Document Type : Original Research Paper

Authors

1 Department of Mining Engineering, Faculty of Engineering, National University of Trujillo, Trujillo, Peru

2 Faculty of Chemical Engineering, National University of the Altiplano of Puno, Puno, Peru

3 Department of Mining Engineering, Universidad Nacional San Cristobal de Huamanga, Ayacucho, Peru

4 Department of Industrial Engineering, Faculty of Engineering, National University of Trujillo, Trujillo, Peru

5 Faculty of Industrial Process Engineering, National University of Juliaca, Juliaca, Peru

Abstract

Mining plays a crucial role in the economy of many countries, contributing significantly to GDP, employment, and industrial development. However, optimizing drilling and blasting operations remains a key challenge in open-pit mining due to its direct impact on operational costs and rock fragmentation efficiency. This work aims to optimize fragmentation (X50) and drilling and blasting costs using hybrid machine learning models, an innovative approach that improves predictive accuracy and economic feasibility. Six models were developed: Artificial Neural Networks (ANNs), Decision Trees (DT), Extreme Gradient Boosting (XGBoost), Random Forest (RF), and Support Vector Regression (SVR), optimized using Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). The dataset, comprising 100 blasts, was split into 70% for training and 30% for testing. The SVR+PSO model achieved the highest accuracy for fragmentation prediction, with an RMSE of 0.27, MAE of 0.21, and R2 of 0.92. The RF+GA model was most effective for cost prediction, with an RMSE of 414.58, MAE of 354.14, and R2 of 0.99. Optimization scenarios were implemented by reducing burden (4.3 m to 3.8 m) and spacing (5.0 m to 4.5 m), achieving a 5.7% reduction in X50 (17.6 cm to 16.6 cm) and a 9.5% cost decrease (63,000 USD to 57,000 USD per blast). Predictions for 30 future blasts using the RF + GA model estimated a total cost of 1.7 MUSD, averaging 55,180 USD per blast. These findings confirm the effectiveness of machine learning in cost optimization and improving blasting efficiency, presenting a robust data-driven approach to optimizing mining operations.

Keywords

Main Subjects

[1].          Michaux, S., Djordjevic, N. (2005). Influence of explosive energy on the strength of the rock fragments and SAG mill throughput. Miner Eng, 18 (4), 439-448.
[2].          Choudhary, BS., Agrawal, A., Arora, R. (2021). Stemming material and Inter-row delay timing effect on blast results in limestone mines. Sadhana - Academy Proceedings in Engineering Sciences, 46 (23).
[3].          Khandelwal, M., Saadat, M. (2015). A Dimensional Analysis Approach to Study Blast-Induced Ground Vibration. Rock Mech Rock Eng, 48, 727-735.
[4].          Sharma, M., Choudhary, BS., Raina, AK., Khandelwal, M., Rukhiyar, S. (2024). Prediction of rock fragmentation in a fiery seam of an open-pit coal mine in India. Journal of Rock Mechanics and Geotechnical Engineering, 16 (8), 2879-2893.
[5].          Choudhary, BS., Rai, P. (2013). Stemming plug and its effect on fragmentation and muckpile shape parameters. Int J Min Miner Eng, 4 (4), 296-311.
[6].          Rai, P., Yang, HS., Choudhary, BS. (2012). Formation of slot cut for creating free face in solid limestone bench: A case study. Powder Technol, 228, 327-333.
[7].          Adamson, WR., Scherpenisse, CR., Diaz, JC. (1999). The use of blast monitoring/modelling technology for the optimisation of development blasting. AusIMM Proceedings 306.
[8].          Marton, A., Crookes, R. (2001). A case study in optimising fragmentation. AusIMM Proceedings 306.
[9].          Monjezi, M., Rezaei, M., Yazdian Varjani, A. (2009). Prediction of rock fragmentation due to blasting in Gol-E-Gohar iron mine using fuzzy logic. International Journal of Rock Mechanics and Mining Sciences, 46 (8), 1273-1280.
[10].        Shim, HJ., Ryu, DW., Chung, SK., Synn, JH., Song, JJ. (2009). Optimized blasting design for large-scale quarrying based on a 3-D spatial distribution of rock factor. International Journal of Rock Mechanics and Mining Sciences, 46 (2), 326-332.
[11].        Hustrulid, W. (1999). Blasting principles for open pit mining: Volume 1 - General design concepts. General Design Concept 1.
[12].        Sharma, M., Choudhary, BS., Kumar, H., Agrawal, H. (2021). Optimization of Delay Sequencing in Multi-Row Blast using Single Hole Blast Concepts. Journal of The Institution of Engineers (India): Series D, 102, 453-460.
[13].        Zhu, Z., Mohanty, B., Xie, H. (2007). Numerical investigation of blasting-induced crack initiation and propagation in rocks. International Journal of Rock Mechanics and Mining Sciences, 44 (3), 412-424.
[14].        Monjezi, M., Bahrami, A., Yazdian Varjani, A. (2010). Simultaneous prediction of fragmentation and flyrock in blasting operation using artificial neural networks. International Journal of Rock Mechanics and Mining Sciences, 47 (3), 476-480.
[15].        Kuznetsov, VM. (1973). The mean diameter of the fragments formed by blasting rock. Soviet Mining Science, 9, 144-148.
[16].        Cunningham, C. (1983) The Kuz-Ram model for prediction of fragmentation from blasting. Proceedings of the 1st International Symposium on Rock Fragmentation by Blasting.
[17].        Hjelmberg, H. (1983). Some ideas on how to improve calculations of the fragment size distribution in bench blasting. In: Proceedings of the 1st international symposium on rock fragmentation by blasting.
[18].        Gheibie, S., Aghababaei, H., Hoseinie, SH., Pourrahimian, Y. (2009). Modified Kuz-Ram fragmentation model and its use at the Sungun Copper Mine. International Journal of Rock Mechanics and Mining Sciences, 46 (6), 967-973.
[19].        Khandelwal, M., Mahdiyar, A., Armaghani, DJ., Singh, TN., Fahimifar, A., Faradonbeh, RS. (2017). An expert system based on hybrid ICA-ANN technique to estimate macerals contents of Indian coals. Environ Earth Sci, 76 (399).
[20].        Khandelwal, M., Armaghani, DJ. (2016). Prediction of Drillability of Rocks with Strength Properties Using a Hybrid GA-ANN Technique. Geotechnical and Geological Engineering, 34, 605-620.
[21].        Rahul., Khandelwal, M., Rai, R., Shrivastva, BK. (2015). Evaluation of dump slope stability of a coal mine using artificial neural network. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 1, 69-77.
[22].        Rezaeineshat, A., Monjezi, M., Mehrdanesh, A., Khandelwal, M. (2020). Optimization of blasting design in open pit limestone mines with the aim of reducing ground vibration using robust techniques. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 6 (40).
[23].        Srivastava, A., Choudhary, BS., Sharma, M. (2021). A Comparative Study of Machine Learning Methods for Prediction of Blast-Induced Ground Vibration. Journal of Mining and Environment, 12 (3), 667-677.
[24].        Bakhtavar, E., Sadiq, R., Hewage, K. (2021). Optimization of Blasting-Associated Costs in Surface Mines Using Risk-based Probabilistic Integer Programming and Firefly Algorithm. Natural Resources Research, 30, 4789-4806.
[25].        Bayat, P., Monjezi, M., Mehrdanesh, A., Khandelwal, M. (2022). Blasting pattern optimization using gene expression programming and grasshopper optimization algorithm to minimise blast-induced ground vibrations. Eng Comput, 38, 3341-3350.
[26].        Bayat, P., Monjezi, M., Rezakhah, M., Armaghani, DJ. (2020). Artificial Neural Network and Firefly Algorithm for Estimation and Minimization of Ground Vibration Induced by Blasting in a Mine. Natural Resources Research, 29, 4121-4132.
[27].        Zhao, J., Li, D., Zhou, J., Armaghani, DJ., Zhou, A. (2024). Performance evaluation of rock fragmentation prediction based on RF‐BOA, AdaBoost‐BOA, GBoost‐BOA, and ERT‐BOA hybrid models. Deep Underground Science and Engineering, 4 (1), 3-17.
[28].        Amoako, R., Jha, A., Zhong, S. (2022). Rock Fragmentation Prediction Using an Artificial Neural Network and Support Vector Regression Hybrid Approach. Mining, 2 (2), 233-247.
[29].        Vergara, B., Torres, M., Aramburu, V., Raymundo, C. (2021). Predictive Model of Rock Fragmentation Using the Neuro-Fuzzy Inference System (ANFIS) and Particle Swarm Optimization (PSO) to Estimate Fragmentation Size in Open Pit Mining. Lecture Notes in Networks and Systems, 124-131.
[30].        Hasanipanah, M., Amnieh, HB., Arab, H., Zamzam, MS. (2018). Feasibility of PSO–ANFIS model to estimate rock fragmentation produced by mine blasting. Neural Comput Appl, 30, 1015-1024.
[31].        Esmaeili, M., Salimi, A., Drebenstedt, C., Abbaszadeh, M., Aghajani Bazzazi, A. (2015). Application of PCA, SVR, and ANFIS for modeling of rock fragmentation. Arabian Journal of Geosciences, 8, 6881-6893.
[32].        Fang, Q., Nguyen, H., Bui, XN., Nguyen-Thoi, T., Zhou, J. (2021). Modeling of rock fragmentation by firefly optimization algorithm and boosted generalized additive model. Neural Comput Appl, 33, 3503-3519.
[33].        Shams, S., Monjezi, M., Majd, VJ., Armaghani, DJ. (2015). Application of fuzzy inference system for prediction of rock fragmentation induced by blasting. Arabian Journal of Geosciences, 8, 10819-10832.
[34].        Hasanipanah, M., Jahed Armaghani, D., Monjezi, M., Shams, S. (2016). Risk assessment and prediction of rock fragmentation produced by blasting operation: a rock engineering system. Environ Earth Sci, 75 (808).
[35].        Gebretsadik, A., Kumar, R., Fissha, Y., Kide, Y., Okada, N., Ikeda, H., Mishra, AK., Armaghani, DJ., Ohtomo, Y., Kawamura, Y. (2024). Enhancing rock fragmentation assessment in mine blasting through machine learning algorithms: a practical approach. Discover Applied Sciences, 6 (223).
[36].        Yari, M., He, B., Armaghani, DJ., Abbasi, P., Mohamad, ET. (2023). A novel ensemble machine learning model to predict mine blasting–induced rock fragmentation. Bulletin of Engineering Geology and the Environment, 82 (187).
[37].        Sri Chandrahas, N., Choudhary, BS., Vishnu Teja, M., Venkataramayya, MS., Krishna Prasad, NSR. (2022). XG Boost Algorithm to Simultaneous Prediction of Rock Fragmentation and Induced Ground Vibration Using Unique Blast Data. Applied Sciences (Switzerland), 12 (10), 5269.
[38].        Bahrami, A., Monjezi, M., Goshtasbi, K., Ghazvinian, A. (2011). Prediction of rock fragmentation due to blasting using artificial neural network. Eng Comput, 27, 177-181.
[39].        Al-Bakri, AY., Sazid, M. (2021). Application of Artificial Neural Network (ANN) for Prediction and Optimization of Blast-Induced Impacts. Mining, 1 (3), 315-334.
[40].        Ebrahimi, E., Monjezi, M., Khalesi, MR., Armaghani, DJ. (2016). Prediction and optimization of back-break and rock fragmentation using an artificial neural network and a bee colony algorithm. Bulletin of Engineering Geology and the Environment, 75, 27-36.
[41].        Li, E., Yang, F., Ren, M., Zhang, X., Zhou, J., Khandelwal, M. (2021). Prediction of blasting mean fragment size using support vector regression combined with five optimization algorithms. Journal of Rock Mechanics and Geotechnical Engineering, 13 (6), 1380-1397.
[42].        Hekmat, A., Munoz, S., Gomez, R. (2019). Prediction of Rock Fragmentation Based on a Modified Kuz-Ram Model. Proceedings of the 27th International Symposium on Mine Planning and Equipment Selection - MPES 2018, 69-79.
[43].        Moomivand, H., Vandyousefi, H. (2020). Development of a new empirical fragmentation model using rock mass properties, blasthole parameters, and powder factor. Arabian Journal of Geosciences, 13 (1173).
[44].        Chandr, S., Singh, B., Venkataramayya, M., Fissha, Y. (2023). An inventive approach for simultaneous prediction of mean fragmentation size and peak particle velocity using futuristic datasets through improved techniques of genetic XG Boost algorithm. Mining, Metallurgy & Exploration, 41, 2391-2405.
[45].        Taji, M., Ataei, M., Goshtasbi, K., Osanloo, M. (2013). ODM: A new approach for open pit mine blasting evaluation. JVC/Journal of Vibration and Control, 19 (11).
[46]         Raj, AK., Choudhary, BS., Deressa, GW. (2024). Prediction of Rock Fragmentation for Surface Mine Blasting Through Machine Learning Techniques. Journal of The Institution of Engineers (India): Series D.
[47].        Kahraman, E., Hosseini, S., Taiwo, BO., Fissha, Y., Jebutu, VA., Akinlabi, AA., Adachi, T. (2024). Fostering sustainable mining practices in rock blasting: Assessment of blast toe volume prediction using comparative analysis of hybrid ensemble machine learning techniques. Journal of Safety and Sustainability, 1, 75–88
[48].        Afum, B., Temeng, V. (2015). Reducing Drill and Blast Cost through Blast Optimisation-A Case Study. Conference: 3rd UMaT Biennial International Mining and Mineral Conference.
[49].        Munagala, V., Thudumu, S., Logothetis, I., Bhandari, S., Vasa, R., Mouzakis, K. (2024). A comprehensive survey on machine learning applications for drilling and blasting in surface mining. Machine Learning with Applications, 15, 100517.
[50].        Fattahi, H., Ghaedi, H., Armaghani, DJ. (2024). Enhancing blasting efficiency: A smart predictive model for cost optimization and risk reduction. Resources Policy, 97, 105261.
[51].        Bastami, R., Aghajani Bazzazi, A., Shoormasti, HH., Ahangari, K. (2020). Prediction of Blasting Cost in Limestone Mines Using Gene Expression Programming Model and Artificial Neural Networks. Journal of Mining and Environment, 11 (1), 281-300.
[52].        Bakhshandeh Amnieh, H., Bidgoli, MH., Mokhtari, H., Bazzazi, AA. (2019). Application of simulated annealing for optimization of blasting costs due to air overpressure constraints in open-pit mines. Journal of Mining and Environment, 10 (4), 903-916.
[53].        Guo, J., Zhao, Z., Zhao, P., Chen, J. (2024). Prediction and Optimization of Open-Pit Mine Blasting Based on Intelligent Algorithms. Applied Sciences, 14, 5609.
[54].        Hryhoriev, Y., Lutsenko, S., Shvets, Y., Kuttybayev, A., Mukhamedyarova, N. (2024). Predictive calculation of blasting quality as a tool for estimation of production cost and investment attractiveness of a mineral deposit development. IOP Conf Ser Earth Environ Sci, 1415, 012027.
[55].        Fattahi, H., Ghaedi, H. (2024). Optimizing mining economics: Predicting blasting costs in limestone mines using the RES-based method. International Journal of Mining and Geo-Engineering, 58, 181-190.
[56].        Álvarez-Vigil, AE., González-Nicieza, C., López Gayarre, F., Álvarez-Fernández, MI. (2012). Predicting blasting propagation velocity and vibration frequency using artificial neural networks. International Journal of Rock Mechanics and Mining Sciences, 55, 108-116.
[57].        Dehghani, H. (2018). Forecasting copper price using gene expression programming. Journal of Mining & Environment, 9.
[58].        Nguyen, H., Bui, XN., Tran, QH., Le, TQ., Do, NH., Hoa, LTT. (2019). Evaluating and predicting blast-induced ground vibration in open-cast mine using ANN: a case study in Vietnam. SN Appl Sci, 1 (125).
[59].        Yu, Z., Shi, X., Miao, X., Zhou, J., Khandelwal, M., Chen, X., Qiu, Y. (2021). Intelligent modeling of blast-induced rock movement prediction using dimensional analysis and optimized artificial neural network technique. International Journal of Rock Mechanics and Mining Sciences, 143, 104794.
[60].        Hosseini, M., Khandelwal, M., Lotfi, R., Eslahi, M. (2023). Sensitivity analysis on blast design parameters to improve bench blasting outcomes using the Taguchi method. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 9 (9).
[61].        Gebretsadik, A., Kumar, R., Fissha, Y., Kide, Y., Okada, N., Ikeda, H., Mishra, AK., Armaghani, DJ., Ohtomo, Y., Kawamura, Y. (2024). Enhancing rock fragmentation assessment in mine blasting through machine learning algorithms: a practical approach. Discover Applied Sciences, 6, 223.
[62].        Dotto, MS., Pourrahimian, Y. (2024). The Influence of Explosive and Rock Mass Properties on Blast Damage in a Single-Hole Blasting. Mining, 4 (1), 168-188.
[63].        Gao, P., Pan, C., Zong, Q., Dong, C. (2023). Rock fragmentation size distribution control in blasting: a case study of blasting mining in Changjiu Shenshan limestone mine. Front Mater, 10.
[64].        Sayadi, A., Monjezi, M., Talebi, N., Khandelwal, M. (2013). A comparative study on the application of various artificial neural networks to simultaneous prediction of rock fragmentation and backbreak. Journal of Rock Mechanics and Geotechnical Engineering, 5 (4), 318-324.
[65].        Monjezi, M., Amiri, H., Farrokhi, A., Goshtasbi, K. (2010). Prediction of rock fragmentation due to blasting in Sarcheshmeh copper mine using artificial neural networks. Geotechnical and Geological Engineering, 28, 423-430.
[66].        Marquina, J., Cotrina, T., Mamani, J., Noriega, E., Vega, J., Cruz, J. (2024). Copper Ore Grade Prediction using Machine Learning Techniques in a Copper Deposit. Journal of Mining and Environment, 15 (3), 1011–1027.
[67].        Nabavi, Z., Mirzehi, M., Dehghani, H., Ashtari, P. (2023). A Hybrid Model for Back-Break Prediction using XGBoost Machine learning and Metaheuristic Algorithms in Chadormalu Iron Mine. Journal of Mining and Environment, 14 (2), 689-712.
[68].        Cotrina, M., Marquina, J., Mamani, J., Arango, S., Gonzalez, J., Ccatamayo, J., Noriega, E. (2024). Predictive model using machine learning to determine fuel consumption in CAT-777F mining equipment. Int J Min Miner Eng, 15, 147–160.
[69].        Taiwo, BO., Gebretsadik, A., Fissha, Y., Kide, Y., Li, E., Haile, K., Oni, OA. (2023). Artificial Neural Network Modeling as an Approach to Limestone Blast Production Rate Prediction: a Comparison of PI-BANN and MVR Models. Journal of Mining and Environment, 14 (2), 375-388.
[70].        Fathi, M., Alimoradi, A., Ahooi, HH. (2021). Optimizing Extreme Learning Machine Algorithm using Particle Swarm Optimization to Estimate Iron Ore Grade. Journal of Mining and Environment, 12 (2), 397-411.
[71].        Ataei, M., Sereshki, F. (2017). Improved prediction of blast-induced vibrations in limestone mines using Genetic Algorithm. Journal of Mining and Environment, 8 (2), 291-304.
[72].        Parikh, R., Wilson, B., Marrah, L., Su, Z., Saha, S., Kumar, P., Huang, F., Dutta, A. (2022). tRForest: a novel random forest-based algorithm for tRNA-derived fragment target prediction. NAR Genom Bioinform, 4 (2).
[73].        Nunes, E., Groenner, B., Godinho, S., Ussi, C., Phin, D., Rezende, L. (2022). Variable selection for estimating individual tree height using genetic algorithm and random forest. For Ecol Manage, 504, 119828.
[74].        Silva, R., Padovani, K., Góes, F., Alves, R. (2019). A random forest classifier for prokaryotes gene prediction. Proceedings - 2019 Brazilian Conference on Intelligent Systems, BRACIS 2019.
[75].        Rezaei, M., Asadizadeh, M. (2020). Predicting Unconfined Compressive Strength of Intact Rock Using New Hybrid Intelligent Models. Journal of Mining and Environment, 11 (1), 231-246.
[76].        Rodríguez-Mazahua, N., Rodríguez-Mazahua, L., López-Chau, A., Alor-Hernández, G., Machorro-Cano, I. (2022). Decision-Tree-Based Horizontal Fragmentation Method for Data Warehouses. Applied Sciences (Switzerland), 12 (21), 10942.
[77].        Estrada-Gil, JK., Fernández-López, JC., Hernández-Lemus, E., Silva-Zolezzi, I., Hidalgo-Miranda, A., Jiménez-Sánchez, G., Vallejo-Clemente, EE. (2007). GPDTI: A genetic programming decision tree induction method to find epistatic effects in common complex diseases. Bioinformatics, 23 (13), 167-174.
[78].        Tao, H., Habib, M., Aljarah, I., Faris, H., Afan, HA., Yaseen, ZM. (2021). An intelligent evolutionary extreme gradient boosting algorithm development for modeling scour depths under submerged weir. Inf Sci, 570, 172-184.
[79].        Sayevand, K., Arab, H. (2019). A fresh view on particle swarm optimization to develop a precise model for predicting rock fragmentation. Engineering Computations (Swansea, Wales), 36 (2), 533-550.
[80].        Nikakhtar, L., Zare, S., Mirzaei, H. (2023). Performance Comparison of Particle Swarm Optimization and Genetic Algorithm for Back-analysis of Soil Layer Geotechnical Parameters. Journal of Mining and Environment, 14 (1), 217-232.
[81].        Anemangely, M., Ramezanzadeh, A., Tokhmechi, B. (2017). Determination of constant coefficients of Bourgoyne and Young drilling rate model using a novel evolutionary algorithm. Journal of Mining and Environment, 8 (4), 693-702.
[82].        Hajihassani, M., Jahed Armaghani, D., Sohaei, H., Tonnizam Mohamad, E., Marto, A. (2014). Prediction of airblast-overpressure induced by blasting using a hybrid artificial neural network and particle swarm optimization. Applied Acoustics, 80, 57-67.
[83].        Lazzús, JA. (2013). Neural network-particle swarm modeling to predict thermal properties. Math Comput Model, 57 (9-10), 2408-2418.
[84].        Zhu, B., Huang, J., Chen, Y., Chen, Z. (2012). Dynamic packet fragmentation based on particle swarm optimised prediction. International Journal of Wireless and Mobile Computing, 5 (4), 386-393.
[85].        Yu, J., Liu, X., Wang, L., Wu, H. (2022). Optimization and Simulation of Monitoring Technology of Blasting Rock Movement Trajectory Based on the Improved SVM Algorithm. Math Probl Eng, 2022 (1), 4825212.
[86].        Abbaspour, H., Drebenstedt, C., Badroddin, M., Maghaminik, A. (2018). Optimized design of drilling and blasting operations in open pit mines under technical and economic uncertainties by system dynamic modelling. Int J Min Sci Technol, 28 (6), 839-848.
[87].        Yussupov, K., Myrzakhmetov, S., Aben, K., Nehrii, S., Nehrii, T. (2021). Optimization of the drilling-and-blasting process to improve fragmentation by creating of a preliminary stress in a block. E3S Web of Conferences, 280, 08015.
[88].        Zhao, J., Li, D., Zhou, J., Armaghani, DJ., Zhou, A. (2024). Performance evaluation of rock fragmentation prediction based on RF‐BOA, AdaBoost‐BOA, GBoost‐BOA, and ERT‐BOA hybrid models. Deep Underground Science and Engineering, 4 (1), 3-17.
[89].        Gebretsadik, A., Kumar, R., Fissha, Y., Kide, Y., Okada, N., Ikeda, H., Mishra, AK., Armaghani, DJ., Ohtomo, Y., Kawamura, Y. (2024). Enhancing rock fragmentation assessment in mine blasting through machine learning algorithms: a practical approach. Discover Applied Sciences, 6, 223.
[90].        Cárdenas, J., Huerta, G., Salas, J. (2022). Mejora de fragmentación a través de la aplicación de carga explosiva en el taco para la reducción de sobre tamaños en roca de alta dureza. Instituto de Ingenieros de Minas del Peru.
[91].        Churra, O. (2023). Reducción de los costos de servicios auxiliares e incidentes por caída de rocas utilizando la voladura controlada en la mina Toquepala - SPCC. Tesis de ingeniero de minas, Universidad Nacional del Altiplano.