Document Type : Original Research Paper

Authors

1 TATA STEEL LTD.

2 Data and analytics, TCS, Kolkata 700156, India

3 Prof. Department of Mining Engineering, Bengal Engineering and Science University, Shibpur

10.22044/jme.2025.14801.2812

Abstract

The optimal layout of the stope (stope boundary) in an underground metal mine maximizes the profit of a deposit, subject to the geotechnical and operational mining constraints such as stope length, stope width, stope height. Various approaches have been introduced to address the stope boundary optimization problem, but due to the computational complexity and numerous practical constraints, the existing models offer partial solutions to the problem. In the present work, a mixed integer programming model has been developed by incorporating mining constraints in a three-dimensional framework.  This model is developed based on profit maximization. The sensitivity analysis applied in a case study mine indicates that the model is efficient in assessing the upside potential and downside risk of profit under fluctuating metal prices and mining costs. Additionally, it can be applied at different stages of mine design to facilitate resource appraisal, selection of stoping methods, and comprehensive mine planning. In a practical application on a real orebody, it shows that the proposed model can generate upto 37.32% more profit compared to current stope design practice in the mines.

Keywords

Main Subjects