
resource assessments compared to actual data. 
Since the supergene zone in the current study 
encompasses two approximate sections, larger 
low-grade areas with fewer exploratory drill holes, 
and smaller high-grade areas with more 
exploratory drill holes, the results obtained from 
non-linear methods and simulations for the 
supergene zone are therefore more favorable. 

 
Figure 6. Three-dimensional view of the distribution of actual grade data (copper) on panel support (top figures) 

and block support or SMU for the supergene zone (right) and hypogene zone (left).. 
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Figure 7. Scatter plot between actual data and 

estimated recoverable resource grade results for the 
supergene zone using the uniform conditioning 

method (bottom), direct block simulation (middle), 
and sequential gaussian simulation (top). 

Figure 8. Scatter plot of the uniform conditioning 
method results compared to actual data at a cutoff 

grade of 0.15 percent for the supergene zone: 
recoverable ton metallic content (top) and content 

(bottom). 

3.4. Uniform conditioning method, direct block 
simulation, and sequential gaussian simulation 
for the hypogene zones 

Similar analyses were conducted on the results 
obtained from all three methods for estimating 
recoverable reserves in the hypogene zone after the 
necessary post-processing. In the hypogene zone, 
the selected cutoff grade for comparisons was 0.15 
percent copper, with actual data (grade, metallic 
content, and tonnage) prepared on panel support 
for this cutoff within the hypogene zone. The 

results of each method at a cutoff grade of 0.15 
percent were compared with this data, and the 
results are presented as scatter plots along with the 
corresponding correlation coefficients in Figure 
(9). At this stage, the comparisons focused on the 
metallic content results from each method to 
evaluate the recoverable reserves. 

The comparison was made on metallic content, 
which, unlike the supergene zone, showed that for 
the cutoff grade of 0.15 percent, the simulation 
methods provided better results than the uniform 
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conditioning method. Furthermore, to analyze all 
cutoff grades, various graphs of recoverable 
reserves were prepared, which depict the overall 
performance of all three methods compared to the 

actual data across all cutoff grades and parameters. 
The results of this analysis are shown in Figure 
(10). 

 

 
Figure 9. Graphs of recoverable reserves for the supergene zone using the uniform conditioning method, direct 

block simulation, sequential gaussian simulation, and actual Data (from blast hole data) 

As can be seen from the comparison of various 
grade-tonnage diagrams for assessing recoverable 
reserves in the hypogene zone across all grades 
simultaneously, at low cutoff grades, the 
performance of the uniform conditioning method, 
except for the metallic content parameter, is nearly 
similar to that of the simulation methods. However, 
at higher cutoff grades, the performance of the 
simulation methods has been better than that of the 
uniform conditioning method, with sequential 
gaussian simulation performing better than the 
other simulation method. Additionally, the results 
from direct block simulation have, at some 
intermediate cutoff grades, been weaker than those 
of the uniform conditioning method. This issue 

relates to the prerequisites concerning the 
reliability of the data used in direct block 
simulation, which may have lower reliability in the 
hypogene zone due to the presence of very high-
grade data alongside low-grade data. This is 
reflected in the slightly weaker results of direct 
block simulation compared to sequential gaussian 
simulation. Overall, the results of these two 
methods are close, and they are quite similar in 
low-grade and medium-grade sections, providing 
nearly identical results. In contrast to the 
simulation methods, at higher cutoff grades above 
the average grade, the uniform conditioning 
method shows greater divergence from the actual 
data. This is attributed to the significant variance of 
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the initial raw data, which poses challenges for 
kriging-based methods. Nonetheless, in non-linear 
methods like uniform conditioning, the effects of 
this issue are reduced. These observations are well-
illustrated in the scatter plots of the results 
(recoverable tonnage) obtained from the methods 
used in the current study compared to the 
recoverable tonnage from actual data at a cutoff 

grade of 0.65 percent for the corresponding panels 
in the hypogene zone. In other words, at the 
relatively high cutoff grade of 0.65 percent, the 
correlation of results from the simulation methods 
with the actual data has been greater compared to 
those from uniform conditioning, as demonstrated 
in Figure (11). 

 

 
Figure 10. Scatter plot between actual data and estimated metallic content of recoverable reserves in the 

hypogene zone at a cutoff grade of 0.15 percent copper using the uniform conditioning method (bottom), direct 
block simulation (middle), and sequential gaussian Simulation (top). 



Dehghani Javazm and Shayestehfar Journal of Mining & Environment, Published online 

 

15 

 
Figure 11. Graphs of recoverable reserves in the hypogene zone for the uniform conditioning method, direct 

block simulation, sequential gaussian simulation, and actual data (from blast hole data). 

As indicated by the results of the scatter plots at 
a cutoff grade of 0.65 percent, the simulation 
methods provided better results compared to the 
uniform conditioning method, which is consistent 
with the results obtained for various recoverable 
reserves diagrams. In fact, the hypogene zone 
consists of two parts: a low-grade section on the 
periphery and a very high-grade section in the 
central part of the zone. The low-grade sections on 
the margin have a larger extent (more drill holes 
and samples included in the estimation), and the 
variance of the assay data in this section is very 
low, which increases the accuracy of estimations 
even with kriging-based methods. In contrast, in 
the central parts that are richer in grade; the 
variance of the assay samples is significantly 
higher due to the simultaneous presence of low-
grade, average-grade, and high-grade samples. 
Consequently, this area undergoes considerable 
smoothing in estimations with kriging-based 
methods. However, the simulation methods exhibit 
less smoothing, and their results deviate less from 
reality. Another reason for the greater smoothing 
observed in high-grade areas and the increased 

discrepancy between these areas and the actual 
data—seen in the results for both the supergene and 
hypogene zones—can be attributed to the influence 
of the defined search radius in the estimation and 
simulation processes. When estimating certain 
blocks and panels located in high-grade areas, data 
from average- and low-grade sections are included 
in the estimate due to the defined search radius 
(derived from the variogram model for each zone) 
and the number of points participating in the 
estimation, which results in underestimating the 
grade. This issue affects the estimates of metallic 
content and recoverable tonnage in the blocks and 
panels of each zone. In contrast, to calculate actual 
data, or to assign blast hole data to SMUs and the 
subsequent calculations, only the samples 
contained within each SMU are used in the 
averaging process and assignment of grades to the 
corresponding block or SMU. Thus, for estimating 
grade, tonnage, and metallic content of panels, only 
the SMUs encompassing each panel are utilized for 
calculating the parameters. As a result, the grade of 
average- and low-grade sections does not affect the 
high-grade areas. 
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Figure 12.Scatter plot between actual data and estimated recoverable tonnage in the hypogene zone at a cutoff 
grade of 0.65 percent using the uniform conditioning method (bottom), direct block simulation (middle), and 

sequential gaussian simulation (top). 
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The notably high values of recoverable tonnage 
from actual data compared to the results obtained 
from methods for estimating recoverable reserves 
at medium to high cutoff grades, despite the 
overestimation of average grades in this range, are 
significant. This discrepancy arises from the 
greater abundance of average grades in actual data 
derived from blast hole results compared to 
exploratory data. In other words, the very high 
prevalence of average grades in the actual data not 
only compensates for the tonnage deficit caused by 
the lower average grade (relative to the evaluation 
methods used) but also leads to an increase in 
recoverable tonnage at medium cutoff grades. In 
the obtained results, the metallic content from 
actual data is also higher at low and medium cutoff 
grades than the results from reserve estimation 
methods. Two factors influence this outcome: the 
first is the higher average grade of the actual data 
at low cutoff grades, and the second is the 
significantly higher tonnage of the actual data at 
medium cutoff grades. This situation, apart from 
compensating for the lower metallic content 
resulting from the lower average grade of the actual 
data at medium cutoff grades, has contributed to 
the increase in their metallic content as represented 
in the graphs. As previously mentioned, this effect 
is logically consistent due to the abundance of 
average grades in the actual data, because the total 
number of data points obtained from blast holes is 
at least four times that from exploratory drillings 
within the overlapping regions of the two datasets 
in both the supergene and hypogene zones. The 
higher average grade of the actual data at low 
cutoff grades is also attributed to the lower 
accuracy of assay and registration of blast hole data 
compared to exploratory data. Low-grade sections 
are sampled, analyzed, and recorded with less 
precision and care compared to high-grade and 
average-grade sections, which have a higher 
density of sampling. Additionally, the differing 
conditions supporting the samples collected from 
blast holes compared to those obtained from 
exploratory drill holes, along with the differing 
sample lengths—15 meters for blast holes and 2 
meters (most common length) for exploratory drill 
samples—affect these discrepancies. 

3.5. Local uniform conditioning method, direct 
block simulation, and sequential gaussian 
simulation of the supergene zone 

The local uniform conditioning method is 
designed for non-linear estimation in mining and is 
derived from post-processing the results obtained 
from uniform conditioning. The parameters for 
grade, metallic content, and local tonnage are 
calculated using the local uniform conditioning 
method for various cutoff grades, with the grade 
distribution for each block guided by the ranking of 
estimated grades for the Small Mining Units 
(SMUs). To implement this method, the estimated 
grade parameters for each block and metallic 
content are applied over a panel grid along with 
options for constraining the estimation space. The 
block grid or SMUs defined for this method 
perfectly aligns with the panel grid; in other words, 
a block is part of a panel. In the present study, the 
local uniform conditioning method has been 
implemented for each of the zones in the Miduk 
deposit using the aforementioned parameters 
relevant to each zone. The results obtained were 
compared with the actual data assigned to the 
blocks of the block grid, which are of the same 
dimensions as the SMUs. Simulation methods were 
also executed in a block support framework for the 
conducted comparisons and were post-processed at 
this stage. The post-processing of the simulation 
results was performed by averaging the realizations 
from 100 iterations and preparing the E-type for 
each method. Thus, the outcomes of these post-
processed results were utilized for comparison with 
the results from the local uniform conditioning 
method against the actual data. Figures (13) depict 
various diagrams evaluating recoverable reserves 
for the results of each method and actual data in the 
supergene zone. As can be seen from these results, 
the local uniform conditioning method has 
provided better results for all copper cutoff grades. 
The results obtained for the supergene zone were 
nearly similar to the results of the comparisons 
made in the panel support, which is not surprising, 
considering that the local uniform conditioning 
method is essentially a post-processing outcome of 
the uniform conditioning method results. 
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Figure 13. Recovery reserve graphs for the supergene zone for all three methods: local uniform conditioning, 

direct block simulation, sequential gaussian simulation, and actual data (derived from blast hole data). 

3.6. Local uniform conditioning method, direct 
block simulation, and sequential gaussian 
simulation of the hypogene zone 

For the hypogene zone, similar calculations 
have been carried out using the specific data and 
parameters for that zone to execute local uniform 
conditioning. The results obtained, along with the 
simulation results (for the hypogene zone) in SMU 
support, were subjected to necessary post-
processing for comparison with actual data. 
Figures (13) show the results of various recovery 
reserve evaluation graphs. As indicated by these 
graphs, for cutoff grades lower than the average 
grade, the results of the simulations were better 
than those from local conditioning. However, for 
medium cutoff grades, the simulation results 
improved in comparison to actual data. For cutoff 
grades higher than average or high-grade cutoff 
values; both methods exhibited weak convergence 

with the actual data. However, overall, the 
conditions of the simulations were better than local 
conditioning methods. Thus, based on the results 
obtained, the smoothing effect of kriging-based 
methods can be clearly observed. If linear methods 
were used to estimate recoverable reserves, the 
results would face significantly greater smoothing. 
Since the local uniform conditioning method, 
unlike uniform conditioning, showed considerable 
overestimation in the average grade estimation 
across most cutoff grades, and one of its inputs is 
derived from uniform conditioning output, this 
highlights the influence of linear kriging estimates 
whose results guided the distribution of grades for 
each block (via ranking of estimated SMU grades). 
In addition to the aforementioned points, due to the 
changes in conditions (convergence to actual data), 
the estimates across all three methods, especially 
the local conditioning method, clearly indicate the 
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necessity for re-examining the raw initial data and 
distinguishing low-grade and high-grade sections 
in the estimation process. If low-grade and high-
grade sections are concentrated in one area or 
separable sections, they can be segregated, 

allowing for simultaneous modeling of each region 
for each zone. 

The results of the correlation coefficient 
assessment using different methods are presented 
in the table below. 

 
Figure 14. Recovery reserve Graphs for the hypogene zone for all three methods: local uniform conditioning, 

direct block simulation, sequential gaussian simulation, and actual data (derived from blast hole data). 

Table 3. The results of the correlation coefficient assessment using different methods across hypogene and 
supergene zones, with cut-off grades of 0.15% and 0.65%. 

Method Dimensions 
of SMU 

Grade CC 
Tonnage CC Metal content CC Supergene with 

cutoff 0.15% 
Hypogene with 
cutoff 0.15% 

Hypogene with 
cutoff 0.65% 

UC 15×15×15 0.637 0.778 0.328 0.364 0.629 
LUC 15×15×15 - - - 0.328 0.778 
DCSBG 90×90×15 0.527 0.788 0.431 - 0.788 
SGS 90×90×15 0.556 0.79 0.458 - 0.79 

 
4. Conclusions 

In this work, the focus is on investigating non-
linear geostatistical estimation methods and 
conditional simulation to assess recoverable 

mineral resources of the porphyry copper deposit 
in the active Miduk mine, utilizing uniform and 
local conditioning methods, direct block 
simulation, and sequential gaussian simulation. 
The data comprises 55,119 samples from blasting 



Dehghani Javazm and Shayestehfar Journal of Mining & Environment, Published online 

 

20 

boreholes and 6,187 samples obtained from 
exploration drill holes. The effectiveness of these 
methods is evaluated by comparing the actual data 
from blasting boreholes in two zones: supergene 
and hypogene, over three years (since 2018). 
Compositing of exploration boreholes was 
conducted along with variography in both the 
supergene and hypogene zones. The comparison of 
results from the uniform conditioning, direct block 
simulation, and sequential gaussian simulation 
methods against actual data from blasting 
boreholes shows correlation coefficients of 0.637, 
0.527, and 0.556, respectively. Since for the 
supergene zone, the results from the uniform 
conditioning method performed better on panel 
support, the correlation coefficients for metal 
content and the tonnage of recoverable ore were 
0.629 and 0.364, respectively. To provide a more 
comprehensive evaluation of all three methods 
against the actual data, various grade-tonnage 
curves were prepared to assess different parameters 
of recoverable reserves. The comparison 
conducted on metal content indicates that unlike 
the supergene zone, for a cut-off grade of 0.15%, 
simulation methods yielded better results 
compared to the uniform conditioning method. At 
a relatively high cut-off grade of 0.65%; the 
correlation of results from simulation methods was 
greater compared to that of the uniform 
conditioning method with the actual data. The 
correlation coefficients for estimated tonnage and 
metal content using the UC method are 0.364 and 
0.629, respectively. Therefore, the UC method in 
the supergene zone is more effective due to the 
significant extent of low-grade sections in 
exploration boreholes. The correlation coefficients 
for metal content using the UC, DCSBG, and SGS 
methods in the hypogene zone at a cut-off grade of 
0.15% are 0.778, 0.788, and 0.790, respectively, 
and at a cut-off grade of 0.65%, they are 0.328, 
0.431, and 0.458. At lower cut-off grades, the 
performance of the UC method (except for metal 
content) is better than other methods, and unlike 
the simulation methods, at higher cut-off grades 
than the average grade of the deposit, the 
performance of the UC method decreases, while 
the correlation coefficients of other methods, 
particularly SGS, increase. By employing the LUC 
method in the supergene zone while varying the 
SMU and comparing the results with the E-Type 
map, the effectiveness of this approach is found to 
be higher across all cut-off grades. However, as the 
cut-off grade increases in the hypogene zone, the 
performance of the LUC method decreases relative 
to the simulation methods. The LUC method 

allows for observing the convergence of results 
from low-grade to high-grade data, emphasizing 
the necessity of distinguishing between low-grade 
and high-grade sections in the estimation process. 
The results obtained for the supergene zone are 
nearly similar to the outcomes observed in panel 
support comparisons, which is not surprising, as 
local uniform conditioning is essentially a post-
processing of the uniform conditioning results. The 
shift in conditions (convergence with actual data) 
in all three methods, particularly the local 
conditioning method, highlights the clear need for 
further examination and re-evaluation of the raw 
data, as well as the separation of low-grade and 
high-grade sections in the estimation process. 
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در کانسار معدن   یشرط  يساز¬هیو شب  نیتخم يها¬کی شامل تکن یابیقابل باز  ریذخا یابیارز يها¬روش
شده   تیکامپوز  یاکتشاف  يها¬نمونه گمانه  6178و    يچال آتشبار  55119  يها¬با استفاده از داده  دوكیمس م

، UC  ،LUC  استفادهمورد    يها ¬شده است. روش  سهیمقا  ی با ساخت مدل بلوک پوژنیدر دو زون سوپرژن و ها
DCSBG    وSGS  هر زون انجام    يخام برا  يها¬داده  یوگرافیو وار  فیخارج از رد  ری. با حذف مقادباشد¬یم

 SGSو    DCSBG  يها¬و در روش  15×15×15برابر با    LUCو    UC  يها¬در روش  SMUشده است. ابعاد  
با   در زون    SGSو    UC  ،DCSBG  ي ها¬روش  یهمبستگ  بیشده است. مقدار ضرا  نیی تع  90× 90× 15برابر 

،  0/ 637برابر با    بیبه ترت  %0/ 15حد    اری) در ع یاستخراج  يها¬(بلوك  یاستخراج  يها¬چال  ج یسوپرژن و نتا
 نیدر ا  یابیقابل باز  رهیذخ  نی جهت تخم   UC  روش  بالاتر  دقت  دهنده¬. که نشانباشد¬یم  0/ 556و    527/0

به   UCروش    يفلز محتو  زانی تناژ و م  اسبهمح یهمبستگ  بی. ضرباشد ¬یم ها¬روش  ریحد نسبت به سا  اریع 
  ار یع ¬بخش کم  ادیوسعت ز  لی در زون سوپرژن بدل  UCروش    نی. بنابراباشد¬یم  0/ 629و    0/ 364برابر با    بیترت

و    UC ،DCSBG يها¬روش يفلز محتو  یهمبستگ ب یضر زانیدارد. م  ي کاربرد بهتر  یاکتشاف يها¬در گمانه
SGS  بیبه ترت  %65/0حد    اریو در ع   790/0و    788/0،  778/0  بیبه ترت  %15/0حد    اریبا ع   پوژنیدر زون ها  
  ه ی)، بهتر از بقي(بجز فلز محتو  UCروش    ییکارآ  نییپا  يحدها  ار ی. در ع باشد ¬یم  458/0و    431/0،  328/0
 ییمتوسط کانسار، کارآ  اریبالاتر از ع   يحدها  اریدر ع   ،يساز¬هیشب  يها¬و برخلاف روش  باشد¬یم  ها¬روش

  ي ها¬شده است. برعکس روش  شتریب  SGSبه خصوص    گرید  يها¬روش  یهمبستگ  بیو ضر  کم  UCروش  
. باشد¬یبالا م  اریبهتر از ع   ن،یی پا  اریبا ع   يدر جامعه آمار  نگیجیبر کر  یمبتن  يها¬روش  ییکارآ  ،يساز¬هیشب

 نیا  ییارآ، کE-Typeحاصل از نقشه    ج ینتا  سهیو مقا SMU  ریی در زون سوپرژن با تغ  LUCروش    يریبا بکارگ
به نسبت   LUCروش    ییکارآ  پوژنیحد در زون ها  اریع   شی. با افزاباشد¬یحدها بالاتر م  اریع   یروش در تمام

 نیحاصل از ا ج ینتا ییهمگرا  ری توان تاث-ی م LUC. با استفاده از روش شود¬یکمتر م يساز¬هیشب يها¬روش
به بخش کم  نی ا  کی تفک  لزوممشاهده نمود که    اریبه پرع   اریع ¬از کم  یواقع  يها¬روش با داده و    اریع ¬زون 

  . باشد¬یم  نیتخم ندیدر فرآ اریپرع 

    کلمات کلیدي 

  ی ابیقابل باز ریذخا
  ی شرط يسازه یشب
  با درجه بلوك  میمستق  یشرط يسازه یشب
  کنواخت ی يسازنه یبه
  ی موضع  کنواختی يسازنه یبه

  

  
 
 
 


