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 Mining activities cause environmental pollution. Satellite remote sensing is 
considered an effective strategy for monitoring pollution, as other direct methods of 

testing soil pollution levels are often costly and face accessibility challenges in certain 

areas. Unlike optical sensors, radar systems can capture data in all weather conditions 

and operate around the clock.  However, radar systems do not display details and 

borders of zones and lack multispectral data collection capability. Consequently, 

combining various characteristics of optical images and radar data offers a 

comprehensive approach to monitoring pollution. Given these pros and cons, a 

combination of optical and radar images from the Sentinel satellite was employed in 

this study to identify surface and physical pollution areas caused by mining activities. 

The proposed method is a combination of Curvelet Transform, Simple Linear Iterative 

Clustering, Principle Components Analysis, and integration of radar and optical results 

using a statistical based clustering scheme, which allows the detection of contaminated 
zones. This research benefits from several innovative strategies, such as the separate 

processing and integration of optical and radar images, the simultaneous application of 

the curvelet transform and principle component analysis, and the utilization of two 

distinct clustering methods. Finally, the results obtained from radar and optical images 

of the Damghan region in Semnan province, Iran, on a 1 to 100.000 scale showed the 

proposed methodology can segment the contaminated zone caused by the eastern 

Alborz coal preparation plant through soil pollution modelling. 
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1. Introduction 

Humans and industries are the primary causes 

of environmental pollution. In recent years, rapid 

environmental pollution has been witnessed due to 

the increasing growth of human populations and 
industries. Mining and related activities are among 

industries that adversely affect the environment, as 

they release toxic substances. The accumulation of 
pollution at the ground level, their introduction to 

the food chain, or their direct harmful effects on 

vegetation are among the most adverse 
consequences of mineral pollution. 

Although coal mining in Iran occurs 

underground, various associated processes 

contribute to environmental pollution. These 
include logging and tailing disposal, blasting and 

explosions for extracting coal, drilling holes for 

storing substances and overburden, as well as 

supplementary activities such as constructing roads 

and access routes, developing facilities for 
workers, and continuous operation of heavy 

machinery and coal transporting trucks [1]. 

Moreover, tailing disposal and waste practices in 
open space often result in soil and surface water 

pollution, negatively impacting the surrounding 

area. A coal mining factory built near the mine also 
indirectly contributes to pollution due to the release 

of soluble coal elements during the coal dressing 

process, which can harm animals and insects. 

Several methods can be employed to monitor 
pollution and enforce preventive laws that require 

http://www.jme.shahroodut.ac.ir/
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mine owners to invest in prevention measures and 

appropriate equipment. Geophysics, geostatistics 

and remote sensing data processing are the most 
common approaches used in this field [2]. 

Mining sites are often situated in remote 

locations with difficult access to mineral resources. 
The application of instrumentation, sampling, 

surveying, and photogrammetric measurements 

typically requires the collaboration of 
multidisciplinary teams over an extended period. 

As a result, visual inspection and data collection 

through field investigation can be time-consuming, 

and require significant financial investment. In 
contrast, remote sensing strategies enable the rapid 

collection of data over large areas and give an 

estimate of the polluted area. Advances in 
technology, coupled with an increase in the number 

of sensors and satellites, have facilitated access to 

up-to-date and cost-effective information about 
what is happening on the earth.  

Remote sensing enables the monitoring of hard-

to-access areas through land cover maps. Another 

significant advantage is to cover large areas in a 
short time. Nowadays, the increased number of 

satellite, airborne, and land-based sensors has 

made remote sensing data more cost-effective. 
Moreover, in cases where records are inaccessible, 

remote sensing data archives provide valuable 

historical land-use maps and records. Remote 

sensing also offers the advantage of facilitating 
regular inspections of targeted areas by 

programming satellites and establishing a 

comprehensive historical data archive through 
continuous data collection [3].  

Methods for measuring pollution and 

identifying contaminated zones using remote 
sensing data can be categorized into practical, 

semi-practical, and physical models. Commonly 

used empirical models include short wave infrared 

spectral feature space-based pollution retrieval 
models, active-passive remote sensing-based 

participatory retrieval models utilizing genetic 

neural network algorithms, normalized spectral 
slope absorption index-based models, and near-

infrared spectral feature space-based pollution 

retrieval models.   
Semi-empirical models comprise paired models 

for pollution monitoring based on active-passive 

remote sensing and polarization reflectance data-

based retrieval models. Due to their theoretical 
complexities, quantitative studies have primarily 

focused on physical models. A typical physical 

model relies on the bidirectional reflectance 
properties of contaminated soil, simulating soil 

reflectance under both normal and contaminated 

conditions and establishing a connection between 

bidirectional soil reflectance and the contaminant. 

In summary, physical models assess pollution 
characteristics based on the reflection of the soil 

surface. However, prior knowledge is crucial for 

applying empirical models, which are usually 
obtained from terrestrial measurements. Semi-

empirical models combine elements from both 

empirical and physical approaches, allowing for 
simultaneous pollution monitoring using both 

theoretical knowledge and practical methods.  

The issue of pollution control in mines, 

particularly in large mines and their surrounding 
areas, is of utmost importance due to the challenges 

associated with monitoring pollution using remote 

sensing data. Damghan region, due to the wide 
area, access issues in many locations, and the 

presence of coal refinery plant, is important in 

terms of continuous pollution monitoring, which 
satellite images make possible on a weekly basis. 

Consequently, the present research proposes a 

novel methodology for detecting contaminated 

zones on the ground level due to coal mining 
activities, on a scale of 1 to 100.000 in Damghan 

region, Semnan Province. This method 

simultaneously combines radar and optical satellite 
data.   

The key innovations of this approach include:  

• Separate processing of radar and optical images, 

enabling aggregation of the results obtained to 

enhance the overall precision 

• Simultaneous utilization of the Curvelet Transform 

and Singular Value Decomposition, enabling 

simultaneous utilization of radar and optical 
images, generating a high-quality image and 

improving pollution delineation accuracy 

• Utilization of a pair of clustering methods to 

improve image segmentation and pollution 

detection accuracy  

2. Literature Review 

Heavy metals (mercury, cadmium, copper, 
etc.), radioactive substances (uranium, thorium, 

Radium, etc.), as well as acidified and salinated 

substances, are the primary causes of soil pollution 
in ore fields [4-7]. Remote sensing techniques can 

effectively monitor all these pollutants, with heavy 

metals being particularly important [4, 8]. The 
concentration of heavy metals in soil can be 

inferred from reflection spectra, deformation, 

vegetation growth, or soil physical and chemical 

properties such as organic matter content, 
mechanical characteristics, composition, nutrient 

content, pH, and electrical conductivity [9, 10]. In 
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a laboratory setting, remote sensing techniques can 

monitor heavy metal concentration in soil by 

developing a corresponding mapping model based 
on soil spectral reflectance data [11, 12]. 

Kopeć et al. [13] studied the environmental 

impacts of coal mining in an underground mine in 

Poland using spectral indices, satellite radar 

interferometry, Global Positioning system tools, 

and machine learning algorithms. They utilized 
optical, radar, geological, hydrological, and 

meteorological data along with the stochastic forest 

algorithm in their study.  
Zhu et al. [14] proposed several models for 

predicting soil nutrient content in coal mines. The 

methods used for this investigation included 
topography and remote sensing data, empirical 

mode decomposition, and multiple linear stepwise 

regression. 

Another study focused on examining land 
cover, temperature, soil moisture, and specific 

humidity using remote sensing and multi-resource 

data extraction techniques [15]. The author 
analyzed long-term environmental changes, 

cumulative ecological impacts, and environmental 

harm caused by mining activities. 

Saini et al . [16] investigated the on-site 

environmental impact of coal mining using data 

obtained from the Landsat satellite. They employed 
a dynamic threshold technique to study land 

changes in coal fire areas using thermal infrared 

data. Findings demonstrated that field investigation 

and remote sensing data can serve as a powerful 
tool for understanding mining-induced 

environmental impacts on a massive scale. 

Remote sensing data was used to monitor and 
explore environmental changes in the area 

surrounding coal mines [17]. Four methods based 

on sample image, classification, correlation, and 
distance were employed in this investigation. Ali et 

al. [18] utilized remote sensing techniques to 

monitor the coal mining process, aiming to 

mitigate the adverse effects of coal mining 
activities. For this study, Landsat 7 and 8 imagery, 

along with a three-stage approach involving 

vegetation index analysis, land cover mapping, and 
change detection strategies were utilized. Tasseled 

Cap Transformation was employed for image 

classification.  
Wang et al. [19] integrated proximal sensing 

data and soil axillary data, such as pH and organic 

matter content to enhance the estimation of soil 

chromium content. Spectral sensing and 
measurement techniques were utilized to evaluate 

chromium levels in the soil.  

The impacts of mining activities and climate 

changes on the ecosystem and land cover in the 

targeted zone were analyzed using remote sensing 
data [20]. For this study, the on-site weather 

forecasts, remote sensing, time trend analysis, and 

partial correlation were employed to investigate 
spatial and temporal changes in the ecosystem and 

land cover of the studied zone and predict 

vegetation growth.  
Yang et al. [21] developed models to predict 

soil organic content based on field sampling and 

Landsat imagery for different land use types 

(grasslands, forests, agricultural lands, and 
wasteland) in China’s largest coal mining area. The 

models were used to estimate soil organic matter 

across the mining area from 1990 until 2020. 
Some research has also been conducted to 

evaluate the impact of climate change and human 

interference on soil organic matter, confirming the 
accuracy of satellite data. A study analyzed the 

impacts of mining activities on land cover in a 

tropical forest in India from 2001 until 2019, using 

GPS and remote sensing data [22]. Landsat data 
was utilized in this research.  

Liu et al. [23] developed an ecological remote 

sensing index for open mines using the Salinity 
Index (SI-T), the new Gravel Land Index (NGLI), 

and the Land Deterioration Index (LD). They 

adopted a quantitative measure involving a random 

forest model and the Difference-indifference (DID) 
approach to evaluate the impacts of mining 

activities on the Goubi mine ecosystem. 

A study evaluated land cover around China’s 
slate quarries from 2001 to 2010 using remote 

sensing imagery [24]. The methods used for this 

study were decision trees and change detection 
techniques.  

Xiao et al . [25] used a convolutional neural 

network called RATT-UNet to segregate roads 

from their surrounding areas in satellite images. U-
Net is a convolutional neural network initially 

developed for image segmentation, offering much 

precise partitioning, and has been widely applied in 
numerous research [26-29]. Singh et al. [30] 

discussed various methods used to assess landslide 

susceptibility, including remote sensing. Sinha et 
al. [31] used remote sensing data to analyze land 

subsidence. They gave inestimable perceptivity of 

the dynamic processes associated with land 

subsidence. Regarding mining site monitoring, 
landslide risk management and modelling 

behaviour of different parameters and pollutants 

based on remote sensing, some recent studies have 
been done in [32-37]. Also, some studies have been 
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conducted on atmospheric parameters modelling 

such as rain and humidity [38-39]. 

From the discussed studies, it is evident that a 
combination of on-site measurements and various 

optical and radar satellite images across different 

wavelengths has been utilized to examine 
contaminated zones. Previous research can be 

classified into two types: detection of contaminated 

zones and estimation of pollution levels. The latter 
often involves on-site measurements or sampling 

for validation. While multiple techniques have 

been employed for satellite data processing, 

machine learning methods are among the most 
widely used. Based on our knowledge, the 

proposed scheme includes processing different 

bands of optical and radar data using Curvelet 
transform, combining each type of data using PCA, 

applying segmentation methods separately, and 

then integrating the results has not been used in any 
of the previous studies.   

3. Material and methods 

Figure 1 depicts a block diagram of the 

proposed methodology. According to the block 
diagram, the input data consists of Sentinel satellite 

optical bands and radar data in VV and VH modes. 

These bands are then individually processed 
through the Curvelet transform. 

The curvelet processed Images are then input 

into fuzzy classifiers and extracted as superpixels. 
Subsequently, these two classes are fused 

separately into the optical and radar data. After 

synthesizing the results of these two stages, the 

contaminated zone is selected based on radar and 
optical weighted aggregation and identified as a 

pollution zone. The curvelet transform, PCA, and 

superpixels are the primary steps of the proposed 
method. 

 

 
Figure 1. Block diagram of the proposed methodology 

1.3. Input image and its bands 

For this study, sentinel satellite imagery was 

used [40-42]. Sentinel is the first satellite 

developed by the Copernicus Program, operated by 
the Europe Space Agency. It is part of the most 

comprehensive earth-monitoring program 

developed by the European Commission, to 
acquire frequent, high-quality big data over land. 

Other goals of the program include providing 

accurate information, improving environmental 

management, and understanding the effects of 
climate change. Sentinel-1 comprises Sentinel-1A 

and Sentinel-1B satellites, sharing a joint orbit 
plate. Sentinel-1 is still operational [40]. It can 

supply data under all weather conditions and at any 

hour of the day or night, with a special resolution 
of up to 5 meters. The satellite has a 12-day revisit 

cycle. Sentinel-2 is an optical satellite with 13 

bands [41]. The primary objective of launching 
Sentinel-2 was to map climate changes, monitor 

land, and observe environmental parameters. 

Another notable characteristic of this satellite is its 

ability to provide select special resolutions of 10 m, 
20 m, and 60. Table 1 lists different bands of 

sentinel-2 [40, 42]. 
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Table 1. Different bands of Sentinel satellite images 

Band Band characteristics Wave Length (µm) Resolution (m) 

1 Special blue (coastal & aerosol) 0.443 60 

2 Blue 0.490 10 

3 Green 0.560 10 

4 Red 0.665 10 

5 Near-infrared 0.705 20 

6 Near-infrared 0.740 20 

7 Near-infrared 0.783 20 

8 Near-infrared 0.842 10 

8A Near-infrared 0.865 20 

9 Short wave infrared (water vapor) 0.945 60 

10 Short wave infrared (Cirrus) 1.375 60 

11 Short wave infrared 1.610 20 

12 Short wave infrared 2.190 20 

 
Bands 3-4 of Sentinel satellite and data from 

VV and VH radar were used in this study. 

2.3. Curvelet 

The curvelet transform is a multi-scale 

transform designed to address the limitations of 

other multi-scale transform methods such as 
wavelets [43]. The geometrical properties of 

curvelet transform distinguish it from wavelet and 

other corresponding transforms. Its most important 

characteristics include [44-48]: 
• Accurate representation of curved objects with 

minimal error 

• Addressing the deficiencies of wavelet 

transform in describing curves, and effectively 

adapting to various images 

• Demonstrating reduced sensitivity to noise 

compared to wavelets 

Curvelet has been used in pollution detection 
methods to highlight the edges and borders in 

satellite images and increase the efficiency of 

detection [49-52]. 

2.3.1. Continuous curvelet transform 

The curvelet transform aims to develop a basic 

curvelet φ to analyze both signals and images by 

transforming, scaling, and rotating the basic 
curvelet. In the curvelet space, x denotes the spatial 

variable, ω represents frequency, with r and θ 

signifying polar coordinates in the frequency 
domain. The transform process begins with a pair 

of windows, W(r) and V(t), referred to as the 

‘radial window’ and ‘angular window’, 
respectively. Both windows are positive, real-

valued, and smooth [43]. 

∑  

∞

j=−∞

 W2(2jr) = 1, r ∈ (
3

4
,
3

2
) (1) 

∑  

∞

ℓ=−∞

 V2(t − ℓ) = 1,   t ∈ (−
1

2
,
1

2
) (2) 

W takes positive arguments and supported on 

r ∈ (
1

2
, 2) and V takes angle arguments and 

supported on ∈ [−1,1]. These functions satisfy the 

following conditions: 

For every j ≥ j0, with scaling parameter j, the 

frequency window Uj in Fourier space is given by: 

Uj(r, θ) = 2−
3j
4 W(2−jr)V (

2
[

j
2

]
θ

2π
) (3) 

Where [
j

2
] is an integral part of  

j

2
 . Uj is known 

as a ‘polar wedge’. The author utilized the 

symmetric sample in functions 3-4 to generate real-
valued curvelets: 

𝑈𝑗(𝑟, 𝜃) + 𝑈𝑗(𝑟, 𝜃 + 𝜋) 
The waveform (𝑥) is defined by Fourier 

transform as (𝜔) = (𝜑̂(𝜔), where, (𝜔1, 𝜔2) is a 
window in polar coordinate defined by functions 3-

4. 𝜑𝑗 is the mother curvelet. A family of curvelets 

is generated by rotating and transforming the basic 

curvelet. Rotation angles are defined by θℓ = 2π ⋅

2−⌊
j

2
⌋

⋅ ℓ,    ℓ = 0,1,  𝜃𝑙 < 2𝜋 < 0 [43, 46], and و …

the distance between continuous angles relies on 

the scale. The transform parameter is defined by 𝑘 

= (𝑘1, 𝑘2) ∈ 𝑍2. Given the scale 2-𝑗, rotation 𝜃𝑙, and 

location xk
(j,ℓ)

= Rθℓ

−1 (k1 ⋅ 2−j, k2 ⋅ 2−
j

2), the 

curvelet is defined by: 

φj,ℓ,k(x) = φj (Rθℓ
(x − xk

(j,ℓ))) (4) 

Where, 𝑅𝜃 is the rotation matrix given by: 

Rθ = (
cos θ sin θ

−sin θ cos θ
) ,  Rθ

−1 = Rθ
T = R−θ (5) 
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Where 𝑅𝜃𝑇 is the transpose of matrix 𝑅𝜃. The 

curvelet coefficients are generated by the inner 

product of f ∈ L2(R2). 𝜑𝑗,𝑘,𝑙 . 

c(j, ℓ, k) = ⟨f, φj,ℓ,k⟩ = ∫  
R2

 f(x)φj,ℓ,k(x)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ dx (6) 

Finally, the original function can be 
reconstructed from the set of curvelets as follows: 

𝑓 = ∑  

𝑗,ℓ,𝑘

 𝑐(𝑗, ℓ, 𝑘)𝜑𝑗,ℓ,𝑘 (7) 

2.3.2. Discrete curvelet transform 

The discrete curvelet transform is based on a 

discretized Ridgelet transform [53]. This approach 

reduces computational redundancy and 
significantly increases processing speed. Discrete 

curvelet transform is based on a multi-scale 

Ridgelet transform using a band-pass filter to 
separate the image into different scales [43]. After 

applying the curvlete transform on the image, the 

coefficients can be divided into three levels 
including Detail, Coarse, and Fine. Lower 

frequency coefficients are attributed to Coarse, the 

innermost level. Higher frequency coefficients are 

attributed to Fine, the outermost level. Lastly, 
medium frequency coefficients are attributed to 

Detail. In some studies, a combination of the 

curvelet transform with other methods has been 
used to improve the performance of the curvelet 

transform [44-46; 48]. The details of the 

implemented curvelet are given in section 4.1. 
As mentioned earlier, in the present study, SAR 

(radar) and optical images were first transformed 

into the curvelet space. Then, the necessary 

processing, such as noise removal and inessential 
data elimination, was performed. Finally, the final 

image was obtained by applying the inverse 

curvelet transform. When these steps have been 
completed, the image generated by the curvelet 

transform is now ready to be processed in the next 

steps. 

3.3. Principal component analysis 

Principal component analysis (PCA) is an 

unsupervised method used in this research for 

weighting to determine the significance of data in 
each optical and radar band or for combining 

results [54]. 

PCA is often applied when working with high-
dimensional data. As the number of dimensions in 

the feature vector increases, reducing features 

becomes challenging. Real data can be often 

described in a lower-dimensional representation. 

PCA is the most straightforward, yet effective and 

fast, mathematical technique to find a lower-

dimensional representation. In PCA, it is assumed 

that there are n D-dimensional {yi} data vectors: 

yi ∈ ℝD. The goal is to replace them with lower-

dimensional C dimensional {xi} vectors, where 

C<D. Initially, a linear relation assumed as follows 
[54]: 

y = Wx + b = ∑  

C

j=1

 wjxj + b (8) 

Matrix W can be considered a set of C basic 

vectors W = [w1, … , wC]. This model resembles 

linear regression, but if data contains Gaussian 

noise, Xs are not merely linear parameters with 
uncertainty but also include noise. To learn the 

model, the partial least square problem is assumed 

as follows [54]: 

𝑎𝑟𝑔 𝑚𝑖𝑛
𝑾,𝒃,{𝒙𝑖}

  ∑  
𝑖

  ∥∥𝒚𝑖 − (𝑾𝒙𝑖 + 𝒃)∥∥
2
 

(9) 

 subject to 𝑾𝑇𝑾 = 𝑰 

Constraint WTW = I denotes W is an 
Orthonormal mapping. Similarly, it can be 

demonstrated as follows: 

wi
Twj = {

1 i = j
0 i ≠ j

 (10) 

This constraint is employed along with the 

following algorithm to minimize function 9 [54, 

55]: 

1. b=1N∑i yi 

2. K=1N∑i yi−byi−bT 

3. If  VΛVT=K is assumed an eigenvector K, 

Λ Λ=diagλ1,…λD will be a diagonal matrix of 
eigenvalues. The matrix V includes eigenvectors  

𝑉=𝐕1,…𝑽𝐷 and is an orthonormal matrix 𝑉𝑇𝑉=𝐼. 
4. In this step, eigenvalues and their 

corresponding eigenvectors are sorted decent. 
(λi≥λi+1) 

Matrix W consists of the C largest eigenvectors. 

W=V1,…VC 
6. Given W, the following relation holds: 

xi=WTyi−b 

Accordingly, for any new input we have: 

xnew ∗=WTynew −b 
The following approach is employed to 

combine a pair of images using PCA [56, 57]: 

1. Two images are first converted to a column 

vector, resulting in a matrix Z of size 2× N. 

2. The average of each column (representing pixels 

of each image) is calculated separately. 
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3. The average of every image is subtracted from 

the column values of the same image, ensuring 

the average of each column is zero. The final 

matrix is denoted as X2×N. 

4. The covariance matrix X is computed using the 

following equation: 

Cov(X) = C2×2 = XXT 

5. Eigenvectors (V) and eigenvalues (D) of the 

covariance matrix are computed. The 

eigenvector corresponding to the greater 

eigenvalue is selected. 

6. Finally, the weighting coefficients for each image 

are computed using the following equation: 

P1 =
V(1)

∑ V
 

P2 =
V(1)

∑ V
 

When the number of images exceeds two, such 

as optical bands in this research, images are 

compared pairwise, and the weighting coefficient 

for each image is computed as the sum of its 

weighting coefficients against all of the normally 
computed images. 

3.4. Superpixels 

Superpixel algorithms group pixels into 
significant regions and can be used to replace the 

image structure in similar regions. Using 

superpixels reduces image redundancy, provides a 
primary method for evaluating image 

characteristics, and significantly simplifies image 

processing operations, such as segmentation [58]. 

Superpixel algorithms are generally divided into 
two main categories: 1- graph-based methods and 

2- descending gradient-based methods. This 

research utilizes the Simple Linear Iterative 
Clustering algorithm (SLIC), following this 

methodology [59]: 

 

/ Initialization/ 

1. Regular selection of cluster centers Ck in different 
regions of the image 

2. The algorithm shifts centers to the location of the 

lowest gradient in a 3×3 neighborhood. 

3. Selecting l(i) = −1 and distance d(i) = ∞ for all 
pixels 

Do  

for each 𝐶𝑘    
for each pixel i in a 2S×2S region around 𝐶𝑘 do 

Compute the D between 𝐶𝑘 and i 

if D < 𝒅(𝒊)  

𝒅(𝒊) = 𝑫 

𝒍(𝒊) =  𝒌 

end for 

end for 

Compute new cluster centers  

Compute residual error E 

while 𝑬 ≤ 𝒕𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 

 

In the SLIC algorithm, the unspecified 

parameters are D, S, and threshold. K denotes the 

number of superpixels and is assumed known. The 

SLIC algorithm computed distance D in using the 

following relations, considering the significance of 
spatial distance and color differences of pixels. 

Ds(x, X) = √(x − x′)2 + (y − y′)2 (11) 

Dc(x, X) = √(r − r′)2 + (g − g′)2 + (b − b′)2 (12) 
 

Finally, [45]: 

D = √
Ds(x, X)2

S2
+

Dc(x, X)2

m2
 (13) 

There are various methods for initialization of S 

and m [59-62]. 

4. Results and discussion 

Firstly, radar and optical images of the targeted 
zone were captured from Sentinel satellite data. 

Table 2 presents the longitude and latitude of the 

studied zone. 
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Table 2 . The longitude and latitude of the studied 

area 

Longitude 54.8784 54.0716 

Latitude 36.4195 36.1301 

 

Figure 2 provides an image of the studied area. 
The case study is the Tazareh coal mining area and 

the surrounding region between Shahroud and 

Damgan regions, Semnan province, Iran. Coal 
seams in this area show a dip angle between 35 to 

50 degrees, and their thicknesses vary from 0.4 to 

1.8 m. The selected area also includes the eastern 
Alborz coal preparation plant. The pollution caused 

by this coal mine and coal preparation plant makes 

the selected area a proper case for investigation 

using the proposed method. Figures 3-5 show 
optical imagery of RGB bands, a near-infrared 

image, and radar imagery of the study area using a 

VH band based on data collected from the Sentinel 
satellite. 

 

 
 

4.1. The curvelet transform 

For this study, the approach in [63, 64] was 

employed to use Curvelet for segmentation. Once 
the coefficients of various curvelet levels (detail, 

coarse, and fine) were extracted, the coefficients of 

lower and higher frequencies (the innermost and 
outermost layers) were separated. Figures 6-8 show 

a normal image of a typical optical band, an image 

after removing the outermost layer, and an image 
after removing the innermost layer. A blur is 

observed in the image after removing the innermost 

curvelet channel and edge enhancement after 

removing the outermost curvelet channel as shown 
in Figures 7 and 8, respectively. This demonstrates 

the effectiveness of the curvelet transform in 

highlighting details.  
In this research, the curvelet transform was 

applied separately to all bands. After removing the 

outermost layer, the edge enhancement process 
was performed on each image. Compared to other 

edge enhancement methods, such as gradient-

based techniques, the curvelet transform preserve 

is more effective in preserving image details.  

 
Figure 2. Studied area 

The curvelet transform used in this study has 

four levels (in addition to the initial approximation 

level), with the number of levels in each layer being 

[5,4,4,3] respectively. The implemented curvelet 
transform uses local Ridgelet. MATLAB [65] was 

used for the implementation of the curvelet 

transform in this research.  

The output of this step is considered the input 

for the superpixel processing, where each image 
should be processed individually by superpixel 

processing. 
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Figure 3. Optical image of the targeted area 

 
Figure 4. IR image of the targeted area 

 
Figure 5. Radar image from the VH band of the targeted area 
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Figure 6. Single-band optical image 

 
Figure 7. Optical image after removing detail channel in the curvelet transform 

 
Figure 8. Optical image after removing approximation channel in the curvelet transform 

4.2. Superpixel 

To apply the superpixel algorithm, curvelet 
images are first combined and then processed by 

the superpixel algorithm. More weight was given 

to the infrared wavelength compared to three RGB 
bands, using the PCA algorithm for combining the 

curvelet images. Figure 10 shows the result of 

applying the superpixel algorithm with 500 
segments to optical and VV/VH radar bands 

separately. Figure 11 shows the panchromatic final 

image obtained from Figure 9, along with the result 

of applying the superpixel algorithm with 500 

segments (red arrow). 
Figure 12 shows the application of the 

superpixel on the curvelet output resulting from the 

combination of VV and VH bands. The image was 
magnified to enhance the resolution in the 

contaminated area. As can be seen from Figure 12, 

although the contaminated area has been specified, 
there are some differences in boundaries between 

the contaminated zones specified by the radar 

image and the optical image (Figure 11). Finally, 

two images were combined to enhance accuracy 
and address weaknesses in their results. 
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Figure 9. Panchromatic image for the curvelet transform of optical bands 

 
Figure 10. The superpixel for the curvelet transform of Radar and Optical data separately 

 
Figure 11. Superpixel for curvelet panchromatic image 

3.4. Results synthesis 

As can be seen from Figures 10 to 12, 

boundaries obtained from the superpixel 
application on optical and radar curvelets are not 

identical and both exhibit some errors. In the final 

step, both optical panchromatic and radar curvelet 
images were combined to minimize weaknesses 

and enhance the accuracy of the obtained 

boundaries. Figure 13 presents the final result.  

Selecting an appropriate lighting threshold for 

the contaminated areas clustering in both radar and 

optical images is crucial. For example, in the case 
of optical images, utilizing variance and the 

coefficient of variation lighting helps separate the 

contaminated zone from shadows. The reason for 
choosing these statistical properties is that the 

variation of lighting intensity of the contaminated 

area has a greater shadow because the shadow is 
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uniform but the contaminated area has tangible 

lighting changes. 

The coefficient of variation (Equation 14) is 
another statistical criterion used in region 

clustering to differentiate the contaminated area 

from shadows [66]. 

CV =
σ

μ
 (14) 

In the above equation,  and  denote the 

standard deviation and lighting average of pixels 
for the contaminated area in the optical image. The 

coefficient of variations in the contaminated area 

due to the greater standard deviation and lower 
average lighting value than shadows, and, at the 

same time, a greater standard deviation and lower 

average lighting value from normal areas can help 

differentiate uncontaminated areas from 

contaminated ones. In the case of radar images, the 

conditions and threshold levels differ, but the 
criteria remain the same. The strength of radar lies 

in its more accurate resolution for boundary 

detection, even with its potential errors.  
As can be seen from Figure 13, the 

contaminated area was accurately and effectively 

differentiated from shadows and other areas, with 
no error in ridging. This indicates the successful 

use and combination of previously mentioned 

statistical criteria. Thus, synthesizing optical 

images and radar data minimizes their weaknesses, 
and selecting an appropriate threshold level 

facilitates the definition of the ridge based on 

contamination properties and the separation from 
other zones. 

 

 
Figure 12. Superpixel for the curvelet transform of radar data 
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Figure 13. Final result. Latitude and Longitude units were shown in Decimal Degrees. 

4. Conclusions 

This research proposed a hybrid method using 

optical images and radar data captured from the 

Sentinel satellite to differentiate contaminated 

areas on a scale of 1 to 100.000 in the Damghan 
region. According to this approach, the curvelet 

transform was first applied on various bands of 

optical images and radar data, effectively removing 
insignificant data (through deletion of initial 

curvelet channels) while preserving essential 

details such as boundaries between different 

regions. Then optical images were combined, and 
radar band data was also synthesized to obtain a 

primary ridge based on optical images and a 

secondary ridge based on radar data using pre-
processed data done by the curvelet transform and 

Simple Linear Iterative Clustering algorithm. 

Based on the demarcations obtained from 
optical and radar data, it is evident that although 

these methods successfully identified the 

contaminated area, both exhibit some inaccuracies 

in accurately differentiating the contaminated zone 
from the surrounding area. Ultimately, the 

proposed methodology overcomes the 

shortcomings of both optical and radar methods by 
fusing the two resulting images and considering 

various thresholds based on the properties of radar 

and optical data. Additional criteria such as 
lighting levels, pixel variations in the contaminated 

area, and the coefficient of variation in lighting of 

the contaminated area were also taken into account 

to increase accuracy. To our knowledge, these new 
insights gained from the current study have not 

been previously explored in the field of mine 

pollution monitoring. The quality of the result on a 
scale of 1 to 100.000 in Damghan region, Iran, is 

satisfying and comparable to commercially 

available visual methods. The proposed method 
overcomes limitations of the existing remote 

sensing techniques in monitoring mining-related 

pollution which use optic or radar data separately. 

The main limitation of the proposed method is 
the difficulty in estimating pollutants in the depth 

of soil. Human activities and the complex dynamic 

environment of mining can also affect the soil 
quality, requiring higher performance from 

satellite sensors to monitor it effectively through 

remote sensing technology. Despite the progress in 

remote sensing technology, the main drawback of 
optical/radar sensor systems is their lack of 

specificity and sensitivity and their inability to 

assess the environmental concentration of soil 
pollutants.  

It is suggested that further research be 

undertaken using the methodology proposed in this 
study to assess various types of pollution or 

adaptations of the methodology in other 

geographic regions with similar pollution, such as 

the Zarand mining site in Kerman and Parvadeh 
Tabas coal mine in Tabas, both these mines are in 

Iran. 
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سنجش از   یاهماهوار   یها . داده گرددی م یطیمح  ستیز  یهای آلودگ  جادیمنجر به ا یاستخراج منابع معدن

به مناطق    یخاک و بعضا عدم امکان دسترس  یآلودگ  نیی تع میمستق یهاروش   ریبودن سا  برنهیهز  لیدور به دل 

های رادار نور، سنجنده   هاینده. برخلاف سنجشودی محسوب م  یآلودگ  صیتشخ   نهیمناسب در زم  یمختلف روش

توانند  در همه نوع شرایط آب و هوایی و در تمام شبانه روز توانایی اخذ داده را دارند. در مقابل، تصاویر رادار نمی 
 ی فیبصورت چندط   ینور  یهااطلاعات آنها مانند داده   نیو لبه مناطق را به وضوح مشخص کنند و همچن   اتیجزئ

تر تواند یک دید کامل های رادار میمختلف از تصاویر نور و داده   اتیخصوص  بی ترک  نابراین. بباشدی در دسترس نم

ماهواره  یو رادار  ینور  ریتصاو  بیاز ترک  قیتحق   نیفوق در ا  حاتی کند.  با توجه به توض  جادیا  یآلودگ  شیاز پا

 قیتحق  نیمعدن، استفاده شده است. روش استفاده شده در ا   یکیزیو ف  یسطح  یآلودگ  هیتهیه ناح  یبرا  نل،یسنت
دو حوزه   ج ینتا  بیو ترک  یاصل  یهامؤلفه   لیساده، تحل  یتکرار  یخط  یکرولت، خوشه بند  لیبا استفاده از تبد

و نور به دست   ج ینتا  ع یو رادار و تجم  ینور  ریتصاو  ی کند. پردازش مجزا  یمنطقه آلوده را مشخص م  یرادار 

مختلف از   یبندو استفاده از دو روش خوشه  یاصل  ریبه مقاد  هیتجزکرولت و    لیآمده، استفاده همزمان از تبد

بدست آمده با استفاده از   ج ینتا   تیمطالعه است. در نها  نیدر ا  یشنهادیها و نقاط قوت روش پ  یجمله نوآور
  ی آلودگ  یقادر است با مدلساز  یشنهادیمنطقه دامغان نشان داد روش پ  1:100000برگه    یو نور  یرادار  ریتصاو

 .کند یم  کیمناسب تفک اریقسمتها، با دقت بس  ریمنطقه آلوده را از سا ک،خا

  کلمات کلیدی 

 نل ی ماهواره سنت

 از دور  سنجش

 کرولت  لیتبد

 ی لفه اصل ؤم زینالآ

 وژن یف
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