[1]. JORC Code. (2012). Australasian code for reporting of exploration results, mineral resources and ore reserves. AusIMM, 44.
[2]. CIM. (2019). Estimation of mineral resources & mineral reserves best practice guidelines. Canadian Institute of Mining.
[3]. SAMREC. (2016). The South African code for the reporting of exploration results, mineral resources and mineral reserves (the SAMREC Code). South African Mineral Resource Committee.
[4]. CRIRSCO. (2014). International Reporting Template for the Public Reporting of Exploration Results Mineral Resources and Mineral Reserves.
[5]. Stephenson, P., Stoker, P. (2001). Mineral resource and ore reserve estimation - the AusIMM guide to good practice (monograph 23). Miner Eng, 14(9).
[6]. Abzalov, M. (2016). Methodology of the mineral resource classification. Modern Approaches in Solid Earth Sciences, 12, 355-363.
[7]. Owusu, S. (2019). Critical Review of Mineral Resource Classification Techniques in the Gold Mining Industry. Insights in Mining Science & Technology, 1(3), 555564.
[8]. Coombes, J., Fahey, G., Stoker, P. (2014). Overview – classifcation and reporting. Mineral resource and ore reserve estimation—the AusIMM guide to good practice. Australas Inst Min Metall Second Ed Monogr, 30, 767–770.
[9]. Menin, R., Diedrich, C., Reuwsaat, JD., De Paula, WF. (2017). Drilling Grid Analysis for Defining Open-Pit and Underground Mineral Resource Classification through Production Data. Geostatistics Valencia 2016, 19, 271-285.
[10]. Deustch, C., Leauangthong, O., Ortiz, J. (2007). Case for geometric criteria in resources and reserves classifcation. Trans Soc Min Metall Explor, 322.
[11]. Mucha, J., Wasilewska-Błaszczyk, M., Augus̈cik, J. (2015). Categorization of mineral resources based upon geostatistical estimation of the continuity of changes of resource parameters. Proceedings of IAMG 2015 - 17th Annual Conference of the International Association for Mathematical Geosciences.
[12]. Nowak, M., Leuangthong, O. (2019). Optimal drill hole spacing for resource classification. Mining Goes Digital - Proceedings of the 39th international symposium on Application of Computers and Operations Research in the Mineral Industry, APCOM 2019.
[13]. Taghvaeenezhad, M., Shayestehfar, M., Moarefvand, P., Rezaei, A. (2020). Quantifying the criteria for classification of mineral resources and reserves through the estimation of block model uncertainty using geostatistical methods: a case study of Khoshoumi Uranium deposit in Yazd, Iran. Geosystem Engineering, 23(4), 216-225.
[14]. Emery, X., Ortiz, JM., Rodríguez, JJ. (2006). Quantifying uncertainty in mineral resources by use of classification schemes and conditional simulations. Math Geol, 38, 445-464.
[15]. Madani, N. (2020). Mineral resource classification based on uncertainty measures in geological domains. Springer Series in Geomechanics and Geoengineering, 157-164.
[16]. Silva, DSF., Boisvert, JB. (2014). Mineral resource classification: A comparison of new and existing techniques. J South Afr Inst Min Metall, 114(3).
[17]. Isatelle, F., Rivoirard, J. (2019). Mineral Resources classification of a nickel laterite deposit: Comparison between conditional simulations and specific areas. J South Afr Inst Min Metall, 119(10).
[18]. Rocha, V., Bassani, MA. (2023). Practical application of a multi-layer scorecard workflow (MLSW) for comprehensive mineral resource classification. Applied Earth Science: Transactions of the Institute of Mining and Metallurgy, 132(3-4).
[19]. Dominy, S., Stephenson, P., Annels, A. (2001). Classification and reporting of mineral resources for high-nugget effect gold vein deposits. Exploration and Mining Geology, 10, 215-233.
[20]. Stephenson, PR., Allman, A., Carville, DP., Stoker, PT., Mokos, P., Tyrrell, J., Burrows, T. (2006). Mineral resource classification - It’s time to shoot the ’spotted dog’! Australasian Institute of Mining and Metallurgy Publication Series, 91-96.
[21]. Verly, G., Parker, HM. (2021). Conditional Simulation for Mineral Resource Classification and Mining Dilution Assessment from the Early 1990s to Now. Math Geosci, 53, 279-300.
[22]. Galetakis, M., Vasileiou, A., Rogdaki, A., Deligiorgis, V., Raka, S. (2022). Estimation of Mineral Resources with Machine Learning Techniques. Material proceedings, 5(1), 122.
[23]. Singh, T., Jhariya, DC., Sahu, M., Dewangan, P., Dhekne, PY. (2022). Classifying Minerals using Deep Learning Algorithms. IOP Conf Ser Earth Environ Sci, 1032(2022), 012046.
[24]. Hernández, H. (2024). A semiautomatic multi criteria method for mineral resources classification. Applied Earth Science: Transactions of the Institutions of Mining and Metallurgy, 133, 211-223.
[25]. Afzal, P., Gholami, H., Madani, N., Yasrebi, A., Sadeghi, B. (2023) Mineral Resource Classification Using Geostatistical and Fractal Simulation in the Masjed Daghi Cu–Mo Porphyry Deposit, NW Iran. Minerals, 13(3), 370.
[26]. Battalgazy, N., Madani, N. (2019). Categorization of mineral resources based on different geostatistical simulation algorithms: a case study from an iron ore deposit. Nat Resour Res, 28, 1329-1351.
[27]. Farhadi, S., Tatullo, S., Boveiri Konari, M., Afzal, P. (2024). Evaluating StackingC and ensemble models for enhanced lithological classification in geological mapping. J Geochem Explor, 260, 107441.
[28]. Afzal, P., Farhadi, S., Konari, MB., Meigoony, MS., Saein, LD. (2022). Geochemical anomaly detection in the Irankuh District using Hybrid Machine learning technique and fractal modeling. Geopersia, 12(1), 191-199.
[29]. Nwaila, GT., Zhang, SE., Bourdeau, JE., Frimmel, HE., Ghorbani, Y. (2024). Spatial Interpolation Using Machine Learning: From Patterns and Regularities to Block Models. Natural Resources Research, 33, 129-161.
[30]. Salarian, S., Oskooi, B., Mostafaei, K., Smirnov, MY. (2024). Improving the resource modeling results using auxiliary variables in estimation and simulation methods. Earth Sci Inform, 17, 4161-4181.
[31]. Cevik, IS., Leuangthong, O., Caté, A., Ortiz, JM. (2021). On the Use of Machine Learning for Mineral Resource Classification. Min Metall Explor, 38, 2055-2073.
[32]. Ribeiro, DT., Filho, CGM., de Souza, LE., Costa, JFCL., de Almeida, D. (2012). Utilização de critérios geoestatísticos para comparação de malha de sondagem visando à maximização da quantidade de recursos. Revista Escola de Minas, 65(1).
[35]. Huang, Z. (1998). Extensions to the k-means algorithm for clustering large data sets with categorical values. Data Min Knowl Discov, 2, 283-304.
[34]. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., VanderPlast, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825-2830.
[35]. van der Walt, S., Colbert, SC., Varoquaux, G. (2011). The NumPy Array: A Structure for Efficient Numerical Computation. Comput Sci Eng, 13, 22–30.
[36]. Álvarez Cid-Fuentes, J., Álvarez, P., Amela, R., Ishii, K., Morizawa, RK., Badia, RM. (2020). Efficient development of high performance data analytics in Python. Future Generation Computer Systems, 111, 570–581.
[37]. Ahsan, M., Mahmud, M., Saha, P., Gupta, K., Siddique, Z. (2021). Effect of Data Scaling Methods on Machine Learning Algorithms and Model Performance. Technologies (Basel), 9, 52.
[38]. Cotrina, M., Marquina, J., Noriega, E., Mamani, J., Ccatamayo, J., Gonzalez, J., Arango, S. (2024). Predicting Open Pit Mine Production using Machine Learning Techniques: A Case Study in Peru. Journal of Mining and Environment, 15(4), 1345–1355.
[39]. Wackernagel, H. (2003). Ordinary Kriging. In: Multivariate Geostatistics. Springer Berlin Heidelberg, Berlin, Heidelberg, 79–88.
[40]. Journel, AG. (1983). Nonparametric estimation of spatial distributions. Journal of the International Association for Mathematical Geology, 15, 445-468.
[41]. Marquina, J., Cotrina, M., Mamani, J., Noriega, E., Vega, J., Cruz, J. (2024). Copper Ore Grade Prediction using Machine Learning Techniques in a Copper Deposit. Journal of Mining and Environment, 15(3), 1011-1027.
[42]. Okwu, MO., Otanocha, OB., Edward, BA., Oreko, BU., Oyekale, J., Oyejide, OJ., Osuji, J., Maware, C., Ezekiel, K., Orikpete, OF. (2024). Investigating the Accuracy of Artificial Neural Network Models in Predicting Surface Roughness in Drilling Processes. Procedia Comput Sci, 232, 1982-1990.
[43]. Marquina-Araujo, JJ., Cotrina-Teatino, MA., Cruz-Galvez, JA., Noriega-Vidal, EM., Vega-Gonzalez, JA. (2024). Application of Autoencoders Neural Network and K-Means Clustering for the Definition of Geostatistical Estimation Domains. Mathematical Modelling of Engineering Problems, 11(5), 1207-1218.
[44]. Carranza, EJM., Laborte, AG. (2015). Random forest predictive modeling of mineral prospectivity with small number of prospects and data with missing values in Abra (Philippines). Comput Geosci, 74, 60-70.
[45]. Josso, P., Hall, A., Williams, C., Le Bas, T., Lusty, P., Murton, B. (2023). Application of random-forest machine learning algorithm for mineral predictive mapping of Fe-Mn crusts in the World Ocean. Ore Geol Rev, 162, 105671.
[46]. Ford, A. (2020). Practical Implementation of Random Forest-Based Mineral Potential Mapping for Porphyry Cu–Au Mineralization in the Eastern Lachlan Orogen, NSW, Australia. Natural Resources Research, 29, 267-283.
[47]. Lachaud, A., Adam, M., Mišković, I. (2023). Comparative Study of Random Forest and Support Vector Machine Algorithms in Mineral Prospectivity Mapping with Limited Training Data. Minerals, 13(8), 1073.
[48]. Markoulidakis, I., Markoulidakis, G. (2024). Probabilistic Confusion Matrix: A Novel Method for Machine Learning Algorithm Generalized Performance Analysis. Technologies (Basel), 12(7), 113.
[49]. Caelen, O. (2017). A Bayesian interpretation of the confusion matrix. Ann Math Artif Intell, 81, 429-450.