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 This work aimed to categorize mineral resources in a copper deposit in Peru, using a 
machine learning model, integrating the K-prototypes clustering algorithm for initial 
classification and Random Forest (RF) as a spatial smoother. A total of 318,443 blocks 
were classified using geostatistical and geometric variables derived from Ordinary 
Kriging (OK) such as kriging variance, sample distance, number of drillholes, and 
geological confidence. The model was trained and validated using precision, recall, and 
F1-score metrics. The results indicated an overall accuracy of 97%, with the measured 
category achieving 98% precision and an F1-score of 0.98. The total estimated tonnage 
was 5,859.36 Mt, distributed as follows: 1,446.13 Mt (measured), 2,249.22 Mt 
(Indicated), and 2,164.01 Mt (Inferred), with average copper grades of 0.43%, 0.33%, 
and 0.31% Cu, respectively. Compared to the traditional geostatistical methods, this 
hybrid approach improves classification objectivity, spatial continuity, and 
reproducibility, minimizing abrupt transitions between categories. The RF model 
proved to be a robust tool, reducing classification inconsistencies and better capturing 
geological uncertainty. Future studies should explore hybrid models (K-means with 
RF, ANN with K-Prototypes, gradient boosting, and deep learning) and incorporate 
economic variables to optimize decision-making in resource estimation. 
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1. Introduction 

The categorization of mineral resources is a 
fundamental stage in the mining industry, as it 
defines the confidence level in the estimation of ore 
tonnage and grade. This process forms the 
foundation for strategic planning, mining 
optimization, and the economic evaluation of 
mining projects [1–3]. At the international level, 
the standards established by the Committee for 
Mineral Reserves International reporting standards 
(CRIRSCO) classify mineral resources into three 
main categories: Inferred, indicated, and measured. 
each category represents different levels of 
geological certainty and confidence in the 
continuity of mineralization [4–6]. This 
classification is of critical importance for mining 

companies, investors, and financial institutions, as 
the profitability and feasibility of a project depend 
on the accuracy of the estimated quantity and 
quality of mineral resources within a deposit [7–9]. 

Traditionally, mineral resource classification 
has been approached using geometric and 
geostatistical methods, where factors such as 
drillhole density, spatial continuity of grades, and 
estimation variance play a crucial role in category 
assignment [10–12]. Among these approaches, 
ordinary kriging indicator kriging, and conditional 
simulation have been widely applied due to their 
ability to interpolate spatial data and model the 
uncertainty associated with mineralization [13–
15]. However, these methods present certain 
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limitations that affect their effectiveness, 
particularly in structurally complex deposits such 
as porphyry copper deposits [6, 16]. In particular, 
these conventional approaches rely on manually 
defined classification thresholds, introducing 
subjectivity into the process and reducing the 
reproducibility of results [17–19]. Additionally, 
since these methods operate under a block-by-
block classification scheme, geostatistical models 
often generate spatial discontinuities, affecting the 
geological coherence of the mineral resource 
model and complicating its application in high-
variability scenarios [20, 21]. 

In recent decades, the development of Machine 
Learning (ML) techniques has revolutionized 
numerous scientific and technological fields 
including mining and geology [22–24]. In this 
context, ML-based classification algorithms have 
emerged as promising tools for mineral resource 
categorization, enabling the automated integration 
of multiple criteria, eliminating the need for 
arbitrary threshold definitions, and improving the 
consistency of models [25, 26]. Recent studies 
have demonstrated that machine learning and 
ensemble models such as random forest and 
StackingC can outperform traditional methods in 
lithological classification and geochemical 
anomaly prediction, providing superior results in 
terms of accuracy and robustness [27, 28]. 
Similarly, hybrid approaches that combine 
different ML algorithms with fractal modeling have 
shown significant improvements in geochemical 
anomaly detection and mineral resource estimation 
[28, 29]. Additionally, the use of auxiliary variables 
in estimation and simulation models has been 
explored to enhance resource classification and 
reduce uncertainty in resource modeling, 
highlighting the importance of integrating multiple 
data sources in these processes [30]. Among these 
approaches, Random Forest (RF) has been 
established as one of the most robust and efficient 
models due to its ability to handle large volumes of 
geological data, identify complex spatial patterns 
in mineralization distribution, and provide 
interpretability through variable importance 
analysis. 

The application of random forest in mining has 
been the focus of various recent studies, 
demonstrating its effectiveness in grade prediction 
in polymetallic deposits [15], mineral resource 
classification [31], and hydrothermal alteration 
identification in epithermal deposits [25]. Unlike 
traditional methods, RF does not require variogram 
parameterization or fixed threshold definitions for 
block categorization, as it automatically learns 

patterns from the data and generates multiple 
decision models that optimize the final 
classification [32]. This not only reduces the 
inherent subjectivity of geostatistical methods, but 
also enhances the accuracy and stability of 
classification in structurally complex scenarios [12, 
16]. 

Despite the growing interest in the use of 
machine learning models for mineral resource 
categorization, several challenges remain in their 
practical implementation. In particular, porphyry 
copper deposits exhibit highly heterogeneous 
mineralogical distributions, with abrupt variations 
in grades, alterations, and geological structures, 
making the application of conventional 
categorization models difficult [6, 18]. Therefore, 
it is essential to evaluate the performance of 
random forest in these contexts, and determine its 
effectiveness in comparison to traditional 
categorization methodologies [16, 19]. 

The primary objective of this work is to develop 
and implement a random forest-based model for 
mineral resource categorization in a copper deposit 
in Peru. To achieve this objective, the methodology 
is structured into two main components: 

- Mixed multivariable block-by-block clustering: 
The K-prototypes algorithm will be used to 
integrate quantitative variables (e.g. grades, 
distance to drillholes) with qualitative variables 
(e.g. geological confidence) [33]. 

- Block smoothing using advanced machine 
learning techniques: Random Forest (RF) will be 
applied to improve the spatial coherence of the 
model and mitigate the discontinuity effect in 
categorization [18, 20]. 

This work introduces an innovative hybrid 
approach that integrates K-prototypes for block 
classification and random forest for spatial 
smoothing, enhancing the consistency of mineral 
resource categorization. Unlike traditional 
methods, this methodology reduces subjectivity by 
eliminating fixed thresholds and improving spatial 
continuity, offering a more objective, reproducible, 
and adaptable alternative for deposits with high 
geological variability. 

This work is structured into four main sections. 
Section 2 details the methodology employed, 
including variable selection, the training, and 
validation process of the Random Forest (RF) 
model, and the evaluation criteria. Section 3 
presents the results obtained from the case study 
applied to a copper deposit in Peru, comparing the 
model’s effectiveness with traditional 
methodologies. Finally, Section 4 discusses the 
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conclusions of the study and possible lines of future 
research. 

2. Methodology 

This research work proposes a machine 
learning-based approach for mineral resource 
categorization in a copper deposit in Peru, utilizing 
the Random Forest (RF) model as the primary tool. 
The methodology is structured into four 
fundamental stages: data preprocessing including 
the selection, transformation, and normalization of 
variables; model training and optimization, 
involving hyperparameter configuration, and 
tuning through cross-validation; validation and 
performance evaluation, consisting of 
classification metric analysis and model error 
assessment; and model application, which focuses 
on the categorization of mining blocks and spatial 
coherence analysis.  

The implementation was carried out using 
python 3.12 within the Jupyter notebook 
interactive environment, employing specialized 
machine learning and data processing libraries such 
as scikit-learn [34] NumPy [35], and Pandas [36]. 
Figure 1 illustrates the methodology for mineral 
resource categorization. It begins with selecting 
and standardizing quantitative and qualitative 
variables, followed by integrating them into a 
single dataset. The K-prototypes algorithm 
classifies blocks into measured indicated, and 
inferred categories. Finally, Random Forest (RF) 
smoothing enhances spatial coherence, reducing 

discontinuities and improving classification 
accuracy. 

2.1. Data pre-processing 

Data pre-processing is a critical stage to ensure 
the quality, scalability, and consistency of the data 
used for mineral resource categorization. This 
process involved the selection of relevant 
variables, data transformation, and normalization 
to optimize the model’s performance [37, 38]. 

Both quantitative and qualitative variables were 
considered, derived from geostatistical estimation 
using Ordinary Kriging (OK) in SGeMS [39]. 
Ordinary Kriging (OK) is a widely used 
geostatistical interpolation technique for grade 
estimation, which relies on spatial continuity 
among sample data points [10, 40]. The system of 
kriging equations is defined as follows: 

 λߛ


ୀଵ

൫ݔ, ൯ݔ + ߤ = ,ݔ)ߛ ݅∀    ,(ݔ = 1, 2, … , ݊ 

(1) 

 λ = 1


ୀଵ

 

where ߛ൫ݔ ,  ൯ represents the variogramݔ
between data points ݔ, and ݔ ݔ)ߛ . ,  ) denotesݔ
the variogram between the data points and the 
estimation point ݔ,  λ  are the weights assigned to 
each sample, and ߤ is the lagrange parameter, 
which ensures that the sum of the weights equals 
one. 

 
Figure 1. Research workflow. 



Cotrina-Teatino et al. Journal of Mining & Environment, Published online 

 

4 

The fundamental equation of ordinary kriging 
is: 

Z∗(x) =  λ୧Z(x୧)
୬

୧ୀଵ

 (2) 

where: ܼ∗(ݔ) represents the estimated value at 
location ݔ. ܼ(ݔ) denotes the observed values of 
the variable at sampling locations. ߣ are the 
assigned weights, determined through the kriging 
system of equations. For each block in the model, 
the following variables were obtained: 

- Kriging variance(ߪை
ଶ ), which quantifies the 

uncertainty in grade estimation [13, 14]. 

- Average distance to samples (݀ை), a key 
geometric indicator of estimation reliability [12]. 

- Number of drillholes used (݊ை), reflecting the 
density of drillhole data within each block [16]. 

- Geological confidence, a categorical variable 
classifying blocks into two categories: high 
confidence and low confidence [18, 31]. 

- Kriging lagrangian parameter, which enhances 
estimation stability. This parameter was 
employed to correct trends in grade interpolation 
and improve the spatial consistency of estimated 
values.  

Each block ܤ  in the model was represented as 
a multi-dimensional vector defined by: 

B୨ = (xଵ୨, xଶ୨, … , x୨) (3) 

where ݔ  corresponds to each of the ܮ features 
used in the analysis for block ݆. 

A normalization process was applied to the 
numerical variables to improve the stability of the 
model, and reduce biases in the categorization of 
mineral resources [42, 43]. This transformation 
ensures that all variables maintain consistent 
scales, implemented through the power transformer 
function of scikit-learn [34]. 

To ensure robust evaluation and prevent 
overfitting, the dataset was split into 80% for 
training and 20% for testing. This separation 
prevents data leakage by ensuring that 
transformations are learned exclusively from the 
training set, and correctly applied to the test set, 
improving the model's generalization capabilities 
[38, 44]. 

2.2. Implementation of the random forest model 

The random forest model is a supervised 
learning algorithm based on multiple decision 
trees, which combines the results of different 
individual trees to improve accuracy and prediction 

stability (ensemble learning). This approach is 
widely used in mining applications due to its ability 
to handle large volumes of geological data and its 
robustness against noisy data and outliers [45, 46]. 

The selection of 200 trees (n_estimators = 200) 
in the random forest model was based on a 
sensitivity analysis, where different configurations 
of trees (ranging from 100 to 200) were evaluated, 
considering variations in tree depth (max_depth) 
and splitting criteria. The results (Table 1) indicate 
that increasing the number of trees slightly 
improves the model’s performance, reaching a 
maximum test score of 0.903 with 200 trees and a 
depth of 20, balancing predictive stability and 
computational efficiency. This justified selecting 
200 estimators as the optimal trade-off between 
accuracy and computational cost. To enhance the 
reproducibility of the study, grid search cross-
validation was employed to optimize 
hyperparameters. A search space was defined for 
key parameters such as n_estimators, max_depth, 
min_samples_split, and min_samples_leaf, 
applying a 3-fold cross-validation to avoid 
overfitting. The grid Search results confirmed that 
200 trees with a depth of 20 provided optimal 
accuracy, while preventing unnecessary 
computational overhead [47, 48]. 

Based on sensitivity analysis and cross-
validation optimization, the optimal 
hyperparameters for K-prototypes and random 
forest were selected to ensure maximum model 
accuracy and stability. The final values are 
presented in Table 2. 

The model was trained using the previously 
normalized training dataset. Each decision tree in 
the forest was constructed using bootstrap 
aggregation (sub-sampling with replacement), 
which allows the generation of diverse models and 
reduces variance in predictions. During training, 
information gain criteria based on the Gini index 
were applied to optimize node splitting by 
minimizing impurity at each tree bifurcation [46].  

The initial classification of mineral resources 
into measured, indicated, and inferred was 
conducted using the K-prototypes algorithm, which 
integrated key geological and geospatial variables 
(kriging variance, sample distance, number of 
drillholes, and geological confidence) to 
objectively define category boundaries. Once this 
base classification was established, the Random 
Forest (RF) model did not reassign categories, but 
acted as a spatial smoother, reducing 
discontinuities and enhancing geological 
coherence. This process mitigated the spotted dog 
effect, ensuring smoother transitions between 
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categories and preventing artificial block 
fragmentation. The relationship with confidence 
levels was imposed through the variables used in 
the initial classification and refined by RF, where 
areas with high geological confidence and dense 
sampling remained stable, while regions with 

higher uncertainty reflected in kriging variance and 
lower sampling density were adjusted through 
category transitions. Thus, the RF model provided 
a final classification that was more geologically 
consistent with the deposit structure. 

Table 1. Prueba de sensibilización a diferentes estimadores. 
N_estimators Max_depth Min_samples_split Min_samples_leaf Test_score 

100 10 2 1 0.848 
200 10 2 1 0.849 
100 10 3 1 0.852 
200 10 3 1 0.853 
100 10 2 2 0.850 
200 10 2 2 0.848 
100 10 3 2 0.850 
200 10 3 2 0.849 
100 15 2 1 0.896 
200 15 2 1 0.891 
100 15 3 1 0.895 
200 15 3 1 0.895 
100 15 2 2 0.894 
200 15 2 2 0.890 
100 15 3 2 0.893 
200 15 3 2 0.894 
100 20 2 1 0.898 
200 20 2 1 0.903 
100 20 3 1 0.895 
200 20 3 1 0.899 
100 20 2 2 0.891 
200 20 2 2 0.894 
100 20 3 2 0.890 
200 20 3 2 0.891 

 
Table 2. Hyperparameters of the machine learning 

models used. 
Model Description Value 

K-prototypes 

n_clusters 3 
init “Huang” 
n_jobs 4 
random_state 17276365 
categorical [3] 

Random forest 

N_estimators 200 
Max_depth 20 
Random_state 42 
Min_samples_split 2 
Min_samples_leaf 1 
Max_features log2 
Bootstrap True 

 
The evaluation of the random forest model was 

performed on the test dataset using classification 
metrics commonly applied in data mining [49]. 

- Accuracy was calculated as the proportion of 
correct predictions relative to the total 
predictions made, using the following equation: 

Accuracy =
Number of correct predictions

Total predictions  (4) 

- The confusion matrix was employed to assess the 
model’s performance across each category 

(measured, indicated, and inferred), allowing for 
the identification of classification biases and 
improvements in model calibration [50]. 

The trained random forest model was then 
applied to the original dataset to assign the 
corresponding resource category (measured, 
indicated, or inferred) to each block within the 
deposit. The results were analyzed using statistical 
and visual tools to ensure classification coherence 
and stability [19, 24]. Finally, hyperparameter 
adjustments and input variable selection 
refinements were conducted until an optimal level 
of accuracy and consistency was achieved in 
mineral resource categorization. 

3. Results 
3.1. Geological characteristics and case studied 
area 

The open-pit mine studied in this research work 
is located in the central region of Peru, at an altitude 
of 4,600 meters above sea level (m.a.s.l.). The 
geological setting is characterized by a complex 
lithological composition, consisting of five main 
rock types: magnetite skarn, granodiorite, dacite 
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porphyry, calcareous sediments, and volcanic units. 
The mineralization in the deposit is primarily 
copper (cu) mineralization, accompanied by 
molybdenum (mo). The cu-mo mineralization is 
hosted across the five lithological units, with 
magnetite skarn (rock 1) and granodiorite (rock 2) 
being the predominant hosts for high-grade 
mineralization, while dacite porphyry (rock 3), 
calcareous sediments (rock 4), and the Catalina 
volcanic unit (rock 5) show varying degrees of 
mineralization. The deposit exhibits a porphyry-
skarn metallogenic environment, with 

mineralization occurring in disseminations, 
veinlets, and massive sulfide replacements, 
primarily associated with hydrothermal processes 
and structural controls. 

3.2. Exploratory data analysis 

The spatial distribution of drillholes within the 
deposit is shown in Figure 2. Sub-plot (A) 
illustrates the variability in copper grades (%), 
while sub-plot (B) displays the distribution of 
lithological units in the studied area. 

 
Figure 2. Graphical representation of drillholes. A: copper grade distribution. B: rock type distribution. 

A summary of the drillhole dataset is presented 
in Table 3. The dataset comprises 5,654 drillholes 
with well-defined spatial coordinates, ranging from 
374,821.06 m to 375,824.99 m (east) and 
8,716,003.08 m to 8,717,271.73 m (north), with an 
average elevation of 4,473.54 m. The mean copper 
grade is 0.43%, with a maximum value of 0.58% 
and a standard deviation of 0.29%, indicating high 
mineralization variability within the deposit. 

 
 
 
 

3.3. Block model creation and variables used in 
categorization 

The block model for mineral resource 
categorization covers a spatial extent of 1,640 m 
eastward, 2,200 m northward, and 920 m in 
elevation, defining a significant geological domain. 
A block size of 20 × 20 × 20 m was applied, 
resulting in a structured grid with 82 blocks along 
the East direction, 110 along the North direction, 
and 46 in elevation. This configuration generates a 
total of 318,443 discretized blocks, ensuring a 
detailed and spatially consistent representation of 
the deposit (see Table 4). 

Table 3. Descriptive statistics of the database. 
Feature East (m) North (m) Elevation (m) Copper (%) Rock type 

Count 5,654.00 5,654.00 5,654.00 5,654.00 5,654.00 
Mean 375,606.25 8,717,015.68 4,473.54 0.43 2.16 
Std dev 307.24 393.54 169.54 0.29 0.78 
25% 374,821.06 8,716,003.08 4,050.35 0.00 1.00 
50% 375,393.42 8,716,738.40 4,340.07 0.23 2.00 
75% 375,602.29 8,716,995.80 4,462.81 0.38 2.00 
Maximum 375,824.99 8,717,271.73 4,607.49 0.58 3.00 
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Table 4. Block model dimensions. 
Project coordinates 

Feature East (m) North (m) Elevation (m) 
Minimum 374,790 8,715,980 4,015 
Maximum 376,430 8,718,180 4,935 
Difference 1,640 2,200 920 

Block size 
Feature East (m) North (m) Elevation (m) 

Size 20 20 20 
Number of blocks 

Feature East (m) North (m) Elevation (m) 
Blocks 82 110 46 

 
The initial classification was conducted by a 

Qualified Person (QP), a professional mining 
engineer, who assigned resource categories 
(measured, indicated, and inferred) using kriging 
variance as the primary criterion. This 
classification served as the baseline for 
comparison. 

The spatial distribution of key variables used in 
mineral resource categorization reveals significant 
geological patterns. Ordinary Kriging (OK) 
estimation highlights heterogeneity in copper 
grades, with zones of higher mineral concentration. 
At the deposit edges, the lagrangian parameter of 
OK displays distinct values, suggesting necessary 
geostatistical interpolation adjustments. The 
average distance to samples (AD) and the number 
of composited samples (NC) indicate a distribution 
governed by drillhole density. Meanwhile, kriging 
variance (KV) and the geological confidence index 
show increased uncertainty in peripheral areas, 
underscoring their importance in resource 
categorization (see Figure 3). 

A statistical summary of these variables further 
illustrates the variability in mineralization. The OK 
estimation results indicate an average copper grade 
of 0.34% Cu, with a standard deviation of 0.15 and 
a range from 0.00% to 2.21%, reflecting grade 
variability. The composite distance (AD) varies 
between 114.27 m and 433.19 m, with a mean of 
231.91 m, indicating differences in drillhole 
density. The kriging variance (KV) ranges from 
0.00 to 0.15, with an average of 0.07, highlighting 
interpolation uncertainty. The number of 
composited samples (NC) has a mean of 124, 
reaching a maximum of 200, ensuring robust data 
representation. Lastly, the geological confidence 
index shows an asymmetric distribution, ranging 
from 0.00 to 1.00, indicating high uncertainty in 
certain lithological classifications (see Table 5). 

 
 
 

3.4. Mineral resource categorization using 
random forest 

The impact of random forest smoothing on 
mineral resource categorization is evident in the 
classification results (see Figure 4). The initial 
classification shows noticeable fragmentation, 
while RF smoothing enhances spatial continuity, 
generating a more geologically coherent 
distribution of measured, indicated, and inferred 
blocks. Measured resources (red) are mainly 
concentrated in the central zone, whereas inferred 
resources (blue) dominate peripheral areas, 
reflecting lower drillhole density and increased 
geological uncertainty. This refinement minimizes 
abrupt transitions, improving the alignment of the 
classification with the deposit’s geological 
structure. 

The confusion matrix evaluates the accuracy of 
the RF-based mineral resource categorization by 
comparing the smoothed classification against the 
initial classifications (see Figure 5). Two 
comparisons are presented: (A) the classification 
performed by a Qualified Person (QP) using 
kriging variance as the primary criterion versus the 
RF-smoothed categorization, and (B) the initial 
classification obtained using the K-prototypes 
algorithm versus the RF-smoothed categorization. 
The confusion matrix was built by assigning each 
block to a resource category, and then comparing it 
to its corresponding classification after RF 
smoothing. The main diagonal of both matrices 
highlights the model’s ability to correctly classify 
measured, indicated, and inferred blocks. The 
highest accuracy is observed in measured resources 
(98.88% in B, 78.85% in A), followed by indicated 
(98.44% in B, 83.92% in A) and Inferred (99.61% 
in B, 96.48% in A). Misclassification errors are 
mainly concentrated at category transitions, 
particularly in the QP-based classification, where 
some Inferred blocks were misclassified as 
measured, indicating the potential need for 
adjustments in the categorization thresholds. These 
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findings align with studies by Nowak et al. [12] and 
Silva et al. [16], which highlight increased 

classification uncertainty in areas with lower 
drillhole density and higher geological variability. 

 

 
Figure 3. Key-variables used for mineral resource categorization with random forest. 

Table 5. Statistical summary of variables used for mineral resource categorization with random forest. 

Feature Ordinary kriging 
estimate (OK) 

Average composite 
distance (AD) 

Ordinary kriging 
variance (KV) 

Number of composited 
samples (NC) 

Ordinay kriging 
lagrangian (LOK) 

Geological 
confidence 

Count 318,443.0 318,443.0 318,443.0 318,443.0 318,443.0 318,443.0 
Mean 0.34 231.91 0.07 124 -0.01 0.15 
Std dev 0.15 59.19 0.03 70 0.01 0.36 
Minimum 0.00 114.27 0.00 10 -0.06 0.00 
25% 0.26 189.35 0.05 54 -0.01 0.00 
50% 0.33 224.66 0.08 131 -0.00 0.00 
75% 0.42 269.69 0.09 200 -0.00 0.00 
Maximum 2.21 433.19 0.15 200 0.00 1.00 
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Figure 4. Mineral resource categorization. A: QP initial categorization. B: initial categorization with K-

prototype. C: RF smoothed categorization. 

 
Figure 5. Confusion matrix comparing RF-smoothed categorization against initial categorization. A: comparison 

between the QP-based categorization and the RF-smoothed categorization. B: comparison between the K-
prototype-based categorization and the RF-smoothed categorization. 



Cotrina-Teatino et al. Journal of Mining & Environment, Published online 

 

10 

The performance metrics of the Random Forest 
(RF) model indicate a high level of classification 
accuracy, achieving an overall score of 97% (see 
Table 6). The measured resource category attained 
the highest precision (96%) and F1-score (0.96), 
reflecting reliable classification in well-sampled 
regions. Similarly, the indicated category 
maintained an F1-score of 0.96, while the inferred 
category exhibited the highest recall (0.98), 
suggesting that the model effectively identifies 
blocks with greater uncertainty while maintaining 
a low misclassification rate. These results align 
with findings from Afzal et al. [25], who 

demonstrated that machine learning models excel 
at capturing complex spatial patterns, leading to a 
more consistent resource categorization. 
Additionally, studies by Deutsch et al. [10] and 
Mucha et al. [11] emphasize that traditional 
geostatistical techniques often struggle in 
heterogeneous deposits, as they require extensive 
variogram fitting and manual parameter 
adjustments. In contrast, RF automatically learns 
spatial relationships, eliminating the need for 
explicit interpolation models, thereby reducing 
subjectivity and enhancing reproducibility. 

Table 6. Accuracy of mineral resource categorization using the random forest model. 
Resources Precision Recall F1-score 

Measured 0.96 0.96 0.96 
Indicated 0.96 0.96 0.96 
Inferred 0.98 0.98 0.98 
Accuracy   0.97 

 
The distribution of key variables used for 

mineral resource categorization highlights 
differences between the initial QP-based 
classification and the KP-RF smoothed approach 
(see Figure 6). The results show that the VOK is 
generally lower in the KP-RF classification 
compared to QP, particularly in Indicated and 
Inferred categories, suggesting that RF smoothing 
reduces estimation uncertainty and enhances 
spatial consistency. Similarly, the AD is more 
evenly distributed in the KP-RF classification, 
avoiding the extreme values observed in the QP 
method, which indicates a more geologically 
coherent classification. The NS also shows an 
improvement, as KP-RF assigns categories with a 
more balanced distribution of drilling data, 
whereas QP presents higher dispersion, particularly 
in the Indicated and Inferred categories. Finally, the 
copper grade distribution remains similar between 
both methods, indicating that the RF smoothing 
process maintains the geological integrity of the 
deposit while improving classification consistency. 

The confidence level in mineral resource 
categorization reveals significant variations across 
different classification regions (see Figure 7). The 
results show that measured blocks exhibit a higher 
proportion of high-confidence values (blue), 

indicating greater reliability in areas with higher 
drillhole density. In contrast, indicated and inferred 
blocks predominantly display lower confidence 
levels (red), suggesting increased uncertainty in 
regions with sparse sampling. This pattern aligns 
with the findings of Verly et al. [21], who 
demonstrated that spatial variability plays a crucial 
role in resource estimation, particularly in large-
scale deposits. The improved spatial continuity 
provided by RF smoothing helps mitigate 
classification inconsistencies, ensuring a more 
geologically coherent distribution of confidence 
levels. 

The relationship between tonnage and average 
copper grade (Cu%) across different resource 
categories provides insights into the effects of the 
RF-based smoothing process on mineral 
classification (see Figure 8, Figure 9 and Figure 
10). The tonnage vs. grade curve for measured 
resources (Figure 8) confirms the expected inverse 
relationship: as the cutoff grade increases, the 
available tonnage decreases, while the average 
copper grade rises. The close agreement between 
the initial QP classification and the RF-smoothed 
results suggests that the smoothing process 
preserves the overall resource distribution without 
introducing significant distortions. 
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Figure 6. Box-plots of mineral resource categorization comparison. 

Similar trends are observed for Indicated 
resources (Figure 9), where the total tonnage is 
higher than in the Measured category, reaching 
approximately 2.2 Mt. However, the lower average 
copper grade and broader grade dispersion reflect 
the increased geological uncertainty associated 
with this classification. The tonnage vs. grade 
curve for Inferred resources (Figure 10) highlights 
a greater initial tonnage at lower cutoff grades, with 

a steeper increase in copper grade as the threshold 
tightens. This pattern indicates a higher variability 
in the Inferred category, consistent with its lower 
drillhole density and greater geological uncertainty. 
The progressive decline in tonnage with increasing 
cutoff grade aligns with the findings of Coombes et 
al. [8], reinforcing the reliability of the RF-based 
approach in capturing mineralization trends, while 
improving classification consistency. 

 

  
Figure 7. Confidence levels in mineral resource 

categorization with RF 
Figure 8. Tonnage vs. average copper grade curve for 

measured resources using RF. 
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Figure 9. Tonnage vs. average copper grade curve for 

indicated resources using RF. 
Figure 10. Tonnage vs. average copper grade curve 

for inferred resources using RF. 
 
The distribution of blocks across mineral 

resource categories using the RF-based 
classification approach is shown in Table 7. The 
Indicated category contains the highest number of 
blocks (122,240 blocks), followed closely by 
Inferred resources (117,609 blocks), while 
measured resources comprise 78,594 blocks. The 

average copper grade follows a decreasing trend 
from measured (0.43% cu) to indicated (0.33% cu) 
and Inferred (0.31% cu) resources. This pattern is 
consistent with the expected reduction in 
geological confidence and increasing estimation 
uncertainty as resources transition from measured 
to inferred categories. 

Table 7. Number of blocks in mineral resource categorization using RF. 
Resources Number of blocks Copper grade (%) 

Measured 78,594.00 0.43 
Indicated 122,240.00 0.33 
Inferred 117,609.00 0.31 

 
The estimated total tonnage and contained fine 

copper for each resource category are detailed in 
Table 8. Measured resources account for 1,446.13 
Mt, with 5.60 Mt of contained copper, while 
Indicated and Inferred resources contribute 
2,249.22 Mt and 2,164.01 Mt, containing 6.68 Mt 

and 6.04 Mt of fine copper, respectively. The 
Indicated category represents the largest proportion 
of classified material, followed closely by Inferred 
resources, suggesting that a significant volume 
remains in lower-confidence categories.  

Table 8. Total material tonnage and contained fine copper in mineral resource categorization 
Resources Material tonnage (Mt) Contained copper metal (Mt) 

Measured 1,446.13 5.60 
Indicated 2,249.22 6.68 
Inferred 2,164.01 6.04 

 
4. Conclusions 

This work introduced an innovative machine 
learning-based methodology for mineral resource 
categorization in a copper deposit in Peru, 
integrating random forest as a spatial smoother to 
enhance classification coherence and reduce the 
subjectivity inherent in traditional geostatistical 
methods. By incorporating geostatistical and 
geometric variables (kriging variance, sample 
distance, drillhole density, and geological 
confidence), the proposed approach improved the 
spatial consistency of resource classification, while 
maintaining a high degree of accuracy. The overall 

classification accuracy reached 97%, with the 
measured category achieving the highest 
performance (precision = 0.98, F1-score = 0.98), 
followed by indicated (precision = 0.96), and 
Inferred (precision = 0.98), demonstrating the 
robustness of the RF model in mitigating 
classification uncertainty. 

From a volumetric perspective, the total 
estimated tonnage of the deposit was 5,859.36 Mt, 
distributed as follows: 1,446.13 Mt of measured 
resources, 2,249.22 Mt of indicated resources, and 
2,164.01 Mt of Inferred resources. The contained 
fine copper metal was estimated at 5.60 Mt for 
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Measured, 6.68 Mt for Indicated, and 6.04 Mt for 
Inferred resources, highlighting the method’s 
capability to accurately capture mineralization 
trends and improve resource estimation reliability. 
The comparative analysis between the traditional 
QP-based classification, K-prototypes, and the RF-
smoothed approach demonstrated that RF 
significantly reduces category fragmentation, 
achieving a more geologically consistent 
classification aligned with the structural 
complexity of the deposit. 

Despite the advantages of RF in improving 
spatial coherence, some limitations remain. The 
model’s effectiveness may vary in deposits with 
extreme heterogeneity or strong anisotropy, 
requiring additional validation in different 
geological settings. Furthermore, while RF 
enhances classification consistency, its 
interpretability is limited compared to rule-based 
geostatistical methods. For future research, 
extending this methodology to deposits with higher 
structural complexity is recommended, 
incorporating additional economic and operational 
constraints into the categorization process to 
improve strategic mine planning. Moreover, 
exploring hybrid machine learning models, such as 
combining RF with Gradient Boosting or Deep 
Learning architectures, could further enhance 
classification precision. Future work should also 
integrate uncertainty quantification techniques and 
conduct an in-depth analysis of variable 
importance to refine decision-making in mineral 
resource estimation. 

Ultimately, this work provides a novel and 
reproducible framework for enhancing mineral 
resource classification through machine learning, 
offering a more objective, robust, and geologically 
coherent alternative to conventional geostatistical 
approaches. The integration of ML-based models 
in resource estimation represents a promising step 
toward more data-driven, scalable, and adaptable 
classification methodologies in the mining 
industry. 
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  چاپ آنلاین  زیستپژوهشی معدن و محیط -نشریه علمی  و همکاران   تاتینو-کوترینا
  

 

  

 پرو در مس کانسار یک  در جنگل تصادفی مدل از استفاده با  معدنی منابع بنديطبقه

  

  جانی ،1رتاموزو-آرانگو مارینو سولیو ،2کوئیسپ-مامانی نستور خوزه ،1آراوجو-مارکینا جاناتان ژایرو ،*1 تاتینو -کوترینا آنتونیو مارکو
  الکسیس ماکسگابریلو  2الکسی دونیر تئوفیلو دونایر، فلور تئوفیلو ،4واسکوئز- گونزالس الکسیس جو ،3باریوس-ککاتامایو هنري

  5هوایاپا-کالا

  پرو   تروخیلو، تروخیلو، ملی دانشگاه  مهندسی، دانشکده معدن، مهندسی . گروه1
  پرو  پونو، پونو،  آلتیپلانو ملی دانشگاه شیمی، مهندسی . دانشکده2

  پرو آیاکوچو، هوآمانگا، د کریستوبال سان ملی دانشگاه معدن، مهندسی . گروه3
  پرو  تروخیلو، تروخیلو، ملی دانشگاه مهندسی، دانشکده صنایع،  مهندسی . گروه4

  پرو جولیاکا، جولیاکا، ملی دانشگاه صنعتی،  فرآیندهاي مهندسی دانشکده. 5

  03/2025/ 19، پذیرش  01/2025/ 10ارسال 

  mcotrinat@unitru.edu.pe* نویسنده مسئول مکاتبات: 

  

  چکیده:

  براي   K  اولیه  هاينمونه   بنديخوشه  الگوریتم  ادغام  ماشین،  یادگیري  مدل  یک  از   استفاده  با  پرو،  در  مس  کانسار  یک  در  معدنی  منابع  بنديطبقه  کار  این  هدف
 از شده مشتق هندسی و  آماري زمین متغیرهاي از استفاده با  بلوك  318443 مجموع  در. بود فضایی هموارکننده عنوان به) RF( تصادفی جنگل و اولیه بنديطبقه

 دقت،  معیارهاي  از  استفاده  با مدل این.  شدند  بنديطبقه   شناسیزمین   اطمینان  و  هاحفره  تعداد  نمونه،  فاصله  کریجینگ،  واریانس مانند) OK(  معمولی  کریجینگ
 F1 0.98  امتیاز  و درصد  98  دقت  به  شده  گیرياندازه   دسته  که بود درصد  97  کلی  دقت  از  حاکی  نتایج .  شد  اعتبارسنجی  و  شد   داده  آموزش  F1  امتیاز  و  یادآوري

) شده داده نشان( Mt 2249.22 ،)شده گیري اندازه( Mt 1446.13: است شده توزیع زیر شرح به که بود تن میلیون 5859.36 تخمینی تناژ مجموع. یافت دست
  عینیت   ترکیبی  رویکرد  این  آمار،زمین   سنتی  هايروش   با  مقایسه  در  %0.33  %0.33  و  %0.43  ترتیب  به  مس  عیار  میانگین  با  ،) شده  استنباط(  Mt  2164.01  و

  بندي  طبقه  تناقضات  که  است  قوي  ابزار  یک  RF  مدل.  رساندمی  حداقل  به  را  هادسته  بین  ناگهانی  انتقال  و  بخشدمی   بهبود  را  تکرارپذیري  و  فضایی  تداوم  بندي،طبقه
 ،K-Prototypes  با  RF،  ANN  با  K-means(   ترکیبی  هايمدل   باید   آینده  مطالعات.  کشد  می  تصویر  به   بهتر  را  شناسی  زمین  قطعیت  عدم  و  دهد  می  کاهش  را

 . کنند ترکیب منابع برآورد در گیريتصمیم  سازيبهینه براي را اقتصادي متغیرهاي  و کرده بررسی را) عمیق  یادگیري و گرادیان، تقویت

  .تیحساس لیتحل ن،یشکل زم رییتغ ،يعدد يمدلساز ،یبدون ترانشه، لوله ران يهاروش کلمات کلیدي:

 

 

 

 


