
 
 

Journal of Mining and Environment (JME) Published online 
 

 Corresponding author: abdzad@aut.ac.ir (A.A. Abdollahzadeh) 

 

 
Shahrood University of 

Technology 

 
Journal of Mining and Environment (JME) 

 
Journal homepage: www.jme.shahroodut.ac.ir 

 
Iranian Society of 

Mining Engineering 
(IRSME) 

 
Particle-based Approach to Predict Magnetite Separation from Iron 
Ore Tailing Piles 
 
Fatemeh Kazemi1, and Ali Akbar Abdollahzadeh2* 

1. Department of Mining Engineering, Faculty of Engineering, University of Kashan, Kashan, Iran 
2. Faculty of Mining Engineering, Amirkabir University of Technology, Tehran, Iran 
 

Article Info  Abstract 

Received 20 January 2025 
Received in Revised form 19 
February 2025 
Accepted 11 March 2025 
Published online 11 March 2025 
 
 
 
 
DOI:10.22044/jme.2025.15641.3002 

 This research work aims to explore the intricate mineralogy and texture of the tailing 
piles of iron ore processing plants to present a particle-based prediction for magnetite 
recovery. Three samples were taken from different points of tailings piles of an iron 
ore processing plant. Davis tube tests were performed on each sample under various 
operating conditions. Process mineralogy studies were conducted to determine the 
mineralogy modal of the feed and product of each test. An Artificial Neural Network 
(ANN) model was used to make a model that related the grade and recovery of 
magnetite in the product to the mineralogy modal of the tailing piles. The magnetite 
grade and association index of feed, the magnetic intensity, and the water flow rate 
were the inputs to this network. The grade and magnetite recovery correlation 
coefficients were 0.954 and 0.86, respectively. The grade of magnetite in the feed 
emerged as a limiting factor on the grade and recovery of magnetite in concentrate. An 
increase of one unit in magnetite grade in the feed resulted in a 1.68 decrease in the 
recovery. The association index changes with the coefficients of -0.173 cause the 
changes in predicted magnetite recovery in the concentrate. 
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1. Introduction 

In the recent years, with the increase in global 
demand and the rapid development of the iron and 
steel industries, the amount of tailings produced 
from iron mining and processing plants has 
increased [1]. Therefore, reprocessing tailings from 
iron ore processing plants is necessary from 
economic and environmental perspectives. 
However, this process is time-consuming and 
expensive [1, 2]. To provide optimal approaches 
for reprocessing iron tailings, it is crucial to 
establish accurate classifications and models that 
fully and accurately describe their metallurgical, 
economic, and environmental aspects. Currently, 
the modeling and optimization of mineral 
processing plants rely on general characteristics of 
the ore or bulk feed [3, 4]. Various attempts have 
been made so far to model and simulate iron ore 
magnetic separation circuits [5-7]. 

In magnetite ore processing, the Davis Tube 
Recovery (DTR) test is traditionally used to 

develop recovery and grade models. Its 
development dates back to 1921 when a previously 
manually performed test was mechanized. The 
model provides information about the quality of the 
concentrate and the iron recovery based on the iron 
grade in the feed [8]. The empirical model of the 
wet high-intensity magnetic separator (WHIMS) 
by Dobby and Finch (1977) indicates that the 
recovery of particles into the magnetic concentrate 
is dependent on the magnetic susceptibility and 
particle size [9]. King and Schneider (1995) 
developed an empirical magnetic separator model 
that considers particle properties and can forecast 
the behavior of each particle separately [9]. Rayner 
and Napier-Munn (2003) developed a model to 
predict the percentage loss of magnetic particles for 
a wet drum magnetic separator in a dense medium 
application [10]. Ersayin (2004) proposed a 
simplified approach called the pseudo-liberation 
approach for simulating the effect of liberation in 
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WLIMS [11]. Metso reported a model for the 
LIMS that combines the discrete element method 
(DEM), computational fluid dynamics (CFD), and 
finite element method (FEM) [12]. In this model, 
each particle is supposedly treated separately. In 
most of the presented models, the variables of iron 
grade in the feed and magnetic sensitivity are 
considered the most important factors. 

Regarding the reprocessing of tailings in iron 
ore processing plants including low-grade iron 
reserves, challenges arise due to factors such as low 
grade, mineralogical diversity, complex 
mineralization, low liberation degree for valuable 
minerals, and a high degree of interlock between 
iron-bearing and gangue minerals. These 
challenges make it difficult to obtain the desired 
grade and recovery [13-15]. Consequently, 
conventional models for the magnetic separation of 
iron tailings may not yield favorable results. 
Therefore, the most optimal approach to capitalize 
on tailings is by developing a tailing-metallurgy 
program based on modal mineralogy. This involves 
determining the mineralogical modal and 
combining it with the results of metallurgical tests 
to develop mineralogical-based approaches for the 
productive and optimal management of iron 
tailings (via tailing-metallurgy programs). The 
mineralogical approach of geometallurgical 
programs relies on particle and mineral properties. 
In this approach, often referred to as process 
mineralogy, process models are formulated using 
particle tracking methods. However, it is worth 
noting that this process model level is relatively 
less developed, and requires further attention and 
research. 

The significance of Particle-based Separation 
Models (PSMs) stems from their utilization of rich 
and quantitative data derived from process 
mineralogy investigations, which employ 
Scanning Electron Microscopes (SEMs) and X-ray 
analysis. These models possess capabilities that 
surpass conventional data-based approaches, as 
they consider material properties [16, 17]. On the 
other hand, with the increasing demand for raw 
materials and the need to optimize existing circuits, 
modeling mineral processes based on particles 
becomes ever more crucial. This is due to the 
growing complexity of mineralogy and geology in 
ores, necessitating the development of optimal 
flowsheets for efficient extraction, as well as the 
reprocessing of waste and tailings from mine and 
mineral processing plants [3, 18, 19]. Recently, 
PSMs have been employed to model various 
mineral processing operations including flotation, 
magnetic separation, and grinding [20]. The 

particle tracking approach, introduced by Polat in 
1995 used the characteristics of particles to 
investigate the kinetics of coal flotation [19]. 
Lamberg and Vianna (2007), utilized 
mineralogical data, surface composition, and 
particle size obtained from SEM-based image 
analysis systems to model the flotation process of 
lead-zinc-silver polymetallic ore [20]. Pascoe et al. 
(2007) applied a similar approach to calculate 
particle recovery in gravity separation processes 
using SEM-based image analysis data. This 
method involves classifying particles based on 
density and size and expressing recovery as the 
percentage of particles in each class that are 
recovered in the concentrate product [21]. Hannula 
et al. (2018) proposed a modification to particle 
tracking methods by incorporating neural networks 
to create generalized prediction models that 
provide continuous recovery probabilities [22]. 
Furthermore, Schach et al. (2019) developed a 
method for cassiterite ore that directly links particle 
tracking to distribution curves using Falcon 
apparatus. They utilized kernel density estimates to 
quantify continuous probabilities in the two-
dimensional sample space defined by particle 
density and size [23]. However, the method is 
limited to less than 10 variables due to 
computational complexity and data density 
limitations. Therefore, variable pre-selection is 
necessary. 

This study aimed to predict the behavior of 
magnetite minerals in the tailings of iron ore 
processing plants during the magnetic separation 
process. All the previously mentioned discussions 
focused on primary ores, which typically have 
higher grades and simpler mineralogy. However, 
reprocessing of tailings from iron processing plants 
presents challenges, due to mineralogical 
complexities and low grades. To address this, it is 
important to have a clear understanding of the 
particle recovery potential of tailings to develop 
effective approaches for revitalizing tailing piles. 
Although various experimental particle-based 
separation modeling approaches have been 
developed, there is a lack of investigation into 
predicting their performance under variable 
process conditions. This research work aims to fill 
this gap by investigating the performance 
prediction of a particle-based separation under 
different conditions (feed and operating 
conditions) for magnetic separation on a laboratory 
scale. To achieve this process, mineralogy studies 
were conducted on the feed and Davis tube test 
products of various samples. The mineralogical 
composition of iron ore tailings and Davis tube test 
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products was determined. Finally, Artificial Neural 
Networks (ANN) were used as particle-based 
modeling approaches to predict the magnetic 
separation of magnetite from the tailings of iron ore 
processing plants. 

2. Materials and Methods 
2.1. Sample characteristics 

The present study focused on the tailings of an 
iron ore processing plant located in the Kurdistan 
province of west Iran. These tailings are derived 
from the low intensity magnetic separation of 
magnetite iron ore using the dry method, and they 
accumulate in the form of piles near the processing 
plant. To obtain representative samples from the 
tailing piles, three samples were taken from 
different locations, identified as ST1, ST2, and 

ST3. Sampling points were selected based on the 
pattern of tailings accumulation, in different 
periods. Following the sampling process, several 
analyses were conducted on the three samples 
including chemical analysis through techniques 
like XRF (X-ray fluorescence) and titration, 
particle size analysis, and mineralogical studies 
utilizing XRD (X-ray diffraction), Optical Image 
Analysis (OIA), and Scanning Electron 
Microscopy (SEM). The results of the chemical 
analysis are presented in Table 1, while Figure 1 
illustrates the findings of the particle size analysis. 
Based on the particle size analysis, d80 for three 
samples ST1, ST2, and ST3 is 4.7, 5.0, and 6.7 mm, 
respectively. ST3 has a coarser particle size 
distribution than the other two samples. In this 
sample, size fraction +1 -12.5 mm has the highest 
weight percentage (approximately 77%). 

Table 1. Results of XRF of tailing samples of iron processing plant. 

Code SiO2 
% 

CaO 
% 

Fe(T) 
% 

FeO 
% 

K2O 
% 

MgO 
% 

MnO 
% 

Al2O3 
% S % TiO2 

% 
LOI 
% 

Cu 
% 

ST1 31.27 20.76 14.80 4.89 0.42 3.24 0.30 7.40 2.28 0.50 2.31 0.25 
ST2 35.02 20.37 12.26 3.68 0.83 2.76 0.29 7.99 0.37 0.47 3.60 0.10 
ST3 33.61 16.96 13.15 4.51 0.59 3.79 0.26 8.66 1.20 0.53 3.27 0.14 

 
Figure 1. Particle size distribution of the three tailing samples of the iron ore processing plant. 

Based on XRD analysis, diopside 
(CaMg(SiO3)2) has been identified as the most 
abundant phase in all of the tailing samples. Calcite 
and garnet are the next most abundant minerals 
after diopside, with their quantities being 
approximately equal across the samples. The 
mineralization and mineralogy studies of the 
primary reserve reveal that garnet-skarn and 

epidote-skarn are the two main exo-skarn zones in 
the studied area. This suggests that the abundance 
of garnet and epidote minerals in the tailings of the 
processing plant can be attributed to their 
prevalence in the primary ore. Additionally, 
changes in physicochemical conditions and the 
infiltration of low-temperature atmospheric waters 
have led to the formation of minerals like calcite 
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and quartz from the transformation of garnet and 
pyroxene into low-temperature minerals in the 
primary ore.  

Using OIA and SEM, it has been observed that 
the volumetric abundance of the two main oxide 
minerals, magnetite and hematite (as the primary 
iron minerals in the tailings), varies across the 
different size fractions of each tailing sample. In 
the larger size fractions, there are interlocks 
between iron oxides (predominantly magnetite) 

and silicate and carbonate gangues (as seen in 
Figure 2-A). Additionally, the gangues have been 
found as inclusions within iron oxides, exhibiting a 
relatively complex interlock. Analysis of the 
liberation degree of the oxide minerals in the 
tailings indicates that for fractions with a particle 
size smaller than 106 microns, the oxide metal 
minerals exhibit a degree of liberation exceeding 
85% (Figure 2-B). The results of SEM have been 
used to determine the association index (AI) [24]. 

 

 
Figure 2. A) The interlock of iron oxide minerals and silicate and carbonate minerals in dimensions of +500 

microns (BSE image), B) Liberation of iron oxide minerals in size of -106 microns (PPL image). 

2.2. Test works 

Conducting metallurgical tests is a crucial step 
in applying particle-based methods. These tests are 
specifically performed to assess the behavior of 
each tailings sample. Ideally, the data gathered 
from these tests should enable the prediction of the 
process behavior of various sections within the 
stockpiles. In this study, Davis tube tests were 
carried out to predict the grade and recovery of 
magnetite from iron ore tailings. Figure 3 provides 

an overview of the entire tests for the iron tailing 
samples. Based on the degree of liberation studies, 
as well as the difference in particle size of the 
examined samples, which were in two ranges of 0-
8 and 0-15 mm; First, all the samples were crushed 
to the dimensions of 0-2 mm. In the next step, 
chemical and mineralogical analyses have been 
performed on the samples by classifying them in 
different fractions. Davis tube tests have also been 
performed for samples with different d80. 

 

 
Figure 3. The overview of the analysis and tests performed to predict the recovery of magnetite from the iron 

tailings. 

Davis tube tests were conducted under various 
operational conditions. These tests aimed to 
investigate the impact of changes in feed and Davis 
tube device variables. The variables related to the 

feed characteristics were the magnetite grade 
(Mag.) and association index (AI). The varied 
device variables included the Magnetic Intensity 
(MI) and water Flow Rate (FR) (Table 2). It is 
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important to note that the separation time for all 
tests was set at 2 minutes, and other variables such 
as feeding and tube movement frequency remained 
constant. Following each test, the concentrate 
products and tailings were weighed and subjected 
to chemical and mineralogical analysis. 

In a geometallurgical program modeling at the 
3D level, particle information is utilized to develop 
the model. To achieve this, the XRF and 
quantitative mineralogy (XRD), SEM, and OIA at 
the particle level were employed to determine the 
chemical and mineralogical characteristics of the 
feed and products of Davis tube tests. 
Subsequently, the mineralogical modal was 
calculated for the feed, concentrate, and tailings of 
each Davis tube test using the Element-to-Mineral 
Conversion (EMC) method. The HSC chemistry 
software package provided by Outotec was utilized 
to implement the EMC method and calculate the 
mineral ratios. The EMC procedure, based on Non-
Negative Least Squares (NNLS) estimation was 
chosen and manually entered the data obtained 
from the iron tailings piles into the software. In 
addition, the association index concept has been 
used to quantify the texture data (resulting from 
SEM microscopic studies) of iron tailing samples. 
The AI calculated based on the proportion of 
valuable minerals in the particles and interfacial 
surface area between valuable minerals with 
gangues [24]. Table 2 presents the intervals of 
variable variations for these tests. The changes in 
magnetite grade (calculated by EMC) in different 
tailing samples (ST1 to ST3) are from 13.20 to 
26.00. The AI of magnetite also varies from 27.2 to 
68.2 in three samples. 

Table 2. Experimental variable variation intervals 
of Davis tube tests. 

Variables Range 
Magnetite % 13.20 – 26.00  
Association index 27.2 – 68.2 
Magnetic intensity (G) 600 – 3000 
Water flow rate (l/min) 0.2 – 0.5 

 
2.3. Modeling and prediction  

Magnetic separation is a comprehensible 
process that can be understood based on the 
behavior of individual particles in an ore. As a 
result, several experimental models have been 
developed to predict this process [7, 25, 26]. These 
models tend to be effective in predicting the 
behavior of a feed with a constant chemical 
composition and physical characteristics. 
However, when the composition of the feed 

changes, along with the corresponding alterations 
in the operating conditions required for effective 
enrichment, the existing mathematical models for 
magnetic separators become considerably 
complex. Consequently, predicting the process 
becomes challenging. The findings of current 
research conducted on the tailings of an iron ore 
processing plant indicate significant variations in 
feed composition across different areas of the 
tailing piles. Therefore, to develop a metallurgical 
model for tailings piles, it is essential to adopt an 
approach that can establish a connection between 
inputs and outputs under complex and variable 
conditions. Artificial Neural Network (ANN) is 
one such approach, capable of establishing 
meaningful communication in the presence of 
variability and complexity. Neural networks are 
designed based on biological neural networks and 
quickly adapt to process changes. ANN is 
considered a black-box approach for modeling 
real-world problems and relies on the utilization of 
training data sets (history) to predict outputs 
through appropriate weight-updating techniques. 

As stated in Table 2, the input variables in Davis 
tube tests include magnetite grade, association 
index, magnetic intensity, and water flow rate. The 
investigated output variables are the grade and 
recovery of magnetite to concentrate. The file 
containing the data (in the form of an Excel file) 
including 42 values for each variable (168 data in 
total) has been uploaded into the software R-studio. 
It should be noted that to ensure data accuracy, 
each test was performed in three repetitions and 
their average was used for modeling. Figure 4 
provides a visualization of the inputs and schematic 
image of the neural network that has been designed 
to predict the grade and recovery of magnetite from 
iron ore tailings. By carrying out different designs 
(networks with different numbers of layers and 
neurons), finally, the network includes an input 
layer, two hidden layers (with the number of 
neurons 30 and 20, respectively) and an output 
layer, considered the most optimal state. The 
network is designed with four input variables and 
two outputs (output layer) and consists of two 
hidden layers with 30 neurons in the initial hidden 
layer and 20 neurons in the second hidden layer, as 
well as 2 biases. In the designed network (Figure 
4), feedforward algorithms with 10,000 training 
iterations were used to train the network. The 
learning rate was set at 0.0001, with an error target 
of 0.001. The Mean Square Error (MSE) method, 
as described by Equation 1, was employed to 
calculate the error. To determine the type of 
activation functions in the hidden layers and output 
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layer, the performance of Rectified Linear Unit 
(ReLU), hyperbolic, and sigmoid, functions were 
checked by trial-and-error method. Based on the 
measured values for min.val.loss, min.loss and 
MSE function in the first hidden layer ReLU 
function (Equation 2), for the second hidden layer 
tanh (Equation 3) and the sigmoid function for the 
output layer (Equation 4) have provided the most 
suitable output. 

ܧܵܯ =
1
ܰ

Σ(ݕො −  ଶ (1)(ݕ

(ݔ)݂ = max  (0,  (2)  (ݔ

(ݔ)݂ =
݁௫ − ݁ି௫

݁௫ + ݁ି௫  (3) 

(ݔ)݂ =
1

1 + ݁ି௫ (4) 

In Equations 1 to 4, the variable "N" represents 
the number of rounds, "ŷ" stands for the predicted 
value, "y" represents the real value, and "x" denotes 
the input variables. Out of the 42 tests input to the 
neural network, 90% of the data (which is the data 
from 38 tests) was selected as the training data 
using the sample function either randomly or by 
default. The remaining 10% of the data (data from 
4 tests) did not play a role in training the network 
but were chosen as the best data for the network. 
The training process of the proposed network was 
halted after nearly 600 training sessions. Figure 5 
demonstrates the performance of the proposed 
network in terms of the convergence of the Mean 
Square Error (MSE) for the original training data 
and validation data. In this case, the network 
calculated the values of min.val.loss, min.loss, and 
MSE as 0.005, 0.008, and 5.36, respectively. 

 
Figure 4. Schematic diagram of ANN for magnetic separation of magnetite from iron processing tailings.  
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Figure 5. Checking the performance of the proposed neural network based on the convergence of the minimum 

error value A) random validation data, B) main train data. 

3. Results and Discussion 
3.1. Process mineralogy studies 

Davis tube tests were conducted to investigate 
the behavior and make predictions about the grade 
and recovery of magnetite from different tailings 
piles in iron ore processing plants (as described in 
section 2-2). These tests involved performing 
chemical analysis and mineralogical studies on the 
concentrate and tailings. Through these studies, the 
grade and texture characteristics of magnetite were 
determined for each test. The grade of magnetite 
was calculated using the EMC method [24]. It is 
evident that as the liberation degree of magnetite 
increased, its grade in the concentrate also 
increased under a constant magnetic field intensity. 
Microscopic studies revealed that as the d80 
(particle size) of the concentrate decreased, the 
interlocking between magnetite and gangue 
minerals decreased. It should be noted that the 
interlock of magnetite in the concentrate was 
mainly associated with hematite. The presence of 
hematite, resulting from the martitization 
phenomenon of magnetite (found at the edges of 
magnetite particles), contributed to the recovery of 
hematite in the concentrate. Figure 6, showing 
polished sections, indicates that hematite formed 
through the martitization of magnetite accounted 
for approximately 10-15 percent of the sample's 
volume when the size exceeded 500 microns. The 
phenomenon of martitization of magnetite to 
hematite has been observed at fines of even less 
than 25 microns. 

Oxide-hydroxide types of iron such as goethite 
and, to a lesser extent, earthy hematite and 
limonite, can be found in magnetic concentrates. 
These metal minerals exist primarily in an 
interlocked form. As a result, in coarser grain sizes, 
the interaction between hematite, other iron-
bearing minerals, and magnetite leads to their 

recovery into the concentrate. In smaller particle 
sizes (less than 106 microns); the majority of the 
concentrate consists of particles of metal minerals, 
with magnetite being the predominant component. 
Additionally, crystalline and earthy forms of 
hematite, goethite, pyrite, and chalcopyrite are 
other metallic minerals present. Most chalcopyrite 
crystals are interlocked within the non-metallic 
matrix, and less frequently they are interlocked 
with magnetite (as shown in Figure 7). 

In a constant magnetic intensity, the grade of 
magnetite in the tailings has been observed to 
increase as the grade of the feed increases. In the 
tailings of the Davis tube test, magnetite is found 
in both intact and martitized crystal forms. 
Additionally, there are occurrences of magnetite 
being replaced by hematite and goethite. In some 
cases, the edges of magnetite crystals may also be 
replaced by titanium oxide compounds, 
specifically rutile-anatase. Consequently, the 
presence of magnetite in the non-magnetic portion 
can be attributed to the martitization of magnetite 
margins and the replacement of titanium oxide 
compounds in the magnetite margins (as shown in 
Figure 8). 

 
Figure 6. Recovery of hematite mineral to 

concentrate due to martitization of magnetite.  
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Figure 7. Recovery of hematite, pyrite, chalcopyrite, 
and goethite to concentrate due to interlocking with 

magnetite. 

Figure 8. Presence of the magnetite, hematite, pyrite, 
chalcopyrite, and goethite in the tailings of Davis 

tube. 

3.2. Predicting the grade and recovery of 
magnetite 

To predict the grade and recovery of magnetite 
from tailings in iron ore processing plants, the first 
step involves determining the statistical parameters 

of the data obtained from Davis tube tests. The 
results of the statistical analysis of the input 
variables and outputs are presented in Table 3, 
which includes information such as the average, 
maximum, minimum, and standard deviation for 
the variables. 

Table 3. Analysis of input data and output variables. 
Variables Mean Minimum Maximum Std. Dev. 

Inputs 

Magnetite 18.68 13.20 26.00 3.37 
Association index 51.49 27.20 68.20 10.91 
Magnetic intensity 1361.90 600.00 3000.00 697.37 
Water flow rate 0.35 0.20 0.50 0.15 

Outputs Magnetite  46.68 34.90 62.80 7.77 
Recovery 43.90 31.50 57.50 6.61 

 
The grade and recovery of magnetite from the 

tailings of iron ore processing plants were 
predicted using an ANN modeled with the feed-
forward algorithm. Figure 4 illustrates the 
architecture of the designed network. In this 
network, the input variables (Mag., AI, MI, and 
FR) labeled as Xi, are multiplied by the previously 
calculated weights (Wji) for each node in the 
hidden layer. Subsequently, the sum of all Xi × Wji 
is added to the bias value (bji), and finally, the 
operation is conducted using the activation 
function. Equations 5 and 6 provide a mathematical 
representation of these operations. 

௝ܪ = ݂ ቀ෍ ௝ܹ௜ × ௜ܺ + ௝ܾ௜ቁ (5) 

ܻ = ቀ෍ ௝ܹ × ℎ௝ + ሖܾ ቁ (6) 

In Equations 5 and 6, the variables and symbols 
have specific meanings: Hj represents network 
nodes, Wji denotes the weight of the parameter, Xi 
refers to the input parameter, bji represents the 
bias, Y represents the output, and Wj and bʹ are sets 
of weights and bias values, respectively. 

The selection of the optimal network geometry 
is based on two criteria: the highest R2 value 
(coefficient of determination) and the lowest MSE 
value (mean squared error). The coefficient value 
is presented in Figure 9-A for the grade of 
magnetite. According to the figure, the neural 
network achieved good performance in predicting 
the grade of magnetite from iron processing 
tailings, with an R2 value of 0.95 (MSE = 2.81). 
Figure 9-B presents the predicted results for 
magnetite recovery from iron processing tailings. 
The R2 value, which indicates the goodness of fit 
between the predicted and measured data, is 
reported to be higher than 0.86 for magnetite 
recovery (MSE=6.40). 

3.3. Effect of feed variables on the prediction of 
magnetite and recovery 
A) Grade of magnetite 

The influential variables related to the feed that 
impact the prediction of magnetite grade and 
recovery include the grade of magnetite in the feed 
and the association index. Figure 10-A illustrates 
the relationship between the magnetite grade in the 
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concentrate, as predicted by the neural network, 
and the grade of magnetite in the feed. According 
to the findings, the grade of magnetite in the feed 
exhibits a direct proportionality to its grade in the 
concentrate. For every unit, increase in the grade of 
feed magnetite, there is an expected increase of 
0.847 units in the amount of magnetite present in 

the concentrate. Figure 10-B illustrates the 
relationship between magnetite recovery, as 
predicted by the neural network, and the grade of 
magnetite in the feed. For every unit increase in the 
grade of feed magnetite, there is an expected 
decrease of 1.68 units in the amount of magnetite 
recovery. 

 
Figure 9. The relationship between the values predicted by the neural network, with the measured values for A) 

magnetite grade and B) magnetite recovery 

 
Figure 10. Relationship between A) magnetite grade in concentrate (predicted by neural network) and B) 

magnetite recovery (predicted by neural network) with feed grade. 

B) Association index 

Figure 11-A illustrates the correlation between 
the magnetite grade in the concentrate, as predicted 
by the neural network, and the association index of 
magnetite. The prediction made by the neural 
network suggests an inverse association between 
the magnetite grade and the mineral's association 
index in the feed. Specifically, as the association 

index of magnetite increases in the feed, the 
magnetite grade in the concentrate is projected to 
decrease with a factor of -0.297. Figure 11-B 
displays the correlation between the predicted 
magnetite recovery (determined by the neural 
network) and the association index of magnetite in 
the feed. The association index and recovery 
exhibit an inverse relationship, with a coefficient of 
approximately -0.173. 
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Figure 11. The relationship between the A) magnetite grade in the concentrate (predicted by the neural network) 
and B) recovery (predicted by the neural network) with magnetite association index in the feed.3-4 Validation of 

model 

To validate the proposed model, magnetic 
separation, tests were performed by dry and wet 
methods on different samples of iron ore tailings. 

In each test, a sample weighing 50 kg was fed to 
the magnetic separator with a speed drum 50 (rpm) 
and the magnetic intensity mentioned in Table 4. 

Table 4. Condition of magnetic separation tests. 
Test 
No. 

d80 feed 
(mm) 

Fe (T) 
% 

Magnetic 
intensity (G) 

Water flow 
rate (l/min) 

Speed of 
drum (rpm) 

1 6.5 12.59 2500 Dry 35 
2 2.0 14.05 1800 0.5 50 
3 0.250 17.83 900 0.5 50 

 
The results of magnetic separation tests are 

given in Table 5. In the magnetic separation 
performed with a magnetic intensity of 2500 G, 
approximately 22% by weight of the input load 
(with d80 = 6.5 mm) was transferred to the 
concentrated product (magnetic), and more than 
77% by weight was transferred to the tailings (non-
magnetic part). By decreasing the particle size to 
d80 = 2 mm and decreasing the magnetic intensity 
to 1800 G about 20.50% by weight of the feed with 
a grade of 38% of Fe (T) has been recovered into 
concentrate and about 80% by weight with a grade 
of 9% has been recovered into tailings. A magnetic 
separation test of 900 G has been performed for 

feed with d80 = 0.250 mm. According to Table 5, 
during this test, 18.90% by weight of the feed was 
transferred to the concentrate (or magnetic 
product) with a grade of 46.92% and 81% of it was 
transferred to the tailings with a grade of 9.42%. 
Using the EMC method; the amount of magnetite 
in the feed and products of each test was measured, 
the results are shown in Table 5. In the previous 
section, it was stated that with the increase of one 
unit in the magnetite grade of feed, its grade in the 
concentrate increases by 0.847 units. Examining 
the magnetite grade in the concentrate of magnetic 
tests (Figure 12) confirms this result. 

 

 

 

Table 5. Results of magnetic separation tests. 
Test 
No.  Weight 

(%) 
SiO2 

(%) 
CaO 
(%) 

Fe (T) 
(%) 

K2O 
(%) 

MgO 
(%) 

MnO 
(%) 

S 
(%) 

Cu 
(%) 

Magnetite 
% 

1 Feed 100.00 36.01 20.31 17.83 0.59 4.44 0.29   0.14 10.65 
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Con. 33.47 28.19 14.06 31.05 0.30 4.52 0.25 - 0.15 13.60 
Tail 66.53 39.95 23.46 11.18 0.73 4.40 0.31 - 0.13 9.10 

2 
Feed 100.00 31.15 16.85 19.65 0.43 5.58 0.25 1.47 0.28 11.58 
Con. 23.90 16.55 9.09 42.01 0.19 3.45 0.17 1.35 0.14 22.90 
Tail 76.10 35.73 19.29 12.63 0.50 6.25 0.27 1.51 0.33 8.00 

3 
Feed 100.00 33.48 16.95 13.54 0.62 3.97 0.26 0.80 0.14 13.10 
Con. 13.40 11.64 5.97 46.61 0.16 2.45 0.14 0.25 0.08 35.78 
Tail 86.60 36.86 18.65 8.42 0.69 4.20 0.28 0.88 0.15 9.60 

 
Figure 12. Changes in grade of magnetite in 
concentrate with changes in magnetite feed. 

The concentrate and tailings of the magnetic 
separation tests were classified into different size 
fractions, and optical microscopic studies were 
performed on them. Based on the results, in the 
magnetic concentrate for the feed with d80 = 0.250 
mm, where the magnetite AI was lower, the 
recovery of this mineral in the concentrate was 
higher. In such a way that in all fractions, magnetite 
abundance percentage is more than 40 percent by 
volume (Figure 13-A). But for the sample with d80 
= 6.5 mm, as seen in Figure 13-B, the interlocking 
of magnetite with hematite, goethite, pyrite and 
chalcopyrite as well as gangue minerals causes the 
recovery of these minerals to magnetic concentrate 
(higher AI – decreasing of magnetite recovery). 

 
Figure 13. Image of concentrate of magnetic separation for A) feed with d80 = 6.5 mm and B) feed with d80 = 

0.250. mm 

4. Conclusions 

Various empirical models have been developed 
to simulate magnetic separation, which is a 
commonly used method for processing iron ores. 

These models are built based on magnetic 
separation tests carried out under different 
operating conditions. They are useful for predicting 
the behavior of feed with consistent chemical 
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composition and physical characteristics. 
However, when the feed composition varies, the 
existing mathematical models for magnetic 
separators become overly complex and predicting 
the process becomes highly challenging. The 
emergence of process mineralogy, along with the 
utilization of modern analysis techniques like SEM 
and XRD, has provided detailed particle-level data 
in the processing of mineral materials. Despite this 
wealth of information, current process models do 
not fully leverage these data, limiting the potential 
usefulness of this extensive dataset. To address this 
limitation, the present research aims to utilize 
process mineralogy data at the particle level to 
model magnetic separation and predict the grade 
and recovery of valuable mineral magnetite from 
iron ore processing plant tailings. By adopting a 
particle-based approach in the modeling of 
magnetic separation, the predictions can 
accommodate variable conditions found in tailings 
piles, which typically exhibit a wide range of 
mineralogical diversity. 

Application of the neural network approach in 
modeling and predicting magnetite reprocessing 
from tailing piles of iron processing plants has 
proven effective in forecasting magnetite grade and 
recovery. The correlation coefficients between the 
measured and predicted data for magnetite grade 
and recovery were calculated as 0.95 and 0.86, 
respectively. Among the various variables 
considered, the magnetite grade of the feed was 
found to be the most influential in determining the 
predicted grade and recovery of magnetite by the 
neural network. For each unit increase in magnetite 
grade in the feed, the magnetite grade in the 
concentrate increased by 0.847 units, while the 
recovery decreased by 1.68 units. This suggests 
that the magnetite grade in the feed has a larger 
impact on the recovery than its effect on the 
concentrate's magnetite grade. This phenomenon 
can be attributed to other tailings texture variables, 
such as the association index, degree of liberation, 
and mineral interlocking, which affect magnetite 
recovery. Additionally, the association index of the 
studied variable exhibited a reverse relationship 
with the grade of magnetite in the concentrate and 
recovery. According to the output of the neural 
network, the predicted values for the grade and 
recovery of magnetite were found to vary with 
changes in the tailing piles such as alterations in the 
sampling location of the tailings and subsequently, 
modifications in the feed variables. Given these 
findings, it is possible to perform spatial modeling 
and develop a tailing piles blending plan based on 

the predicted results generated by the neural 
network. 
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 يفرآور  يهاباطله کارخانه   يبافت دپوها  یدگیچیو پ  یشناسی کان   يهاي ری درگ  ییهدف از مقاله حاضر شناسا
باطله  تیمگنت  یابیباز  يبر ذرات برا  یمبتن  ینیبش یمدل پ  کیارائه    يسنگ آهن در راستا   ن یها است. بداز 

هر نمونه   يبرداشت شد. بر رو  هنسنگ آ  يکارخانه فرآور  کیباطله    يمنظور سه نمونه از نقاط مختلف دپوها
د  يهاش یآزما شرا  سی ویلوله  کان   یاتیعمل   طیتحت  مطالعات  انجام شد.    ن ییتع   يبرا  ندیفرآ  یشناسیمختلف 

  ي ) براANN( یمصنوع  یمدل شبکه عصب ک یانجام شد.  شی هر آزما  يهاخوراك و محصول  یشناسی مودال کان
  ت، یمگنت  اری) مورد استفاده قرار گرفت. ع یشناسی مودال کان  يهاه(بر اساس داد  تیمگنت  یابیو باز  اریع   ینیبش یپ

شده،    یطراح  یمصنوع   یشبکه عصب  يهاي آب، ورود  یو دب  یسیمغناط  دانیشاخص ارتباط خوراك، شدت م
نتا باز  اریع   ی همبستگ  بیضرا  ج،یبودند. بر اساس  ترت   تی مگنت  یابیو  ع   نییتع  0/ 86و    954/0  بیبه   ار یشد. 
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