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This research work aims to explore the intricate mineralogy and texture of the tailing
piles of iron ore processing plants to present a particle-based prediction for magnetite
recovery. Three samples were taken from different points of tailings piles of an iron
ore processing plant. Davis tube tests were performed on each sample under various
operating conditions. Process mineralogy studies were conducted to determine the
mineralogy modal of the feed and product of each test. An Artificial Neural Network
(ANN) model was used to make a model that related the grade and recovery of
magnetite in the product to the mineralogy modal of the tailing piles. The magnetite
grade and association index of feed, the magnetic intensity, and the water flow rate
were the inputs to this network. The grade and magnetite recovery correlation
coefficients were 0.954 and 0.86, respectively. The grade of magnetite in the feed
emerged as a limiting factor on the grade and recovery of magnetite in concentrate. An
increase of one unit in magnetite grade in the feed resulted in a 1.68 decrease in the
recovery. The association index changes with the coefficients of -0.173 cause the
changes in predicted magnetite recovery in the concentrate.

1. Introduction

In the recent years, with the increase in global
demand and the rapid development of the iron and
steel industries, the amount of tailings produced
from iron mining and processing plants has
increased [1]. Therefore, reprocessing tailings from
iron ore processing plants is necessary from
economic and environmental perspectives.
However, this process is time-consuming and
expensive [1, 2]. To provide optimal approaches
for reprocessing iron tailings, it is crucial to
establish accurate classifications and models that
fully and accurately describe their metallurgical,
economic, and environmental aspects. Currently,
the modeling and optimization of mineral
processing plants rely on general characteristics of
the ore or bulk feed [3, 4]. Various attempts have
been made so far to model and simulate iron ore
magnetic separation circuits [5-7].

In magnetite ore processing, the Davis Tube
Recovery (DTR) test is traditionally used to
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develop recovery and grade models. Its
development dates back to 1921 when a previously
manually performed test was mechanized. The
model provides information about the quality of the
concentrate and the iron recovery based on the iron
grade in the feed [8]. The empirical model of the
wet high-intensity magnetic separator (WHIMS)
by Dobby and Finch (1977) indicates that the
recovery of particles into the magnetic concentrate
is dependent on the magnetic susceptibility and
particle size [9]. King and Schneider (1995)
developed an empirical magnetic separator model
that considers particle properties and can forecast
the behavior of each particle separately [9]. Rayner
and Napier-Munn (2003) developed a model to
predict the percentage loss of magnetic particles for
a wet drum magnetic separator in a dense medium
application [10]. Ersayin (2004) proposed a
simplified approach called the pseudo-liberation
approach for simulating the effect of liberation in
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WLIMS [11]. Metso reported a model for the
LIMS that combines the discrete element method
(DEM), computational fluid dynamics (CFD), and
finite element method (FEM) [12]. In this model,
each particle is supposedly treated separately. In
most of the presented models, the variables of iron
grade in the feed and magnetic sensitivity are
considered the most important factors.

Regarding the reprocessing of tailings in iron
ore processing plants including low-grade iron
reserves, challenges arise due to factors such as low
grade,  mineralogical  diversity, = complex
mineralization, low liberation degree for valuable
minerals, and a high degree of interlock between
iron-bearing and gangue minerals. These
challenges make it difficult to obtain the desired
grade and recovery [13-15]. Consequently,
conventional models for the magnetic separation of
iron tailings may not yield favorable results.
Therefore, the most optimal approach to capitalize
on tailings is by developing a tailing-metallurgy
program based on modal mineralogy. This involves
determining the mineralogical modal and
combining it with the results of metallurgical tests
to develop mineralogical-based approaches for the
productive and optimal management of iron
tailings (via tailing-metallurgy programs). The
mineralogical approach of geometallurgical
programs relies on particle and mineral properties.
In this approach, often referred to as process
mineralogy, process models are formulated using
particle tracking methods. However, it is worth
noting that this process model level is relatively
less developed, and requires further attention and
research.

The significance of Particle-based Separation
Models (PSMs) stems from their utilization of rich
and quantitative data derived from process
mineralogy  investigations, which  employ
Scanning Electron Microscopes (SEMs) and X-ray
analysis. These models possess capabilities that
surpass conventional data-based approaches, as
they consider material properties [16, 17]. On the
other hand, with the increasing demand for raw
materials and the need to optimize existing circuits,
modeling mineral processes based on particles
becomes ever more crucial. This is due to the
growing complexity of mineralogy and geology in
ores, necessitating the development of optimal
flowsheets for efficient extraction, as well as the
reprocessing of waste and tailings from mine and
mineral processing plants [3, 18, 19]. Recently,
PSMs have been employed to model various
mineral processing operations including flotation,
magnetic separation, and grinding [20]. The
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particle tracking approach, introduced by Polat in
1995 used the characteristics of particles to
investigate the kinetics of coal flotation [19].
Lamberg and  Vianna  (2007), utilized
mineralogical data, surface composition, and
particle size obtained from SEM-based image
analysis systems to model the flotation process of
lead-zinc-silver polymetallic ore [20]. Pascoe et al.
(2007) applied a similar approach to calculate
particle recovery in gravity separation processes
using SEM-based image analysis data. This
method involves classifying particles based on
density and size and expressing recovery as the
percentage of particles in each class that are
recovered in the concentrate product [21]. Hannula
et al. (2018) proposed a modification to particle
tracking methods by incorporating neural networks
to create generalized prediction models that
provide continuous recovery probabilities [22].
Furthermore, Schach et al. (2019) developed a
method for cassiterite ore that directly links particle
tracking to distribution curves using Falcon
apparatus. They utilized kernel density estimates to
quantify continuous probabilities in the two-
dimensional sample space defined by particle
density and size [23]. However, the method is
limited to less than 10 variables due to
computational complexity and data density
limitations. Therefore, variable pre-selection is
necessary.

This study aimed to predict the behavior of
magnetite minerals in the tailings of iron ore
processing plants during the magnetic separation
process. All the previously mentioned discussions
focused on primary ores, which typically have
higher grades and simpler mineralogy. However,
reprocessing of tailings from iron processing plants
presents challenges, due to mineralogical
complexities and low grades. To address this, it is
important to have a clear understanding of the
particle recovery potential of tailings to develop
effective approaches for revitalizing tailing piles.
Although various experimental particle-based
separation modeling approaches have been
developed, there is a lack of investigation into
predicting their performance under variable
process conditions. This research work aims to fill
this gap by investigating the performance
prediction of a particle-based separation under
different conditions (feed and operating
conditions) for magnetic separation on a laboratory
scale. To achieve this process, mineralogy studies
were conducted on the feed and Davis tube test
products of various samples. The mineralogical
composition of iron ore tailings and Davis tube test
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products was determined. Finally, Artificial Neural
Networks (ANN) were used as particle-based
modeling approaches to predict the magnetic
separation of magnetite from the tailings of iron ore
processing plants.

2. Materials and Methods
2.1. Sample characteristics

The present study focused on the tailings of an
iron ore processing plant located in the Kurdistan
province of west Iran. These tailings are derived
from the low intensity magnetic separation of
magnetite iron ore using the dry method, and they
accumulate in the form of piles near the processing
plant. To obtain representative samples from the
tailing piles, three samples were taken from
different locations, identified as ST1, ST2, and
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ST3. Sampling points were selected based on the
pattern of tailings accumulation, in different
periods. Following the sampling process, several
analyses were conducted on the three samples
including chemical analysis through techniques
like XRF (X-ray fluorescence) and titration,
particle size analysis, and mineralogical studies
utilizing XRD (X-ray diffraction), Optical Image
Analysis  (OIA), and Scanning Electron
Microscopy (SEM). The results of the chemical
analysis are presented in Table 1, while Figure 1
illustrates the findings of the particle size analysis.
Based on the particle size analysis, dgo for three
samples ST1, ST2, and ST3 is 4.7, 5.0, and 6.7 mm,
respectively. ST3 has a coarser particle size
distribution than the other two samples. In this
sample, size fraction +1 -12.5 mm has the highest
weight percentage (approximately 77%).

Table 1. Results of XRF of tailing samples of iron processing plant.

Based

Code 502 CaO  Fe(T) FeO K:O Mg0 MnO ALO; , TiO; LOI Cu
ode o, % % % % % % % 2 % %
ST1 31.27 20.76 14.80 4.89 0.42 3.24 0.30 7.40 2.28 0.50 2.31 0.25
ST2 35.02 20.37 12.26 3.68 0.83 2.76 0.29 7.99 0.37 0.47 3.60 0.10
ST3 33.61 16.96 13.15 4.51 0.59 3.79 0.26 8.66 1.20 0.53 3.27 0.14
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Figure 1. Particle size distribution of the three tailing samples of the iron ore processing plant.

on XRD analysis, diopside

epidote-skarn are the two main exo-skarn zones in

(CaMg(Si03)2) has been identified as the most
abundant phase in all of the tailing samples. Calcite
and garnet are the next most abundant minerals
after diopside, with their quantities being
approximately equal across the samples. The
mineralization and mineralogy studies of the
primary reserve reveal that garnet-skarn and

the studied area. This suggests that the abundance
of garnet and epidote minerals in the tailings of the
processing plant can be attributed to their
prevalence in the primary ore. Additionally,
changes in physicochemical conditions and the
infiltration of low-temperature atmospheric waters
have led to the formation of minerals like calcite
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and quartz from the transformation of garnet and
pyroxene into low-temperature minerals in the
primary ore.

Using OIA and SEM, it has been observed that
the volumetric abundance of the two main oxide
minerals, magnetite and hematite (as the primary
iron minerals in the tailings), varies across the
different size fractions of each tailing sample. In
the larger size fractions, there are interlocks
between iron oxides (predominantly magnetite)
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and silicate and carbonate gangues (as seen in
Figure 2-A). Additionally, the gangues have been
found as inclusions within iron oxides, exhibiting a
relatively complex interlock. Analysis of the
liberation degree of the oxide minerals in the
tailings indicates that for fractions with a particle
size smaller than 106 microns, the oxide metal
minerals exhibit a degree of liberation exceeding
85% (Figure 2-B). The results of SEM have been
used to determine the association index (Al) [24].

Scale:100um

Figure 2. A) The interlock of iron oxide minerals and silicate and carbonate minerals in dimensions of +500
microns (BSE image), B) Liberation of iron oxide minerals in size of -106 microns (PPL image).

2.2. Test works

Conducting metallurgical tests is a crucial step
in applying particle-based methods. These tests are
specifically performed to assess the behavior of
each tailings sample. Ideally, the data gathered
from these tests should enable the prediction of the
process behavior of various sections within the
stockpiles. In this study, Davis tube tests were
carried out to predict the grade and recovery of
magnetite from iron ore tailings. Figure 3 provides

an overview of the entire tests for the iron tailing
samples. Based on the degree of liberation studies,
as well as the difference in particle size of the
examined samples, which were in two ranges of 0-
8 and 0-15 mm; First, all the samples were crushed
to the dimensions of 0-2 mm. In the next step,
chemical and mineralogical analyses have been
performed on the samples by classifying them in
different fractions. Davis tube tests have also been
performed for samples with different dso.

Crushing (roll
crusher)
-
Sieving
—_—
OIA and SEM R
o N S
XRD
~—

——
Davis tube
Py S——
XRF — OIA and SEM

Figure 3. The overview of the analysis and tests performed to predict the recovery of magnetite from the iron

Davis tube tests were conducted under various
operational conditions. These tests aimed to
investigate the impact of changes in feed and Davis
tube device variables. The variables related to the

feed characteristics were the magnetite grade
(Mag.) and association index (AI). The varied
device variables included the Magnetic Intensity
(MI) and water Flow Rate (FR) (Table 2). It is



Kazemi and Abdollahzadeh

important to note that the separation time for all
tests was set at 2 minutes, and other variables such
as feeding and tube movement frequency remained
constant. Following each test, the concentrate
products and tailings were weighed and subjected
to chemical and mineralogical analysis.

In a geometallurgical program modeling at the
3D level, particle information is utilized to develop
the model. To achieve this, the XRF and
quantitative mineralogy (XRD), SEM, and OIA at
the particle level were employed to determine the
chemical and mineralogical characteristics of the
feed and products of Davis tube tests.
Subsequently, the mineralogical modal was
calculated for the feed, concentrate, and tailings of
each Davis tube test using the Element-to-Mineral
Conversion (EMC) method. The HSC chemistry
software package provided by Outotec was utilized
to implement the EMC method and calculate the
mineral ratios. The EMC procedure, based on Non-
Negative Least Squares (NNLS) estimation was
chosen and manually entered the data obtained
from the iron tailings piles into the software. In
addition, the association index concept has been
used to quantify the texture data (resulting from
SEM microscopic studies) of iron tailing samples.
The AI calculated based on the proportion of
valuable minerals in the particles and interfacial
surface area between valuable minerals with
gangues [24]. Table 2 presents the intervals of
variable variations for these tests. The changes in
magnetite grade (calculated by EMC) in different
tailing samples (ST1 to ST3) are from 13.20 to
26.00. The Al of magnetite also varies from 27.2 to
68.2 in three samples.

Table 2. Experimental variable variation intervals
of Davis tube tests.

Variables Range
Magnetite % 13.20 —26.00
Association index 272 -68.2
Magnetic intensity (G) 600 — 3000
Water flow rate (1/min) 0.2-0.5

2.3. Modeling and prediction

Magnetic separation is a comprehensible
process that can be understood based on the
behavior of individual particles in an ore. As a
result, several experimental models have been
developed to predict this process [7, 25, 26]. These
models tend to be effective in predicting the
behavior of a feed with a constant chemical
composition and  physical characteristics.
However, when the composition of the feed
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changes, along with the corresponding alterations
in the operating conditions required for effective
enrichment, the existing mathematical models for
magnetic  separators become  considerably
complex. Consequently, predicting the process
becomes challenging. The findings of current
research conducted on the tailings of an iron ore
processing plant indicate significant variations in
feed composition across different areas of the
tailing piles. Therefore, to develop a metallurgical
model for tailings piles, it is essential to adopt an
approach that can establish a connection between
inputs and outputs under complex and variable
conditions. Artificial Neural Network (ANN) is
one such approach, capable of establishing
meaningful communication in the presence of
variability and complexity. Neural networks are
designed based on biological neural networks and
quickly adapt to process changes. ANN is
considered a black-box approach for modeling
real-world problems and relies on the utilization of
training data sets (history) to predict outputs
through appropriate weight-updating techniques.
As stated in Table 2, the input variables in Davis
tube tests include magnetite grade, association
index, magnetic intensity, and water flow rate. The
investigated output variables are the grade and
recovery of magnetite to concentrate. The file
containing the data (in the form of an Excel file)
including 42 values for each variable (168 data in
total) has been uploaded into the software R-studio.
It should be noted that to ensure data accuracy,
each test was performed in three repetitions and
their average was used for modeling. Figure 4
provides a visualization of the inputs and schematic
image of the neural network that has been designed
to predict the grade and recovery of magnetite from
iron ore tailings. By carrying out different designs
(networks with different numbers of layers and
neurons), finally, the network includes an input
layer, two hidden layers (with the number of
neurons 30 and 20, respectively) and an output
layer, considered the most optimal state. The
network is designed with four input variables and
two outputs (output layer) and consists of two
hidden layers with 30 neurons in the initial hidden
layer and 20 neurons in the second hidden layer, as
well as 2 biases. In the designed network (Figure
4), feedforward algorithms with 10,000 training
iterations were used to train the network. The
learning rate was set at 0.0001, with an error target
of 0.001. The Mean Square Error (MSE) method,
as described by Equation 1, was employed to
calculate the error. To determine the type of
activation functions in the hidden layers and output
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layer, the performance of Rectified Linear Unit
(ReLU), hyperbolic, and sigmoid, functions were
checked by trial-and-error method. Based on the
measured values for min.val.loss, min.loss and
MSE function in the first hidden layer ReLU
function (Equation 2), for the second hidden layer
tanh (Equation 3) and the sigmoid function for the
output layer (Equation 4) have provided the most
suitable output.

1
MSE =NZ()?—y)Z (1)
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In Equations 1 to 4, the variable "N" represents
the number of rounds, "y" stands for the predicted
value, "y" represents the real value, and "x" denotes
the input variables. Out of the 42 tests input to the
neural network, 90% of the data (which is the data
from 38 tests) was selected as the training data
using the sample function either randomly or by
default. The remaining 10% of the data (data from
4 tests) did not play a role in training the network
but were chosen as the best data for the network.
The training process of the proposed network was
halted after nearly 600 training sessions. Figure 5
demonstrates the performance of the proposed
network in terms of the convergence of the Mean
Square Error (MSE) for the original training data
and validation data. In this case, the network
calculated the values of min.val.loss, min.loss, and
MSE as 0.005, 0.008, and 5.36, respectively.

=i IIaEnsatite (Con.)
= Becovery

B L . 1 St L 1 B

Figure 4. Schematic diagram of ANN for magnetic separation of magnetite from iron processing tailings.
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Figure 5. Checking the performance of the proposed neural network based on the convergence of the minimum
error value A) random validation data, B) main train data.

3. Results and Discussion
3.1. Process mineralogy studies

Davis tube tests were conducted to investigate
the behavior and make predictions about the grade
and recovery of magnetite from different tailings
piles in iron ore processing plants (as described in
section 2-2). These tests involved performing
chemical analysis and mineralogical studies on the
concentrate and tailings. Through these studies, the
grade and texture characteristics of magnetite were
determined for each test. The grade of magnetite
was calculated using the EMC method [24]. It is
evident that as the liberation degree of magnetite
increased, its grade in the concentrate also
increased under a constant magnetic field intensity.
Microscopic studies revealed that as the dso
(particle size) of the concentrate decreased, the
interlocking between magnetite and gangue
minerals decreased. It should be noted that the
interlock of magnetite in the concentrate was
mainly associated with hematite. The presence of
hematite, resulting from the martitization
phenomenon of magnetite (found at the edges of
magnetite particles), contributed to the recovery of
hematite in the concentrate. Figure 6, showing
polished sections, indicates that hematite formed
through the martitization of magnetite accounted
for approximately 10-15 percent of the sample's
volume when the size exceeded 500 microns. The
phenomenon of martitization of magnetite to
hematite has been observed at fines of even less
than 25 microns.

Oxide-hydroxide types of iron such as goethite
and, to a lesser extent, earthy hematite and
limonite, can be found in magnetic concentrates.
These metal minerals exist primarily in an
interlocked form. As a result, in coarser grain sizes,
the interaction between hematite, other iron-
bearing minerals, and magnetite leads to their

recovery into the concentrate. In smaller particle
sizes (less than 106 microns); the majority of the
concentrate consists of particles of metal minerals,
with magnetite being the predominant component.
Additionally, crystalline and earthy forms of
hematite, goethite, pyrite, and chalcopyrite are
other metallic minerals present. Most chalcopyrite
crystals are interlocked within the non-metallic
matrix, and less frequently they are interlocked
with magnetite (as shown in Figure 7).

In a constant magnetic intensity, the grade of
magnetite in the tailings has been observed to
increase as the grade of the feed increases. In the
tailings of the Davis tube test, magnetite is found
in both intact and martitized crystal forms.
Additionally, there are occurrences of magnetite
being replaced by hematite and goethite. In some
cases, the edges of magnetite crystals may also be
replaced by titanium oxide compounds,
specifically rutile-anatase. Consequently, the
presence of magnetite in the non-magnetic portion
can be attributed to the martitization of magnetite
margins and the replacement of titanium oxide
compounds in the magnetite margins (as shown in
Figure 8).

Figure 6. Recovery of hematite mineral to
concentrate due to martitization of magnetite.
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Figure 7. Recovery of hematite, pyrite, chalcopyrite,
and goethite to concentrate due to interlocking with
magnetite.

3.2. Predicting the grade and recovery of
magnetite

To predict the grade and recovery of magnetite
from tailings in iron ore processing plants, the first
step involves determining the statistical parameters

Journal of Mining & Environment, Published online

8

Hematite Chalcopyrite

Magnetite
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Figure 8. Presence of the magnetite, hematite, pyrite,
chalcopyrite, and goethite in the tailings of Davis
tube.

of the data obtained from Davis tube tests. The
results of the statistical analysis of the input
variables and outputs are presented in Table 3,
which includes information such as the average,
maximum, minimum, and standard deviation for
the variables.

Table 3. Analysis of input data and output variables.

Variables Mean Minimum Maximum  Std. Dev.
Magnetite 18.68 13.20 26.00 3.37
Inputs Associa?:iqn indc?x 51.49 27.20 68.20 10.91
Magnetic intensity 1361.90 600.00 3000.00 697.37
Water flow rate 0.35 0.20 0.50 0.15
Outputs Magnetite 46.68 34.90 62.80 7.77
Recovery 43.90 31.50 57.50 6.61

The grade and recovery of magnetite from the
tailings of iron ore processing plants were
predicted using an ANN modeled with the feed-
forward algorithm. Figure 4 illustrates the
architecture of the designed network. In this
network, the input variables (Mag., Al, MI, and
FR) labeled as Xi, are multiplied by the previously
calculated weights (Wji) for each node in the
hidden layer. Subsequently, the sum of all Xi x Wji
is added to the bias value (bji), and finally, the
operation is conducted using the activation
function. Equations 5 and 6 provide a mathematical
representation of these operations.

Hj=f(ZWﬁxXi+bﬁ)
Y=(Zijhj+l3)

In Equations 5 and 6, the variables and symbols
have specific meanings: Hj represents network
nodes, Wji denotes the weight of the parameter, Xi
refers to the input parameter, bji represents the
bias, Y represents the output, and Wj and b’ are sets
of weights and bias values, respectively.

)

(6)

The selection of the optimal network geometry
is based on two criteria: the highest R* value
(coefficient of determination) and the lowest MSE
value (mean squared error). The coefficient value
is presented in Figure 9-A for the grade of
magnetite. According to the figure, the neural
network achieved good performance in predicting
the grade of magnetite from iron processing
tailings, with an R? value of 0.95 (MSE = 2.81).
Figure 9-B presents the predicted results for
magnetite recovery from iron processing tailings.
The R? value, which indicates the goodness of fit
between the predicted and measured data, is
reported to be higher than 0.86 for magnetite
recovery (MSE=6.40).

3.3. Effect of feed variables on the prediction of
magnetite and recovery
A) Grade of magnetite

The influential variables related to the feed that
impact the prediction of magnetite grade and
recovery include the grade of magnetite in the feed
and the association index. Figure 10-A illustrates
the relationship between the magnetite grade in the
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concentrate, as predicted by the neural network,
and the grade of magnetite in the feed. According
to the findings, the grade of magnetite in the feed
exhibits a direct proportionality to its grade in the
concentrate. For every unit, increase in the grade of
feed magnetite, there is an expected increase of
0.847 units in the amount of magnetite present in
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the concentrate. Figure 10-B illustrates the
relationship between magnetite recovery, as
predicted by the neural network, and the grade of
magnetite in the feed. For every unit increase in the
grade of feed magnetite, there is an expected
decrease of 1.68 units in the amount of magnetite
recovery.

o © ° °
o o
© o o
o o %
o 8 ° o o
o
0 Oo ° % ° o o
o
e ° § 9 o oooo °© °oo
? e ° g )
= © 7 o g
8| ) ml o°
@ e ° 3 oog
o T o |
<
w
= o o% o o
° o © ° © o
o
< - c% Of e ¢ o
° o
oo© o
o ® o
T T T T T T T T T T T
35 40 45 50 55 60 35 40 45 50 55
(A) B)
Measured_Mag% Measured_Recovery%
Figure 9. The relationship between the values predicted by the neural network, with the measured values for A)

magnetite grade and B) magnetite recovery
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Figure 10. Relationship between A) magnetite grade in concentrate (predicted by neural network) and B)
magnetite recovery (predicted by neural network) with feed grade.

B) Association index

Figure 11-A illustrates the correlation between
the magnetite grade in the concentrate, as predicted
by the neural network, and the association index of
magnetite. The prediction made by the neural
network suggests an inverse association between
the magnetite grade and the mineral's association
index in the feed. Specifically, as the association

index of magnetite increases in the feed, the
magnetite grade in the concentrate is projected to
decrease with a factor of -0.297. Figure 11-B
displays the correlation between the predicted
magnetite recovery (determined by the neural
network) and the association index of magnetite in
the feed. The association index and recovery
exhibit an inverse relationship, with a coefficient of
approximately -0.173.
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Figure 11. The relationship between the A) magnetite grade in the concentrate (predicted by the neural network)
and B) recovery (predicted by the neural network) with magnetite association index in the feed.3-4 Validation of
model

To validate the proposed model, magnetic
separation, tests were performed by dry and wet
methods on different samples of iron ore tailings.

In each test, a sample weighing 50 kg was fed to
the magnetic separator with a speed drum 50 (rpm)
and the magnetic intensity mentioned in Table 4.

Table 4. Condition of magnetic separation tests.

Test dsofeed Fe(T) Magnetic Water flow Speed of
No. (mm) % intensity (G) rate (/min) drum (rpm)
1 6.5 12.59 2500 Dry 35
2 2.0 14.05 1800 0.5 50
3 0.250 17.83 900 0.5 50

The results of magnetic separation tests are
given in Table 5. In the magnetic separation
performed with a magnetic intensity of 2500 G,
approximately 22% by weight of the input load
(with dso = 6.5 mm) was transferred to the
concentrated product (magnetic), and more than
77% by weight was transferred to the tailings (non-
magnetic part). By decreasing the particle size to
dso = 2 mm and decreasing the magnetic intensity
to 1800 G about 20.50% by weight of the feed with
a grade of 38% of Fe (T) has been recovered into
concentrate and about 80% by weight with a grade
of 9% has been recovered into tailings. A magnetic
separation test of 900 G has been performed for

feed with dso = 0.250 mm. According to Table 5,
during this test, 18.90% by weight of the feed was
transferred to the concentrate (or magnetic
product) with a grade of 46.92% and 81% of it was
transferred to the tailings with a grade of 9.42%.
Using the EMC method; the amount of magnetite
in the feed and products of each test was measured,
the results are shown in Table 5. In the previous
section, it was stated that with the increase of one
unit in the magnetite grade of feed, its grade in the
concentrate increases by 0.847 units. Examining
the magnetite grade in the concentrate of magnetic
tests (Figure 12) confirms this result.

Table 5. Results of magnetic separation tests.

Test Weight  SiO: Ca0 Fe(I) K:O MgO MnO S Cu  Magnetite
No. (%) () () () () () &) (o) (%) 2
1 Feed 100.00 36.01  20.31 17.83 0.59 4.44 0.29 0.14 10.65
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Con.  33.47 28.19 14.06 31.05 0.30 4.52 0.25 - 0.15 13.60

Tail 66.53 39.95 23.46 11.18 0.73 4.40 0.31 - 0.13 9.10

Feed 100.00 31.15 16.85 19.65 0.43 5.58 0.25 1.47 0.28 11.58

2 Con.  23.90 16.55 9.09 42.01 0.19 3.45 0.17 1.35 0.14 22.90

Tail 76.10 35.73 19.29 12.63 0.50 6.25 0.27 1.51 033 8.00

Feed 100.00  33.48 16.95 13.54 0.62 3.97 0.26 0.80 0.14 13.10

3 Con.  13.40 11.64 5.97 46.61 0.16 2.45 0.14 0.25 0.08 35.78

Tail 86.60 36.86 18.65 8.42 0.69 4.20 0.28 0.88 0.15 9.60
The concentrate and tailings of the magnetic
40 separation tests were classified into different size
35 y=82157x-71291 . © fractions, and optical microscopic studies were
£ 30 RE=0S3IL .- performed on them. Based on the results, in the
8 -7 magnetic concentrate for the feed with dgo = 0.250
g% o -7 mm, where the magnetite Al was lower, the
£ 20 Jpias recovery of this mineral in the concentrate was
L:b 15 -7 higher. In such a way that in all fractions, magnetite
s 0 © abundance percentage is more than 40 percent by
volume (Figure 13-A). But for the sample with dso
3 = 6.5 mm, as seen in Figure 13-B, the interlocking
0 of magnetite with hematite, goethite, pyrite and
10 1 12 13 14 chalcopyrite as well as gangue minerals causes the

Mag. Feed %

Figure 12. Changes in grade of magnetite in
concentrate with changes in magnetite feed.
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Figure 13. Image of concentrate of magnetic separation for A) feed with dso = 6.5 mm and B) feed with dso =
0.250. mm

4. Conclusions

Various empirical models have been developed
to simulate magnetic separation, which is a
commonly used method for processing iron ores.
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These models are built based on magnetic
separation tests carried out under different
operating conditions. They are useful for predicting
the behavior of feed with consistent chemical
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composition and  physical characteristics.
However, when the feed composition varies, the
existing mathematical models for magnetic
separators become overly complex and predicting
the process becomes highly challenging. The
emergence of process mineralogy, along with the
utilization of modern analysis techniques like SEM
and XRD, has provided detailed particle-level data
in the processing of mineral materials. Despite this
wealth of information, current process models do
not fully leverage these data, limiting the potential
usefulness of this extensive dataset. To address this
limitation, the present research aims to utilize
process mineralogy data at the particle level to
model magnetic separation and predict the grade
and recovery of valuable mineral magnetite from
iron ore processing plant tailings. By adopting a
particle-based approach in the modeling of
magnetic  separation, the predictions can
accommodate variable conditions found in tailings
piles, which typically exhibit a wide range of
mineralogical diversity.

Application of the neural network approach in
modeling and predicting magnetite reprocessing
from tailing piles of iron processing plants has
proven effective in forecasting magnetite grade and
recovery. The correlation coefficients between the
measured and predicted data for magnetite grade
and recovery were calculated as 0.95 and 0.86,
respectively. Among the various variables
considered, the magnetite grade of the feed was
found to be the most influential in determining the
predicted grade and recovery of magnetite by the
neural network. For each unit increase in magnetite
grade in the feed, the magnetite grade in the
concentrate increased by 0.847 units, while the
recovery decreased by 1.68 units. This suggests
that the magnetite grade in the feed has a larger
impact on the recovery than its effect on the
concentrate's magnetite grade. This phenomenon
can be attributed to other tailings texture variables,
such as the association index, degree of liberation,
and mineral interlocking, which affect magnetite
recovery. Additionally, the association index of the
studied variable exhibited a reverse relationship
with the grade of magnetite in the concentrate and
recovery. According to the output of the neural
network, the predicted values for the grade and
recovery of magnetite were found to vary with
changes in the tailing piles such as alterations in the
sampling location of the tailings and subsequently,
modifications in the feed variables. Given these
findings, it is possible to perform spatial modeling
and develop a tailing piles blending plan based on
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the predicted results generated by the neural
network.
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