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Shear Wave Slowness Log (DTSM) is one of the most important petrophysical logs
applicable for studying reservoirs, especially geomechanical studying of the oil and
gas fields. However, lack of this parameter in wellbore logging can import great
sources of uncertainty into geomechanical studies. This study aims to provide
solutions for decreasing the uncertainty of geomechanical models with estimation of
the DTSM log using the high accurate deep machine learning models. The main idea
is using data from offset fields for extending the range of training data and improving
the estimation ability and generalizability of machine learning models. For this
purpose, petrophysical data from 8 wells of 4 Iranian oil fields were collected. In the
first stage, data preprocessing was performed for reducing the effects of wrong data,
missing value, noises, and outliers. Then, machine learning (regression learning-
based and deep neural network-based) and analytical models implemented for
estimating DTSM. The results indicated that the Gated Recurrent Unit (GRU) model
with the values of 1.9 and 2.14 for RMSE and 0.99 for R-square had the most exact
answers, for training and test data, respectively. Meanwhile, evaluation of the
accuracy of the models on the validation well data indicated that GRU model with the
values of 2.43 and 0.93 had been the most accurate model for RMSE and R-square,
respectively. Accordingly, using a multi-field comprehensive data bank and applying
machine learning methods are strongly recommended to estimate the DTSM, for the
cases where limited offset data is available.

1. Introduction

Shear Wave Slowness Log (DTSM) is one of

log exists, geo-mechanical estimations and

the key elements, which is specifically important in
geo-mechanical studies of hydrocarbon reservoirs.
In addition to its high importance, this log is
collected in a limited number of hydrocarbon well
fields, especially in reservoirs section, due to the
exorbitant expenses of this measurement [1, 2, 3].
Shear wear slowness log (or in the form of shear
wave velocity) is used to calculate rock strength
and further for other geo-mechanical parameters.
Accordingly, in a field where only a few numbers
of wells and in a limited part of the reservoirs, this
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calculations at other wells lacking this log and
therefore developing three-dimensional models of
the reservoirs are faced with high uncertainty. To
face this challenge, several analytical equations
have been developed during the last decades due to
the high correlation between the shear wave
slowness log and compression wave slowness log,
and some analytical correlations have been
developed between these two logs. Models
developed by Pickett (1963), Castagna et al.
(1993), and Brocher (2005) can be pointed out as
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the commonly applied models in previous
literature. On the other hand, given the importance
of this parameter, extensive studies have been
conducted during the last decades to study and
investigate the relation between shear wave
velocity and other petro-physical logs such as shear
wave ( 1, ), Gamma Ray (GR), neutron porosity
(NPHI), and bulk density (RHOB) using machine
learning methods [2,3,7].

One of the commonly applied and simplest
methods which has attracted much attention is to
use single and multivariate regressions [1,7-12].
Meanwhile, the support vector regression method
is also applied in different studies, and it has
acceptable results compared to other intelligent
methods [13,14,15]. However, a support vector
machine algorithm with least squares regular and
hybrid regression has been introduced as a
powerful algorithm in this regard [2,3,7,9]. One of
the most applied machine learning methods is the
artificial neural network which has various
applications in developing drilling penetration rate
and torque [16,17,18]. One of the applications of
this algorithm, which has been used both in the
regular and hybrid forms, has been shear wave
slowness (velocity) estimation
[2,7,9,13,14,15,19,20]. Using compatible regular
and hybrid fuzzy inference systems [18], and
adaptive neuro-fuzzy inference system (ANFIS)
with optimization algorithms have attracted the
attention of the researchers for the estimation of the
shear wave slowness from other petro-physical
logs [14,15].

Meanwhile, the Multi-layer Extreme Learning
Method (MELM) was compared for the first time
as a simple form or in combination with other
optimization algorithms with the performance of
LSSVM and CNN models in a study by Mehrad et
al. (2022) and Rajabi et al. (2022), which indicated
that this model has good potential to be applied in
this issue. In recent years, using deep learning
networks has a special position in data-based
studies due to its high strength in extracting
complex relations dominated among the
parameters. The application of LSTM and CNN
deep learning networks has been assessed to
estimate the shear wave slowness, which has more
successful performance in these studies compared
to other machine learning models [3,23-26].
However, as the application of these models is
novel, more assessment in different studies and
based on different data banks is needed.
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In the most conducted studies, the dominant
strategy has been the assessment of machine
learning algorithms in the estimation capability of
the shear wave slowness or velocity from other
petrophysical logs, which has been with data banks
including single field or, ultimately, double field
data. In the real situation, when a limited number
of the well have a shear wave slowness log,
considering the heterogeneity of the carbonate
formations at the parts of a field, the challenge of
not covering the range of training algorithms to
estimate shear wave slowness at other wells is
created. Therefore, the basic question can be
proposed in this way; how to overcome the
limitation of training machine learning algorithms
with limited data from each field? In this study, as
an innovative approach, a multi-field data bank has
been used to develop a high accurate model with a
wide range of petrophysical parameters to estimate
shear wave slowness. Also, in machine learning
models, for the firs time in literature of DTSM
estimation, the capability of gated recurrent unit
(GRU) model as a deep learning model has been
evaluated and compared with wide range of most
used regression learning-based (SVR, GPR, BGT),
deep neural network-based (ANN, RNN, CNN,
and LSTM), and analytical models.

2. Methodology

This study aims to provide an innovative
solution to estimate the DTSM log using a data
bank made up of petro-physical data of carbonate
formations of several oil fields. For this purpose, as
shown in Figure 1, below steps are conducted for
doing this study:

e Step 1: data collecting including 23069 data
points from 8§ drilled well in 4 Iran’s southwest
oil fields including South Azadegan (2 wells),
Ahvaz (3 wells), Marun (2 wells), and Abteimour
(1 well) oil fields.

e Step 2: Performing data preprocessing including
data cleaning (rang check, missing value
detection, noise reduction, and outlier
elimination) and data preparation (normalization,
partitioning, and feature selection).

e Step 3: Developing DTSM estimator models
using machine learning algorithms based on the
modeling data (training and testing).

e Step 4: Validation of analytical and developed
machine learning models of DTSM estimation at
the unseen data (validation data).
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Figure 1. The workflow followed in this research work.

2.1. Data description

In this study, petro-physical information from 8
drilled well in 4 old fields southwest of Iran was
collected to cover a broad range of data to train
machine learning models in DTSM estimation.
Wells were named respectively as AZNa, and
AZNDb at Azadegan oil field, AHZa, AHZb, and
AHZc at Ahvaz oil field, MRNa and MRNb at
Marun oil field, ABTa at Abteimur oil field. Data
collected includes full set petro-physical logs,
including Gamma ray (CGR), Resistivity (RT),
Photo electric (PEF), Neutron porosity (NPHI),
Density (RHOB), Compressive wave slowness
(DTCO), and Shear wave slowness (DTSM). In
Figure 2, the profile of petro-physical logs changes
is indicated in terms of depth at Well AZNb studied
zone. The profile of petro-physical logs, as well as
statistical  indicators extracted from total
information of all studied wells, are provided in
Appendix A.

2.2. Data pre-processing

The pre-processing operation, including data
clearance and preparation, is one of the main stages
in the studies and modeling based on machine
learning. In this study, the pre-processing data
stage has been conducted to decrease the effect of
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adverse factors on the final results of estimator
models, as well as prepare a data bank with the
required features to develop intelligent models.
This process is further explained.

2.2.1. Data cleaning

In this work, we used petro-physical logs. The
main problems of these data include wrong data,
missing values, and noise and outlier existence.
Meanwhile, the existence of at least 5% noise in
real data is an inevitable problem [27,28]. Data
having noise leads to inappropriate function of the
machine learning due to extraction of wrong rules
from the data, and therefore it causes problems in
the generalizability of these models to predict new
data [29,30]. In addition to noise, outlier data often
generates a certain situation in the data that can
considerably affect the results of intelligent
models. Outliers are data whose amounts are not
justifiable compared to other data. An appropriate
strategy for these kinds of data can be their removal
or replacement, depending on the level of
sensitivity and complexity of the problem.
However, generally, the management of these data
after their detection has a high priority [31].
Accordingly, despite mentioned influential factors
on the quality of the applied data, clearance is
necessary at the first stage.
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Figure 2. Profile of petrophysical logs in studied interval Well AZN-b.

2.2.2. Data preparation

One of the basic requirements for modeling
stages with machine learning algorithms after data
clearance is to create an appropriate database. For
this purpose, normalization, partitioning, and
superior feature selection operations were
conducted in this stage on petro-physical data
cleaned during the data preparation process.
Further, each stage is explained in detail.

2.2.2.1. Data normalization

Data normalization is one of the actions to
prepare data, which is very important for the
machine learning step. In this process, all
parameters are mapped using Equation 1 at the
range of [-1, 1] to eliminate the data scaling effect.
In this way, the manner of changes and binary and

multilateral associations of the parameters
becomes possible.
; Xi — Xomi
X‘=2<—‘ Lt )—1 (1)
" Xmax - Xmin

In this equation, Xni is the normalized amount
of i, X; is the amount of i™ parameter, X,,,;, and
Xmax are maximum and minimum amounts of
parameter X at the whole data, respectively.

2.2.2.2. Data partitioning

The main scenario of this study is to estimate
the DTSM log in a target field using measured
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information at the same field in addition to
information obtained from a given log at the
surrounding fields with identical formations.
Therefore, as is indicated in the flowchart of Figure
1, the data partitioning strategy after normalization
of the whole data is data partitioning in two
modeling sections (for training and testing the
models) and verification. Meanwhile, to avoid the
effect of random data selection on the results of the
training and testing of intelligent models, the k-fold
cross-validation method was used in all models.

2.2.2.3. Feature selection

Feature selection or decreasing problem
dimensions is one of the stages that usually is
applied in developing intelligent models based on
machine learning. Although there is not any
restriction for the number of inputs in machine
learning methods, it is always specified in several
studies that the accuracy of the model is not a
function of the number of the inputs, and the errors
of estimator models do not decrease necessarily
with an increase in the number of inputs. Rather for
an arrangement of parameters with the most
influence, the lowest model error is obtained, and
with the addition of other parameters, no
significant change has occurred in the accuracy of
the model. Generally, two groups of methods,
including Wrapper and Filter, are used to select and
identify these parameters [3,18,32-36]. In most of
these studies, it is proposed that the group of
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Wrapper methods is used for the recognition of the
superior features. Moreover, we should keep in
mind that the role of co-linearity in selecting
influential factors is very strong. Therefore,
investigating the co-linearity of data using cross-
plot graphs and the amount of -correlation
coefficient through the NSGA-II method, which is
the Wrapper method, has been used to select
superior features in developing DTSM estimator
models.

2.3. Estimating DTSM using machine learning
models

In order to development of high accurate DTSM
model, different machine learning models have
been used including regression learning-based
models (Bootstrap aggregating (BGT), Support
Vector Regression (SVR), and Gaussian
Processing Regression (GPR)) and deep neural
network-based models (Artificial neural network
(ANN), Convolutional Neural Network (CNN),
Recurrent Neural Network (RNN), Long Short
Term Memory (LSTM), and Gradient Recurrent
Unit (GRU).

Journal of Mining & Environment, Vol. 16, No. 3, 2025

2.3.1. Regression learning-based models
2.3.1.1. Bootstrap aggregating

Bootstrap aggregating or bagging tree (BGT) is
one of machine learning model based on
aggregating learning ensemble models in which
aggregative intelligence is used, and its results are
better than the best results of a given model
because it works based on the aggregation of the
comments and results of the models. In these
algorithms, there are two strategies to use
aggregated intelligence. In the first strategy, some
models are trained for a data set, and results
obtained from different predictors will be voted on.
In the second strategy, some identical predictors
with different data sets are trained with sampling
using bootstrap, and its results are usually
aggregated [36]. In Figure 3, modeling with
bagging is provided. As it can be observed, in this
method, unlike boosting, the accuracy of the
second predictor is not dependent at all on the
accuracy of the first predictor; likewise, up to the
end and they are completely independent of each
other. An important point, in this case, is the
selection of the number of decision trees in each
predictor and leaf, which needs optimization. In
this study, this kind of bagging is used.

Train set #1 Predictor #1

K-fold Cross

Predicted

validation Train set #1 Predictor #2 Target
R Train set #1 Predictor #3
(X X ) (X X}

Predictor #n

) \ )

v
Bootstrap

Y
Aggregating

Figure 3. The structure of bootstrap aggregating (Bagging tree) model.

2.3.1.2. Support vector regression

Support Vector Regression (SVR) is one of the
supervised methods of machine learning which is
used to solve regression problems [37]. This
method has good performance for the management
of high-dimensional data to decrease the model
complexity and the prediction error. Then this
algorithm has been applied broadly as a tool to
understand the effects of wvarious influential
parameters on the target parameter. This method

967

solves the problem using different Kernel
functions, which include the linear, RBF,
Gaussian, and Polynomial models. The theory of
this method is explained in detail by Awad and
Kanna (2015) and Zhang and O’Donnell (2020).

2.3.1.3. Gaussian processing regression

Gaussian Processing Regression (GPR) is one
of the most powerful machine learning algorithms,
which, unlike many common machine learning
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models, rely on a few parameters for prediction. As
GPR is non-parametric, it can be efficiently applied
to solve a broad range of supervised learning
problems even when little data is available.
Gaussian processing regression can be considered
as kernelized Bayesian linear regression, in which,
kernel parameterization is determined by selecting
kernel function as well as data used for the
prediction. Different kernel parameters are used in
this model, which includes Squared Exponential,
Radial Basis Function, Rational Quadratic, and
Matern kernel function. Kuss (2006) provided an
exact description of these algorithms.

2.3.2. Deep neural network-based models
2.3.2.1. Artificial Neural Network

Artificial neural network is another widely used
supervised machine learning method that has been
significantly used in fields related to the oil, gas
and geothermal wells drilling, especially in the
estimating the rate of penetration (ROP) [18,36]. In
general, the types of artificial neural networks can
be divided in Radial Basis Function (RBF), and
Multi-Layer Perceptron (MLP). The structure of a
MLP neural network includes an input layer, a
number of hidden layers, and an output layer
[41,42]. The objective function in this model is the
model error, which is minimized using a learning
algorithm during the feed forward back
propagation (FFBP) process. According to the
complexity of the problem, the number of hidden
layers and the number of neurons in each layer
increases. Accordingly, the MLP networks with
more than one hidden layer can be called a deep
MLP network. However, achieving the optimal
number of layers and the number of neurons in
each layer requires testing different models by trial
and error on the problem dataset [42].

2.3.2.2. Convolutional neural network

The Convolutional Neural Network (CNN)
model is one of the developed structures of the
deep learning network [43]. Recently, this model
has been used successfully in different studies on
the topic of estimating shear wave velocity and
estimation of drilling rate of penetration [3,22,33].
CNN model is considered as a deep feed-forward
network structure, which has strong ability
compared to the interconnected layer networks.
Due to the good performance of CNN, it is used
broadly in the issues such as image classification,
object detection, velocity detection, sonic
detection, vehicle detection, facial expressions
detection, and other issues [44]. The general
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structure of a CNN is made up of an input layer,
several parallel filters, a pooling layer, and a dense
layer. Indolia et al. (2018) provided a complete
explanation of how this model works. In a CNN, in
addition to the adjustment of the weights and biases
that are performed automatically and during the
feed-forward back propagation process, parameters
related to the network should be adjusted too.
Therefore, one of the disadvantages of this method
is the existence of a large number of adjustable
parameters.

2.3.2.3. Recurrent Neural Network model

The Recurrent Neural Network (RNN) is a
special type of artificial neural network that allows
the continuation of information related to past
knowledge wusing a special type of loop
architecture. These types of networks are used in
many fields for data with sequences, such as
predicting the next word of a sentence [45]. In a
RNN, unlike the traditional feed forward neural
network, there are feedback connections that allow
the RNN to model the effects of previous parts of
the sequence on the next part of the sequence,
which is a very important feature in modeling
sequences [46].

2.3.2.4 Long Short Term Memory Model

The concept of Long short-Term Memory
(LSTM) was introduced in 1997 [47]. LSTM is
basically a type of RNN architecture that is
commonly used in various applications and
products such as speech recognition systems. A
typical LSTM network has something called a
memory cell. The memory cell can retain some
information about the sequence, which allows it to
detect important features at the beginning of the
sequence that may affect later parts of the
sequence, rather than calculating the output based
only on the previous time step. The main
components of LSTM are its gates. There are three
gates in LSTM including the input gate, forgetting
gate and output gate. The input gate controls the
entry of new information into the cell. The
forgetting gate controls the content of the memory,
that is, the forgetting gate decides whether we want
to forget some information in order to store new
information. The output gate controls the time of
using the information in the output of the cell [45].

2.3.2.5. Gated recurrent unit model

Gated recurrent Units (GRUs) are a gating
mechanism  inrecurrent neural  networks,
introduced in 2014 [48]. GRU model is a simplified
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and newer version of RNN and LSTM, which
offers an improvement over the other two. Just like
LSTM, GRU uses gates to control the flow of
information. A GRU model composed of two gates
and one candidate-state network, namely: reset
gate, update gate, and candidate-state [49].These
gates relatively new, as compared to LSTM. This
is the reason they offer some improvement over
LSTM and have simpler architecture. The update
gate used by the GRU is equivalent to the forget
and input gates in the LSTM model combined as a
single network. It is used to determine what
information to remove or add. The reset gate is
used to determine how much information from the
previous state to forget. In contrast to the LSTM,
there is no cell state in the GRU network. In other
words, the cell state can be seen as the previous
hidden state. The network parameters of the GRU
are less than those in LSTM and hence the network
requires less training time to learn about
dependencies among the time-step observations or
sequence data [49].

2.4. Verification of the developed models

At the final stage, the DTSM is estimated in the
validation well to assess the generalizability of the
developed intelligent models based on a multi-field
data bank. The accuracy of the trained model based
on the extensive range of the data in DTSM log
estimation in an unobserved well is an indication of
the high generalizability of this model. Meanwhile,
in this stage, the results of applying several
empirical models of DTSM estimation have been
also compared with the results of the machine
learning models.

3. Results and Discussion
3.1. Data preprocessing analysis
3.1.1. Data cleaning

Due to the clearance of the petro-physical data,
firstly, depth ranges having wrong amounts and
missing values (in every parameter) are detected

969

Journal of Mining & Environment, Vol. 16, No. 3, 2025

and deleted from the data. Then the operation of
removing noise from the data using a one-
dimensional median filtering smoothing algorithm
was conducted. The one-dimensional median
filtering method is a well-known method in
processing the image against “Random,”
“Gaussian,” and “Salt and Pepper” noises. This
method is provided by Gonzalez and Wood (2008)
in detail. Recently this method has been applied
successfully in studies about artificial intelligence
and using petro-physical and drilling logs
[18,32,33]. The comparison of row and noise
removed petro-physical logs at the studied zone of
Well AZN-b has been provided in Figure 4 (the
plot of other wells has been provided in Appendix
B). As can be seen in this figure, using a one-
dimensional median filter well preserved the
general pattern and trend of information.
Accordingly, the PEF log has been most influenced
by noise. It is while RHOB log has not been much
affected by the noise. It is worth mentioning that
DTSM, DTCO, and NPHI logs have sudden picks,
which are resulted from the outlier. Detecting and
management of the outliers after applying a
smoothing filter is very important. Different
methods have been provided by researchers for this
purpose. Tukey’s method is one of the commonly
applied methods for detecting outliers from petro-
physical logs [18,36]. Therefore, at the last stage of
this phase, outlier data were detected and removed
using Turkey’s method, and gap filling with
nearest value method were used. The DTSM log
range as a sample log after applying one-
dimensional filtering for the different studied well
zones has been provided in Figure 5. As it can be
seen in Figure 5a, the DTSM log at well AZN-a,
well MRN-b, and AZN-b have outliers in some
zones. Sudden picks in Figure 4 indicated this fact
too. Therefore, at this stage, detected outliers were
removed, and its results can be observed in Figure
5b. Final range of cleaned logs is provided
separately for each studied well in Appendix B.
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Figure 5. DTSM log quality in studied wells; a) after denoising; b) after outlier elimination and gap

3.1.2. Data preparation
3.1.2.1. Data normalization

All information after clearance has been
normalized using Eq. 1. At this stage, as can be
seen in Figure 6, the range of each log based on its
maximum and minimum value at [-1,1] is mapped.
For example, the real range for the NPHI log after
clearance shown at different wells has been shown

filling.

970

in Figure 6a. The range of this log with
normalization mapping between -1 and 1 has been
indicated in Figure 6b. Accordingly, the highest
amount of NPHI log is at the range of [0.2118,
0.3583] (see Figure 6a), which has been mapped at
the range of [0.186, 1] after normalization (see
Figure 6b) as the maximum data value in this log is
at this range.
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3.1.2.2. Data partitioning

The main idea of this study for estimating shear
wave slowness log is formed at the wells of
Azadegan field. It was while at the given wells
DTSM log data were mapped only in two wells of
AZN-a and AZN-b. Given to broad range of
amount changes of petro-physical parameters at
different sites of the field and the limited range of
petro-physical logs data of the wells in which
DTSM log has been collected, the great challenge
is generated to use machine learning models from
the data training viewpoint. As a solution for
increasing the training range for machine learning
models, a databank composed of information
related to several wells having DTSM logs from

the fields surrounding the Azadegan field has been
created. The considered strategy for partitioning
data to modeling and validation data is in such a
way that the information of the wells of the
surrounding fields, along with the information of
the AZN-a well, was considered as modeling data
(see Figure 1). The range of petrophysical logs in
Azadegan field and Modelling dataset is presented
in Table 1. Accordingly, the data range of AZN-a
and AZN-b wells in all logs is more restricted than
modeling wells. Therefore, if the accuracy of the
model is high on the total data of training, testing
and validation, this model can be used to estimate
the DTSM log in other wells of the Azadegan field
within the trained range.

Table 1. The range of petrophysical logs in Azadegan field and modelling dataset.

Dataset Depth CGR RT PEF NPHI RHOB DTCO DTSM
Azadegan field Min 2350 4.86 0.069 3.64 0.001 2.22 50.72 92.96
Max 3545 34.21 5.86 5.74 0.27 2.76 86.63 161.92

Modelling data Min 2350 1.93 0.069 1.81 0.001 2.14 46.56 81.18
Max 4046 94.73 157.63 5.74 0.36 2.88 99.99 191.81

On the other hand, in modeling data partitioning
to training and testing for the development of each
model, it should be noted that the effect of random
selection and partitioning of data should be
removed. For this purpose, the accuracy of each
model should be assessed with different training
and test dataset. For this purpose k-fold, cross-
validation method with k=5 has been used in this
study at the stage of intelligent model
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development. With this method, a dataset is
divided into five partitions, and in 5 iterations, one
partition (20%) is introduced as test data and four
other partitions (80%) as training data. Therefore,
each intelligent model based on Figure 7 is
developed with five different distributions of the
training and test data, and the accuracy of each
model has been stated based on five steps average.
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Figure 7. k-fold (k = 5) cross-validation approach implemented in this research work.

3.1.2.3. Feature selection

In the stage of feature selection, at first, co-
linearity of data is assessed. The existence of co-
linearity among data causes using data that actually
do not have any significant role in increasing
model accuracy, and their association with the
target parameter is equivalent to the association of
one or two other parameters with the target. In
Figure 8, cross-charts of different petro-physical
logs of the modeling dataset have been provided.
Accordingly, there is no strong linear association
between petro-physical logs in which way that one
can be calculated based on the others with a linear
relationship.  Therefore, all petro-physical
parameters to select superior features are entered as
the input of the NSGA-II algorithm. Multi-purpose
optimization algorithm Non-dominated Sorting
Genetic Algorithm II (NSGA-II) integrated with a
multi-layer perceptron neural network has been
used as a wrapper feature selection method [13]. A
complete explanation of the performance of this
method has been provided in several studies
[3,13,36,52,53]. For this purpose, the amount of
100, 0.74, 0.05, and 50 have been used respectively
for population, cross-over, number of iterations,

and mutation in this study. Meanwhile, given the
high volume of computations and the necessity to
study the decreasing trend of the model’s error, a
three-layered neural network with neuronal
arrangement [5, 3, 3] has been used respectively in
the first, second, and third layers.

The results of RMSE error decrease and R
square increase with different parameter selection
in Figure 9, and its numerical values, as well as
applied parameters in combination, have been
provided in Table 2. Accordingly, with an increase
in the number of the input parameters to 5, RMSE
decreasing trend and R square increase is notable.
Nevertheless, with an increase in parameters to
more than 5, the accuracy of the model does not
increase significantly. Therefore, PEF, RT, Depth,
DTCO, and NPHI parameters were applied to
develop intelligent models of DTSM estimation. In
Figure 10, the correlation coefficient (R) between
selected parameters and DTSM parameters has
been indicated. Accordingly, among selected
parameters, the highest correlation coefficient is
between DTCO-DTSM with the amount of 0.93,
and the lowest correlation coefficient is between
PEF-DTSM with the amount of 0.33.

Table 2. RMSE and R square values for identifying the optimal combination of features to include in modeling
the DTSM (the best finding is in bold).

Number of Selected Parameters Selected parameters RMSE R?
1 Depth 3.89 0.28
2 Depth — DTCO 345 0.45
3 Depth — NPHI - DTCO 3.1 0.58
4 Depth — PEF — NPHI - DTCO 2.73 0.67
5 Depth — RT-PEF — NPHI - DTCO 2.51 0.73
6 Depth — CGR — RT —PEF- NPHI - DTCO 241 0.75
7 Depth — CGR — RT —PEF- NPHI -RHOB- DTCO 2.39 0.77
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Figure 8. The cross plots of petrophysical logs data from all modelling wells for co-linearity analysis (data are in
normalized form between [-1,1]).
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Figure 9. The RMSE and R square of DTSM estimation
model during feature selection using NSGA-II coupled

with ANN-MLP.

3.2. DTSM estimation results
3.2.1. Regression learning-based models
3.2.1.1. Performance of BGT model

In order to develop the Bagging tree model,
accessing optimized amounts of hyper parameters
of this model, including the number of sampling
sets (Bootstrap), which is known as “leaf size,” as
well as the number of the trees in each predictor,
needs to solve an optimization problem. For this
purpose, during a sensitivity analysis process and
studying different leaf sizes and trees, it was
specified that using five training datasets and five
predictors with 20 trees have been taken the best
conclusion. Figure 11 indicates the results of this
comparison. Accordingly, with an increase in the
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Figure 10. The correlation coefficient between
selected features and DTSM.

number of leaf sizes, the accuracy of the model did
not always increase the least error belonged to leaf
size of five. It is while increasing decision trees up
to 20 at each predictor always leads to a decrease
in model error, and whatever the number of trees
passes from 20, the decreasing trend of the errors
remains constant. Then according to the studied
dataset in this study, the best model structure for
the Bagging tree is to have a leaf size of five and
20 decision trees in each predictor. Meanwhile, the
results of the Bagging tree estimation model with
the optimized structure on training and test data are
provided in Figure 12. Accordingly, the
performance of the BGT model on the test data has
been close to training data, which is demonstrated
the relatively good generalizability.
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Figure 11. Mean square error with different leaf size (5, 10, 20, 50 and 100) and number of tree (1 to 50) during
optimization of bagging tree structure.
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Figure 12. The cross-plots of bagging tree model results; a) training data, b) testing data.

3.2.1.2. Performance of the SVR model

In this study, different kernel functions
including Gaussian, polynomial, RBF, and linear
have been used for DTSM estimation with Support
Vector Regression (SVR). The results of the
model's accuracy on the training and test data and
by considering 5-fold cross-validation for different

kernel functions have been provided in Table 3.
Accordingly, the best result has been obtained
among the models with different kernel functions
for the model with Gaussian kernel functions. The
results of the DTSM estimation using the SVR
model with Gaussian kernel functions on training
and test data have been provided in Figure 13.

Table 3. The error evaluation indices of SVR model in estimating DTSM with different kernel functions using
modelling dataset (the model with the best result is bolded).

Kernel function RMSE R-square AAPD
Train Test Train Test Train Test
Linear 4.95 5.23 0.93 0.92 3.5 3.25
RBF 4.68 5.02 0.95 0.91 3.2 3.43
Gaussian 4.32 4.87 0.96 0.94 2.74 2.95
Polynomial 4.54 4.98 0.95 0.92 2.95 3.23
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Figure 13. The cross plots of SVR model results; a) training data, b) testing data.

3.2.1.3. Performance of GPR model

In this study, different kernel functions
including rational quadratic, squared exponential,
RBF, and Matern have been used for DTSM
estimation with wusing Gaussian Processing
Regression (GPR) model. The results of the
model's accuracy on the training and test data and

by considering 5-fold cross-validation for different
kernel functions have been provided in Table 4.
Accordingly, the best result has been obtained
among the models with different kernel functions
for the model with Matern kernel functions. The
results of the DTSM estimation using the GPR
model with Matern kernel functions on training and
test data have been provided in Figure 14.

Table 4. The error evaluation indices of GPR model in estimating DTSM with different kernel functions using
modelling dataset (the model with the best result is bolded).

K | functi RMSE R-square AAPD
ernel function Train Test Train Test Train Test

Squared exponential 5.21s 5.13 0.95 0.93 2.86 3.21

RBF 4.89 5.02 0.96 0.93 2.72 3.02

Matern 4.1 4.62 0.96 0.95 2.6 2.8

Rational Quadratic 4.52 4.89 0.95 0.94 2.7 2.95

R2 =0.96159 RMSE =4.1 R2 = 0.94655 RMSE =4.6236
250 250
200