[1]. Miyazaki, K., Ohno, T., Karasawa, H., & Imaizumi, H. (2019). Performance of polycrystalline diamond compact bit based on laboratory tests assuming geothermal well drilling. Geothermics, 80, 185-194.
[2]. Bellin, F., Dourfaye, A., King, W., & Thigpen, M. (2010). The current state of PDC bit technology. World oil, 231(11).
[3]. Jinhua, Y. A. N. G., & Xiaoxia, G. U. O. (2018, February). The present status and outlook of PDC bit technology. In Oil Forum (Vol. 37, No. 1, p. 33).
[4]. Plinninger, R. J. (2008). Abrasiveness assessment for hard rock drilling. Geomechanik und Tunnelbau: Geomechanik und Tunnelbau, 1(1), 38-46.
[5]. Zhan, Y. A. N. G., Songcheng, T. A. N., Kaihua, Y. A. N. G., & Xiaohong, F. A. N. G. (2023). Wear law and design of assembling diamond bit based on finite element analysis. Coal Geology & Exploration, 51(9), 164-170.
[6]. Tian, K., & Detournay, E. (2021). Influence of PDC bit cutter layout on stick–slip vibrations of deep drilling systems. Journal of Petroleum Science and Engineering, 206, 109005.
[7]. Gomar, M., & Elahifar, B. (2023). Real time prediction and detection of drilling bit issues during drilling with the focus on bit status evaluation using along string measurement (ASM). Geoenergy Science and Engineering, 224, 211612.
[8]. Hegde, C., Millwater, H., Pyrcz, M., Daigle, H., & Gray, K. (2019). Rate of penetration (ROP) optimization in drilling with vibration control. Journal of natural gas science and engineering, 67, 71-81.
[9]. Bajolvand, M., Ramezanzadeh, A., Mehrad, M., & Roohi, A. (2022). Optimization of controllable drilling parameters using a novel geomechanics-based workflow. Journal of Petroleum Science and Engineering, 218, 111004.
[10]. Brandon, B. D., Cerkovnik, J., Koskie, E., Bayoud, B. B., Colston, F., Clayton, R. I., ... & Niemi, R. (1992, February). First revision to the IADC fixed cutter dull grading system. In SPE/IADC Drilling Conference and Exhibition (pp. SPE-23939). SPE.
[11]. Ma, Y., Shao, F., Fu, S., Yue, C., & Xu, D. (2023). Study of pyrolysis characteristics and kinetics of oil-based drill cuttings. Journal of Thermal Analysis and Calorimetry, 148(18), 9561-9570.
[12]. Liu, W., Deng, H., Zhu, X., & Deng, K. (2023). The PDC cutter-rock interaction behavior in rock cutting: A review. Geoenergy Science and Engineering, 229, 212168.
[13]. Al-Sudani, J. A. (2017). Real-time monitoring of mechanical specific energy and bit wear using control engineering systems. Journal of Petroleum Science and Engineering, 149, 171-182.
[14]. Abbas, R. K. (2018). A review on the wear of oil drill bits (conventional and the state of the art approaches for wear reduction and quantification). Engineering Failure Analysis, 90, 554-584..
[15]. Kuru, E., & Wojtanowicz, A. K. (1995, April). An experimental study of sliding friction between PDC drill cutters and rocks. In International journal of rock mechanics and mining sciences & geomechanics abstracts (Vol. 32, No. 3, pp. 277-283). Pergamon.
[16]. Abbas, R., & Hassanpour, A. (2018). Evaluating the wear of polycrystalline diamond compact drill bit cutters using indentation and scratch tests. ARO-The Scientific Journal of Koya University, 6(1), 46-54.
[17]. Wang, X., Wang, Z., Wang, D., & Chai, L. (2018). A novel method for measuring and analyzing the interaction between drill bit and rock. Measurement, 121, 344-354.
[18]. Ziaja, M. B., & Miska, S. (1982). Mathematical model of the diamond-bit drilling process and its practical application. Society of Petroleum Engineers Journal, 22(06), 911-922.
[19]. Wojtanowicz, A. K., & Kuru, E. (1993). Mathematical modeling of PDC bit drilling process based on a single-cutter mechanics.
[20]. Checkina, O. G., Goryacheva, I. G., & Krasnik, V. G. (1996). The model for tool wear in rock cutting. Wear, 198(1-2), 33-38.
[21]. Gouda, G. M., Maestrami, M., Saif, M. A., Shalaby, S. E., Farhat, M. S., & Dahab, A. S. (2011, September). A real mathematical model to compute the PDC cutter wear value to terminate PDC bit run. In SPE Middle East Oil and Gas Show and Conference (pp. SPE-140151). SPE.
[22]. Liu, Z., Marland, C., Li, D., & Samuel, R. (2014, May). An analytical model coupled with data analytics to estimate PDC bit wear. In SPE Latin America and Caribbean Petroleum Engineering Conference (p. D011S002R002). SPE.
[23]. Yang, H., Zhao, H., & Kottapurath, S. (2020). Real-time bit wear prediction using mud logger data with mathematical approaches. Journal of Petroleum Exploration and Production Technology, 10(2), 587-594.
[24]. Mazen, A. Z., Mujtaba, I. M., Hassanpour, A., & Rahmanian, N. (2020). Mathematical modelling of performance and wear prediction of PDC drill bits: Impact of bit profile, bit hydraulic, and rock strength. Journal of Petroleum Science and Engineering, 188, 106849.
[25]. Tulu, I. B., & Heasley, K. A. (2009, June). Calibration of 3D cutter-rock model with single cutter tests. In ARMA US Rock Mechanics/Geomechanics Symposium (pp. ARMA-09). ARMA.
[26]. Wang, Y., Ni, H., Wang, R., & Liu, S. (2022). An improved model to characterize drill-string vibrations in rotary drilling applications. Fluid Dynamics and Materials Processing, 18(5), 1263-1273.
[27]. Cai, M., Tan, L., Tan, B., Luo, X., Zeng, J., Mao, D., & Lin, Q. (2023). Experimental and numerical study on the dynamic characteristics of full-size PDC bit. Mechanical Systems and Signal Processing, 200, 110560.
[28]. Hegde, C., & Gray, K. E. (2017). Use of machine learning and data analytics to increase drilling efficiency for nearby wells. Journal of Natural Gas Science and Engineering, 40, 327-335.
[29]. Pollock, J., Stoecker-Sylvia, Z., Veedu, V., Panchal, N., & Elshahawi, H. (2018, April). Machine learning for improved directional drilling. In Offshore Technology Conference (p. D031S031R001). Otc.
[30]. Anemangely, M., Ramezanzadeh, A., Tokhmechi, B., Molaghab, A., & Mohammadian, A. (2018). Drilling rate prediction from petrophysical logs and mud logging data using an optimized multilayer perceptron neural network. Journal of geophysics and engineering, 15(4), 1146-1159.
[31]. Sabah, M., Talebkeikhah, M., Wood, D. A., Khosravanian, R., Anemangely, M., & Younesi, A. (2019). A machine learning approach to predict drilling rate using petrophysical and mud logging data. Earth Science Informatics, 12, 319-339.
[32]. Gan, C., Cao, W. H., Liu, K. Z., Wu, M., Wang, F. W., & Zhang, S. B. (2019). A new hybrid bat algorithm and its application to the ROP optimization in drilling processes. IEEE Transactions on Industrial Informatics, 16(12), 7338-7348.
[33]. Elkatatny, S. (2019). Development of a new rate of penetration model using self-adaptive differential evolution-artificial neural network. Arabian Journal of Geosciences, 12, 1-10.
[34]. shena, R., Elmgerbi, A., Rasouli, V., Ghalambor, A., Rabiei, M., & Bahrami, A. (2020). Severe wellbore instability in a complex lithology formation necessitating casing while drilling and continuous circulation system. Journal of Petroleum Exploration and Production Technology, 10, 1511-1532.
[35]. Mehrad, M., Bajolvand, M., Ramezanzadeh, A., & Neycharan, J. G. (2020). Developing a new rigorous drilling rate prediction model using a machine learning technique. Journal of Petroleum Science and Engineering, 192, 107338.
[36]. Elmgerbi, A. M., Ettinger, C. P., Tekum, P. M., Thonhauser, G., & Nascimento, A. (2021, May). Application of machine learning techniques for real time rate of penetration optimization. In SPE/IADC middle east drilling technology conference and exhibition (p. D021S007R003). SPE.
[37]. Safarov, A., Iskandarov, V., & Solomonov, D. (2022, November). Application of machine learning techniques for rate of penetration prediction. In SPE Annual Caspian Technical Conference (p. D021S013R002). SPE.
[38]. Matinkia, M., Sheykhinasab, A., Shojaei, S., Vojdani Tazeh Kand, A., Elmi, A., Bajolvand, M., & Mehrad, M. (2022). Developing a new model for drilling rate of penetration prediction using convolutional neural network. Arabian Journal for Science and Engineering, 47(9), 11953-11985.
[39]. Li, C., Cheng, P., & Cheng, C. (2023, March). A Comparison of Machine Learning Algorithms for Rate of Penetration Prediction for Directional Wells. In SPE Middle East Oil and Gas Show and Conference (p. D011S011R003). SPE.
[40]. Rostamsowlat, I., Evans, B., & Kwon, H. J. (2022). A review of the frictional contact in rock cutting with a PDC bit. Journal of Petroleum Science and Engineering, 208, 109665.
[41]. Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992, July). A training algorithm for optimal margin classifiers. In Proceedings of the fifth annual workshop on Computational learning theory (pp. 144-152).
[42]. Breiman, L. (1996). Bagging predictors. Machine learning, 24, 123-140.
[43]. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.
[44]. Nebauer, C. (1998). Evaluation of convolutional neural networks for visual recognition. IEEE transactions on neural networks, 9(4), 685-696.
[45]. Kuss, M. (2006). Gaussian process models for robust regression, classification, and reinforcement learning (Doctoral dissertation, echnische Universität Darmstadt Darmstadt, Germany).
[46]. Subasi, A. (2020). Practical machine learning for data analysis using python. Academic Press.
[47]. Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M. T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation, 6(2), 182-197.
[48]. Guerra, C., Fischer, K., & Henk, A. (2019). Stress prediction using 1D and 3D geomechanical models of a tight gas reservoir—A case study from the Lower Magdalena Valley Basin, Colombia. Geomechanics for Energy and the Environment, 19, 100113.
[49]. Fjaer, E., Holt, R. M., Horsrud, P., & Raaen, A. M. (2008). Petroleum related rock mechanics (Vol. 53). Elsevier.
[50]. Zoback, M. D. (2010). Reservoir geomechanics. Cambridge university press.
[51]. Shi, X., Meng, Y., Li, G., Li, J., Tao, Z., & Wei, S. (2015). Confined compressive strength model of rock for drilling optimization. Petroleum, 1(1), 40-45.
[52]. Caicedo, H. U., Calhoun, W. M., & Ewy, R. T. (2005, February). Unique ROP predictor using bit-specific coefficient of sliding friction and mechanical efficiency as a function of confined compressive strength impacts drilling performance. In SPE/IADC Drilling Conference and Exhibition (pp. SPE-92576). SPE.
[53]. Chang, C., Zoback, M. D., & Khaksar, A. (2006). Empirical relations between rock strength and physical properties in sedimentary rocks. Journal of Petroleum Science and Engineering, 51(3-4), 223-237.
[54] Atashbari, V., & Tingay, M. (2012, April). Pore pressure prediction in carbonate reservoirs. In SPE Latin America and Caribbean petroleum engineering conference (pp. SPE-150835). SPE.
[55]. Fatt, I. (1958). Pore volume compressibilities of sandstone reservoir rocks. Journal of Petroleum Technology, 10(03), 64-66.
[56]. Al-Ajmi, A. M., & Zimmerman, R. W. (2009). A new well path optimization model for increased mechanical borehole stability. Journal of Petroleum Science and Engineering, 69(1-2), 53-62.