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 Mining plays a crucial role in the economy of many countries, contributing 

significantly to GDP, employment, and industrial development. However, optimizing 

drilling and blasting operations remains a key challenge in open-pit mining due to its 

direct impact on operational costs and rock fragmentation efficiency. This work aims 

to optimize fragmentation (X50) and drilling and blasting costs using hybrid machine 

learning models, an innovative approach that improves predictive accuracy and 

economic feasibility. Six models were developed: Artificial Neural Networks (ANNs), 

Decision Trees (DT), Extreme Gradient Boosting (XGBoost), Random Forest (RF), 
and Support Vector Regression (SVR), optimized using Genetic Algorithm (GA) and 

Particle Swarm Optimization (PSO). The dataset, comprising 100 blasts, was split into 

70% for training and 30% for testing. The SVR+PSO model achieved the highest 

accuracy for fragmentation prediction, with an RMSE of 0.27, MAE of 0.21, and R2 

of 0.92. The RF+GA model was most effective for cost prediction, with an RMSE of 

414.58, MAE of 354.14, and R2 of 0.99. Optimization scenarios were implemented by 

reducing burden (4.3 m to 3.8 m) and spacing (5.0 m to 4.5 m), achieving a 5.7% 

reduction in X50 (17.6 cm to 16.6 cm) and a 9.5% cost decrease (63,000 USD to 57,000 

USD per blast). Predictions for 30 future blasts using the RF + GA model estimated a 

total cost of 1.7 MUSD, averaging 55,180 USD per blast. These findings confirm the 

effectiveness of machine learning in cost optimization and improving blasting 

efficiency, presenting a robust data-driven approach to optimizing mining operations. 
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1. Introduction 

The mining process begins with blasting, where 
the distribution of rock plays role in determining 

the quality and quantity of final products. proper 

control of blasting to achieve an optimal size 
distribution can significantly enhance the 

profitability of a mine or plant [1]. Currently, 

drilling and blasting are considered the most 
efficient and cost-effective methods for material 

removal and ore extraction in open-pit mines. Rock 

fragmentation is key to assessing the economic 

viability of a mining project [1–4]. An appropriate 
blast design is essential for achieving the desired 

fragmentation results [5, 6]. According to Adamson 

et al. [7], an accurate evaluation of fragmentation 
is crucial to optimizing the design variables of 

explosives and blasts, which can lead to a 

significant reduction in operational costs. 
Additionally, previous studies by Marton et al., 

Monjezi et al., and Shim et al. [8–10] have shown 

that fragmentation size directly impacts drilling, 
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secondary blasting, loading, handling, and milling 

costs. 
According to Hustrulid [11], the unit operations 

in the mine-to-mill sub-system such as drilling, 

blasting, loading, and hauling, are directly related 
to the average fragment size, which requires 

meticulous optimization. The variables affecting 

fragment size generated by blasting can be grouped 

into three categories: (1) controllable variables, 
such as blast geometry; (2) partially controllable 

variables such as explosive properties; and (3) 

uncontrollable variables such as rock mass 
properties [12, 13]. Parameters influencing rock 

fragmentation include borehole diameter, charge, 

spacing, burden, stemming, and delay timing [14]. 
Various empirical models have been developed to 

predict fragmentation such s the Kuznetsov model 

and the Rosin-Rammler formula [15]. Cunningham 

[16] introduced a new model to predict fragment 
size, while Hjelmberg's model [17] considers both 

rock mass type and blast pattern to calculate the 

average size. The Kuz-Ram model is widely used 
in the industry to predict the size distribution of 

fragmentation after blasting [18], although none of 

these models incorporates all relevant parameters. 

In the recent years, various researchers in 
mining engineering have adopted advanced 

approaches to predict fragmentation, with one of 

the most prominent being the use of Artificial 
Neural Networks (ANNs), which can solve 

complex problems with high accuracy and minimal 

error margin. This is due to the ability of ANNs to 
manage non-linear relationships between input and 

output variables [19–23]. The average fragment 

size (X50) refers to the sieve size through which 

50% of the fragmented material passes [4]. 
Recently, the use of Machine Learning (ML) 

techniques to optimize drilling and blasting design 

has increased, ranging from heuristic methods to 
hybrid approaches. Recent studies show that the 

application of ML can significantly reduce 

operational costs, as demonstrated by Bakhtavar et 
al. [24], who reported a 23% reduction in blasting 

costs. Other studies by Bayat et al. [25] and [26] 

recorded decreases of 89% and 88%, respectively, 

in delay costs by optimizing blast patterns using 
ML, while Rezaeineshat et al. [22] noted a 57% 

reduction in these costs. These advancements 

highlight the effectiveness of ML models in 
improving profitability and operational efficiency.  

According to the literature, Sharma et al. [4] 

predicted rock fragmentation in an open-pit coal 

mine, where the optimal method was the Random 
Forest Algorithm (RFA) with an R2 of 0.94 based 

on 100 blasting events. Zhao et al. [27] developed 

a rock fragmentation prediction model using hybrid 

models optimized with the Bayesian Optimization 
Algorithm (BOA), utilizing a total of 102 data sets, 

where the best-performing model was XGBoost-

BOA with an R2 of 0.96. Similarly, Amoako et al. 
[28] used a hybrid approach combining ANNs and 

Support Vector Regression (SVR) to predict rock 

fragmentation, with ANNs achieving the best 

model with an R2 of 0.87. In the research by 
Vergara et al. [29], a predictive model was 

generated to estimate rock fragmentation size using 

the Adaptive Neuro-Fuzzy Inference System 
(ANFIS) in combination with Particle Swarm 

Optimization (PSO) across 92 blasting events, 

yielding a model with an R2 of 0.85. Hasanipanah 
et al. [30] proposed a new model to forecast rock 

fragmentation using an ANFIS system combined 

with PSO, which was compared with Support 

Vector Machines (SVMs) and Multiple Regression 
(MR). The model achieved an R2 of 0.89, based on 

72 blasting events. Esmaeili et al. [31] employed 

two soft computing models, Support Vector 
Machines (SVM) and ANFIS, and compared them 

with the Kuz-Ram method across 80 blasts in an 

iron ore mine in Iran. They found that the ANFIS 

model had an R2 of 0.89. Fang et al. [32] proposed 
a new soft computing model for rock fragmentation 

modeling with high accuracy, based on an 

Enhanced Generalized Additive Model (BGAM) 
and a FireFly Algorithm (FFA), termed FFA-

BGAM. Likewise, Shams et al. [33] developed a 

predictive model to forecast rock fragmentation 
using a Fuzzy Inference System (FIS) at the 

Sarcheshmeh copper mine in Iran. Hasanipanah et 

al. [34] evaluated the risks associated with rock 

fragmentation and its prediction at the 
Sarcheshmeh copper mine, proposing the Rock 

Engineering Systems (RES) technique based on 52 

blasting events. Finally, Gebretsadik et al. [35] 
implemented machine learning and deep learning 

algorithms to predict fragmentation grades (in 

percentage) in open-pit mining, using models such 
as Random Forest Regression, Support Vector 

Regression, and XGBoost. 

Yari et al. [36] predicted rock fragmentation 

using a novel ensemble technique, specifically the 
Light Gradient Boosting Machine (LightGBM) and 

the Jellyfish Search Optimizer (JSO). Sri 

Chandrahas et al. [37] evaluated XGBoost, K-
Nearest Neighbor, and Random Forest algorithms 

to simultaneously predict rock fragmentation and 

induced ground vibration. Bahrami et al. [38] 

implemented an ANNs method to develop a model 
for predicting rock fragmentation due to blasting in 

an iron ore mine. Al-Bakri et al. [39] applied ANNs 
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for the prediction and optimization of explosion-

induced impacts. Monjezi et al. [14] predicted rock 
fragmentation at the Sarcheshmeh copper mine by 

developing a model using ANNs. Ebrahimi et al. 

[40] in their research, considering the robustness of 
artificial intelligence methods, applied an ANNs to 

predict fragmentation and breakage, also using an 

Artificial Bee Colony (ABC) algorithm to optimize 

blasting pattern parameters. Li et al. [41] adopted 
Support Vector Regression (SVR) techniques as 

basic prediction tools and implemented five 

optimization algorithms: Grid Search (GS), Gray 
Wolf Optimization (GWO), Particle Swarm 

Optimization (PSO), Genetic Algorithm (GA), and 

Salp Swarm Algorithm (SSA), to enhance 
prediction performance and optimize 

hyperparameters. Hekmat et al. [42] predicted rock 

fragmentation based on a modified Kuz-Ram 

model. Similarly, Moomivand et al. [43] developed 
a new empirical fragmentation model using rock 

mass properties, blast hole parameters, and dust 

factor. Chandr et al. [44] in their study selected the 
Customized XGBoost Algorithm (CXGBA) and 

the improved Genetic XGBoost Algorithm 

(IGXGBA) to create an empirical formula for 

simultaneously predicting the average 
fragmentation size (MFS) and Peak Particle 

Velocity (PPV) using geo-explosion parameter 

datasets. Furthermore, Taji et al. [45] considered 
seven blast outcomes including fragmentation 

degree, muck pile, overbreak, boulders, floor and 

toe conditions, environmental considerations, and 
ignition failures to develop a rational and cost-

effective blast operation optimization. Raj et al. 

[46] used machine learning models, including 

Decision Tree Regressor, Random Forest 
Regressor, Support Vector Regressor, and Extreme 

Gradient Boosting (XGBoost) Regressor, to predict 

blast results, specifically the average fragmentation 
size. Finally, Kahraman et al. [47] created a hybrid 

AI model and voting system to improve the 

robustness of the blasting prediction model for the 
blast tip volume, with eight models, including 

Hybrid 6, which combines LightGBM, Gradient 

Boosting Machines (GBM), Decision Trees (DT), 

Extra Trees (ET), Random Forests (RF), CatBoost, 
CART, AdaBoost, and XGBoost. 

Regarding drilling and blasting costs, Gm Mj et 

al. [48] studied current cost trends associated with 
drilling and blasting operations in an open-pit mine 

in Ghana, and developed geometric parameters for 

drilling and blasting that were cost-effective for the 

mine. Similarly, Munagala et al. [49] applied 
machine learning to reduce overall blasting costs 

by 23% and decrease explosive usage by 89% 

compared to traditional models. Fattahi et al. [50] 

presented a blasting cost prediction model using 
data from six Iranian limestone mines, employing 

optimization algorithms such as Firefly (FF) and 

Gray Wolf Optimization (GWO). Bastami et al. 
[51] predicted blasting costs in limestone mines 

using a Genetic Expression Programming (GEP) 

model and ANNs, as well as Linear Multi-variable 

Regression (LMR) and Non-Linear Multi-variable 
Regression (NLMR). Additionally, Bakhshandeh 

et al. [52] applied simulated annealing to optimize 

blasting costs considering the overpressure 
constraints in open-pit gypsum mines in Baghak. 

Guo et al. [53] used blasting fragmentation as a 

prediction indicator and proposed a hybrid 
intelligent model based on multiple parameters, 

employing a Least Squares Support Vector 

Machine (LSSVM) optimized with a Genetic 

Algorithm (GA) for prediction. They compared the 
performance of GA-LSSVM with LSSVM 

optimized using Time-Rate Optimization (RIME-

LSSVM) and Particle Swarm Optimization (PSO-
LSSVM), resulting in a reduction of the operational 

chain cost by 139,400 CNY, generating an annual 

saving of 1,672,800 CNY. Hryhoriev et al. [54] 

emphasized a multi-factorial model to predict rock 
crushing quality, incorporating rock mass features, 

explosives, and specific costs using linear 

regression analysis. Fattahi and Ghaedi [55] 
employed the Rock Engineering Systems (RES) 

method to construct a complex, nonlinear model 

for predicting blasting costs, considering 
uncertainties in geotechnical parameters. Given the 

inherent uncertainty in the parameters that affect 

blasting costs, intelligent methods, due to their 

ability to handle these uncertainties, present a 
promising alternative to traditional approaches, 

offering high-accuracy blasting cost estimates with 

a low margin of error [30, 56–59]. 
Hosseini et al. [60] indicate that production 

costs significantly increase, while productivity 

decreases. They also note that massive rock 
fragmentation and high-intensity ground vibration 

are symptoms of inadequate blasting. Gebretsadik 

et al. [61] improved rock fragmentation evaluation 

in mining blasts using machine learning models, 
identifying that factors affecting fragmentation 

include rock mass characteristics, blast geometry, 

and explosive properties. They applied Random 
Forest (RF), Support Vector Regression (SVR), 

XGBoost, and a deep learning model (Neural 

Network Regression) to optimize fragmentation 

prediction. Dotto and Pourrahimian [62] analyzed 
the effects of rock mass and explosive properties 

on blast outcomes through numerical simulation 
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using case studied data. Likewise, Gao et al. [63] 

conducted large-scale blasting experiments to 
investigate the influence of rock properties and 

blasting parameters on the post-blast fragment size 

distribution and fines content. They found that by 
controlling the crushing zone size and adjusting 

explosive performance, it is possible to reduce the 

fines content. Sayadi et al. [64] compared various 

artificial neural networks for the simultaneous 

prediction of fragmentation and rock throw, 
including Backpropagation Neural Networks 

(BPNN) and Radial Basis Function Neural 

Networks (RBFNN). The parameters used in the 
fragmentation (X50) and drilling and blasting cost 

predictions across different studies are shown in 

Table 1 and Table 2. 

Table 1. Rock fragmentation predicting using machine learning techniques. 

Technique Inputs variables R2 Source Number of blasts used 

RFA E/B, Ld/B, S/Ld, Rn(L) 0.94 Sharma et al. [4] 100 

XGBoost-BOA E/B, Ld/B, B/d, S/B, q, TB, EM 0.96 Zhao et al. [27] 102 

ANNs E/B, Ld/B, B/d, S/B, q, TB, EM  0.87 Amoako et al. [28] 102 

ANFIS-PSO B, B/E, Sp, q 0.85 Vergara et al. [29] 92 

PSO-ANFIS q, S, E, B, Q 0.89 Hasanipanah et al. [30] 72 

ANFIS q, S, n, d, E/B, BI 0.89 Esmaeli et al. [31] 80 

FFA-BGAM Q, q, E, S, B 0.98 Fang et al. [32] 136 

FIS B, E, d, Rn(L), fi, q, Ls 0.92 Shams et al. [33] 150 

RES B, Q, q, E/B, S/B, Ld/B, Ib, d, B/d  0.86 Hasanipanah et al. [34] 52 

RF n, E, B, BI, q 0.94 Gebretsadik et al. [35] 219 

LightGBM S, E 0.99 Yari et al. [36] - 

XGboost E/B, Qe, Ib, fi 0.91 
Sri Chandrahas et al. 
[37] 

152 

ANNs d, Ld, B, E, q, BI, Bs, S, Te 0.97 Bahrami et al. [38] 220 

ANNs Ld, B, E, S, q, Qe 0.92 Al-Bakri et al. [39] 230 

FIS B, E, Ld, Bs, S, Q, ρr, q 0.96 Monjezi et al. [9] 415 

ANNs B, E, S, Bs, q, Ld, BI, d, Q 0.98 Monjezi et al. [14] 250 

ANNs d, Ld, B/E, S, n, Q, ρr, q 0.99 Monjezi et al. [65] - 

ANNs B, E, S, Ld, q 0.78 Ebrahimi et al. [40] 152 

SVR d, Ld, Fi, E, B, Ld/B, B/d, E/B, UCS, q 0.84 Li et al. [41] 176 

Kuz-ram Te, Vo, B, E, Bh 0.80 Hekmat et al. [42] 20 

Q, q SANFO d, Q, q, SANFO, BI 0.87 Moomivand et al. [43] 42 

IGXGBA 𝐽𝑛, 𝐴𝐽, 𝐴ℎ𝑗, 𝑈𝐶𝑆, 𝑙𝑑, 𝑄𝑒 0.97 Chandr et al. [44] 152 

Table 2. Prediction of total operational costs for drilling and blasting using machine learning techniques. 

Technique Inputs variables R2 Source Number of blasts used 

Traditional 𝐵, 𝑆, 𝑑, 𝐴𝑏, 𝑆𝑑𝑟𝑖𝑙𝑙, 𝑙𝑠, 𝐶𝑃 - Gm Mj et al. [48] NA 
Machine learning Controlables e incontrolables - Munagala et al. [49]  
BC Prediction model with firefly (FF) 
and gray wolf (GWO) optimization 

𝑑, SANFO, 𝑆𝑑𝑟𝑖𝑙𝑙, 𝑈𝐶𝑆, 𝑞, 𝑛, 𝑆, 

𝐺𝑒, 𝑙𝑠, 𝑙𝑑, 𝐺𝑒, 𝐸𝑑 
0.96 Fattahi et al. [50] 146 

GEP (Genetic Expression Programming) 
SANFO, 𝑛, 𝑙𝑑, 𝑑, 𝐵, 𝑆, 𝑙𝑠, 

𝑆𝑑𝑟𝑖𝑙𝑙 , 𝑅ℎ, 𝑈𝐶𝑆, 𝑋50 
0.93 Bastami et al. [51] 146 

ANNs  0.95   
SA (Simulated Annealing) 𝑑, 𝑆, 𝑄, 𝑙𝑠 - Bakhshandeh et al. [52] 70 

 

where, 𝐵 is the burden (unit: m), 𝐸 is the 

spacing (unit: m), 𝑑 is the drill diameter (unit: m), 

𝑆 is the stemming length (unit: m), 𝑙𝑑 is the drill 

length (unit: m), 𝑞 is the specific charge (unit: 

kg/m3), 𝑏𝑠 is the specific drilling (unit: m/m3), 𝑄 is 

the maximum charge (unit: kg/m3), 𝜌𝑟  is the rock 

density (unit: kg/m3), 𝐵/𝑆 is the burden/spacing 

ratio, 𝑛 is the number of drill holes, 𝐵𝐼 is the 

volatility index, 𝑓𝑖 is the joint density (unit: m-1), 

𝑅𝑛(𝐿) is the number of rebounds of the Schmidt 

hammer, 𝐴𝑁𝐹𝐼𝑆 stands for Adaptive Neuro-Fuzzy 

Inference System, 𝑅𝐹𝐴 stands for random forest 

algorithm, 𝐸/𝐵 is the spacing/burden ratio, 𝑙𝑑/𝐵 is 

the drill length/burden ratio, 𝑆/𝑙𝑑 is the stemming 

length/drill length ratio, 𝐵𝑂𝐴 stands for Bayesian 

Optimization Algorithm, 𝐵/𝑑 is the burden/drill 

diameter ratio, 𝑆/𝐵 is the stemming length/burden 

ratio, 𝑇𝐵 is the in-situ block size, 𝐸𝑀 is the elastic 

modulus, 𝑆𝑝 is the overdrilling, 𝑃𝑆𝑂 stands for 

Particle Swarm Optimization, 𝐹𝐹𝐴 stands for 

Firefly Algorithm, 𝐵𝐺𝐴𝑀 stands for boosted 

generalized additive Model, 𝐹𝐼𝑆 stands for Fuzzy 

Inference System, 𝑅𝐸𝑆 tands for Rock Engineering 

System, 𝐼𝑏 is the drill inclination, 𝐿𝑖𝑔ℎ𝑡𝐺𝐵𝑀 

stands for Light Gradient Boosting Machine, 𝑄𝑒 is 
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the total explosive (unit: kg), 𝑈𝐶𝑆 is the uniaxial 

compressive strength, Vo is the volume removed 
(unit: m3), Bh is the bench width (unit:m), SANFO is 

the relative weight strength of ANFO, 𝐽𝑛 is the 

number of joints, 𝐴𝐽 is the joint angle,  𝐴ℎ𝑗 is the 

horizontal joint width, 𝐴𝑏 is the bench height, 𝑆𝑑𝑟𝑖𝑙𝑙 

subdrilling, 𝐶𝑃  is the drilling cost, 𝐺𝑒 is the specific 

gravity, 𝐸𝑑 is electric detonators, 𝑅ℎ  is rock 

hardness, and 𝑋50 is the fragmentation size. 

Table 1 and Table 2 show that most 

computational techniques used to predict the 

average fragment size of rocks (X50) primarily 
focus on blast design variables, overlooking the 

significant impact that rock mass properties have 

on X50. A comprehensive review of the literature 
reveals that studies employing hybrid machine 

learning models to predict fragmentation in open-

pit mines are limited. Additionally, previous works 
have considered a small number of influential 

parameters, resulting in less robust prediction 

models. Therefore, this study incorporates hybrid 

models that have not been previously implemented, 
along with their optimizers GA and PSO. It also 

includes a wide range of drilling, blasting, cost, and 

geomechanical parameters to predict and optimize 
both fragmentation and drilling and blasting costs. 

This research is important because it addresses a 

critical gap in current literature. By incorporating 
hybrid models and optimizers like GA and PSO, 

along with a wide range of parameters, this study 

aims to significantly improve the ability to predict 

and optimize both fragmentation and drilling and 
blasting costs. This is crucial for improving mining 

efficiency, reducing costs, and enhancing the 

overall profitability of mining operations. The 
innovative use of these techniques, combined with 

geomechanical data, allows for more robust, 

reliable, and accurate predictions, benefiting both 

the mining industry and the academic field of 
mining engineering. 

What is novel in this study is the combination 

of advanced machine learning techniques and the 
inclusion of a broader range of operational 

parameters, which allows for a more 

comprehensive and accurate prediction of 
fragmentation and operational costs. The use of 

these innovative methods, particularly hybrid 

models optimized with GA and PSO, represents a 

significant step forward in optimizing the mining 
process, especially in open-pit operations where 

fragmentation and cost efficiency are key factors 

for profitability. In this study, data from 100 blasts 
conducted in northern Peru, 10 km from the city of 

Huamachuco, were collected for this study. The 

region is primarily characterized by two types of 

alteration: Massive Silica (SM) and Granular Silica 

(SG). These alterations significantly influence the 
blasting outcomes and are crucial for 

understanding the dynamics of rock fragmentation 

and the associated operational costs. These 
collected data are integral to predicting both the 

average fragment size (X50) and the costs related to 

drilling and blasting operations. The primary 

objective of this research is to optimize the average 
rock fragmentation (X50) and drilling and blasting 

costs using hybrid machine learning models. These 

models include Artificial Neural Networks with 
Genetic Algorithms (ANNs + GA), Decision Trees 

with Genetic Algorithms (DT + GA), Random 

Forests with Genetic Algorithms (RF + GA), 
Extreme Gradient Boosting with Genetic 

Algorithms (XGBoost+GA), Artificial Neural 

Networks optimized with Particle Swarm 

Optimization (ANNs+PSO), and Support Vector 
Machines optimized with Particle Swarm 

Optimization (SVR+PSO). Additionally, future 

predictions of total drilling and blasting costs for 
30 blasts are generated using the best predictive 

model. The paper is structured as follows: Section 

2 presents the materials and methods, Section 3 

discusses the results, and Section 4 concludes the 
research. 

2. Materials and Methods 

2.1. Studied area 

The study area is in an open pit mine in northern 

Peru, approximately 10 km from the city of 

Huamachuco. This region is characterized by 
diverse geology and significant mineral alterations 

that influence blasting operations. Specifically, two 

predominant alteration types are highlighted: 

Massive Silica (SM) and Granular Silica (SG), 
which exhibit variable geomechanical properties 

that significantly affect rock fragmentation during 

blasting. 
The Massive Silica (SM) alteration is associated 

with a Uniaxial Compressive Strength (UCS) of 0.2 

MPa and is characterized by a granular and vuggy 
structure, which can lead to unpredictable 

fragmentation patterns due to its variability. In 

contrast, the Granular Silica (SG) alteration, with a 

UCS of a 0.1 MPa, has a granular texture primarily 
composed of gray silica and iron oxides. This 

alteration results in different fragmentation 

behavior and energy absorption compared to SM. 
Geomechanical parameters, such as uniaxial 

compressive strength (UCS), rock density and the 

structural characteristics of the alterations, play a 

crucial role in optimizing blast designs and 
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fragmentation efficiency. These factors must be 

carefully considered when designing blasts to 
ensure adequate fragmentation and reduce the 

associated drilling and blasting costs. Figure 1 

presents a map of the study area, showing the 
geographical location of mine. 

2.2. Database analysis 

Table 3 provides specific details on the blasting 
practices implemented in the mine, which were 

carefully optimized to address the geological 

conditions of these alterations. 

 
Figure 1. Map of the studied area. 
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Table 3. Operational details of blasting in the open-

pit mine. 

Variable Value 

Burden (m) 3.60-4.30 

Spacing  (m) 4.50-5.00 

Bench height (m) 7.10-7.90 

Drill diameter (cm) 17.00 

Powder factor (kg/m3) 0.44-0.60 

Total explosive per drill hole (kg) 167.72-190.22 

Blasted material (t) 27609.66-44930.27 

Stemming (m) 1.50-2.90 

Average drill length (m) 8.10-8.90 

 

This study utilizes a dataset consisting of 100 

blasting records, each containing two sets of input 

parameters: one for predicting rock fragmentation 
and the other for predicting drilling and blasting 

costs. To predict the fragmentation (𝑋50), a total of 

13 input parameters were considered. These 
variables include uniaxial compressive strength 

(𝑈𝐶𝑆), rock density influence (𝑅𝐷𝐼), joint spacing 

(𝐸𝑗),  hardness factor (𝐻𝑓), burden (𝐵), spacing 

(𝐸), amount of explosives (𝑄𝐸), Powder Factor 

(𝐹𝑃), and several ratios such as spacing to burden 

ratio (𝐸/𝐵), drill length to burden ratio (𝐿𝐻/𝐵), 

burden to drill diameter ratio (𝐵/𝐷), bench height 

to burden ratio (𝐴𝐵/𝐵), and stemming-to-burden 

ratio (𝑆/𝐵). These parameters were selected due to 
their known influence on the fragmentation process 

and the expected variations they cause in blast 

outcomes. For predicting drilling and blasting costs 
(𝐶𝑜𝑠𝑡𝑇𝑜𝑡𝑎𝑙𝑃&𝑉), a separate set of 8 input 

parameters was used. These include: number of 

drill holes (𝑇𝑃), total explosives quantity (𝑄𝑇𝐸), 

and various cost factors such as ANFO cost per 

blast (𝐶𝑜𝑠𝑡𝐴𝑁𝐹𝑂), detonator cost per blast 
(𝐶𝑜𝑠𝑡𝐷𝑒𝑡𝑜𝑛𝑎𝑑𝑜𝑟 ), exanel cost per blast 
(𝐶𝑜𝑠𝑡𝐸𝑥𝑎𝑛𝑒𝑙 ), booster cost per blast (𝐶𝑜𝑠𝑡𝐵𝑜𝑜𝑠𝑡𝑒𝑟), 

explosive cost per blast (𝐶𝑜𝑠𝑡𝑏𝑙𝑎𝑠𝑡𝑖𝑛𝑔), and 

drilling cost per blast (Costdrilling). These 

variables were chosen as they directly contribute to 

the operational costs involved in the drilling and 
blasting operations (see Table 4). 

Table 4. Statistical summary of data collected from the open-pit mine. 

Category Parameter Variables Symbol Min Max Mean 

Input 

Rock mass 

Uniaxial Compressive Strength 𝑈𝐶𝑆 0.10 0.20 0.15 

Joint Spacing 𝐸𝑗 7.25 10.25 8.75 

Hardness Factor 𝐻𝑓  90.00 135.00 112.50 

Density Influence 𝑅𝐷𝐼  13.80 29.00 21.24 

Drilling 

Burden 𝐵 3.60 4.30 3.95 

Spacing 𝐸 4.50 5.00 4.75 

Number of Drill Holes 𝑇𝑃 90.00 118.00 106.39 

Blasting 

Explosives Quantity 𝑄𝐸 167.72 190.22 176.99 

Powder Factor 𝐹𝑃 0.44 0.60 0.51 

Total Explosives 𝑄𝑇𝐸 15530.34 21945.04 18821.64 

Spacing to Burden Ratio 𝐸/𝐵 1.16 1.25 1.21 

Drill Length to Burden Ratio 𝐿𝐻/𝐵 1.88 2.47 2.20 

Burden to Drill Diameter Ratio 𝐵/𝐷 21.18 25.29 23.24 

Bench Height to Burden Ratio 𝐴𝐵/𝐵 1.65 2.19 1.95 

Stemming to Burden Ratio 𝑆/𝐵 0.35 0.81 0.49 

Operational 

costs 

ANFO Cost per Blast 𝐶𝑜𝑠𝑡𝐴𝑁𝐹𝑂 10715.94 15142.08 12986.93 

Detonator Cost per Blast 𝐶𝑜𝑠𝑡𝐷𝑒𝑡𝑜𝑛𝑎𝑡𝑜𝑟 1159.65 1520.42 1370.83 

Exanel Cost per Blast 𝐶𝑜𝑠𝑡𝐸𝑥𝑎𝑛𝑒𝑙 102.15 133.93 120.75 

Booster Cost per Blast 𝐶𝑜𝑠𝑡𝐵𝑜𝑜𝑠𝑡𝑒𝑟 428.40 561.68 506.42 

Total Blasting Explosive Cost 𝐶𝑜𝑠𝑡𝑏𝑙𝑎𝑠𝑡𝑖𝑛𝑔 12520.93 17488.50 15120.63 

Drilling Cost per Blast 𝐶𝑜𝑠𝑡𝑑𝑟𝑖𝑙𝑙𝑖𝑛𝑔  33947.52 46061.60 40255.98 

Output 
Average Fragment Size 𝑋50 15.26 18.34 16.8 

Total Drilling and Blasting Cost 𝐶𝑜𝑠𝑡𝑇𝑜𝑡𝑎𝑙𝑃&𝑉  46468.45 63483.46 55376.61 

 

The correlation matrix shows the relationships 

between the parameters used in the predictions, 
grouped into four categories: geomechanical (A), 

drilling (B), blasting (C), and drilling and blasting 

costs (D). In the geomechanical group, X50 has 

strong correlations with UCS, RDI, and HF, 
indicating their significant influence on 

fragmentation. In the drilling parameters, spacing 

and drill length show moderate correlations with 

X50. For the blasting parameters, the amount of 
explosives and drill-hole geometry strongly 

correlate with both fragmentation and drilling and 

blasting costs. Lastly, drilling and blasting cost 

parameters are highly interrelated, reflecting their 
direct impact on drilling and blasting costs (see 

Figure 1). 
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Figure 2. Correlation matrix of parameters used in the predictions: A: Geomechanical and/or rock mass 

parameters. B: Drilling parameters. C: Blasting parameters. D: Drilling and blasting costs. 

2.3. Pre-processing and hyperparameter tuning 

Six distinct models were developed to predict 

rock fragmentation and the total operational costs 

of drilling and blasting. These models included 
artificial neural networks, random forests, decision 

trees, and extreme gradient boosting, adjusted 

through genetic algorithms. Additionally, neural 
networks and support vector machines for 

regression were optimized using particle swarm 

optimization. The acquired data were randomly 

divided into training and set sets. The dataset 
underwent various preprocessing stages, such as 

normalization and scaling within a range of 0 to 1, 

followed by data partitioning. Subsequently, 70% 
of the normalized data was used for model training, 

while the remaining 30% was used for testing. The 

predictive performance of the models was 
evaluated using metrics such as the coefficient of 

determination (R2), Root Mean Square Error 

(RMSE) and Mean Absolute Error (MAE)  [4, 66, 

67] . The formulas used for these evaluations are as 
follows: 

𝑅2 = 1 −
∑ (𝐴𝑖 − 𝑃𝑖)2𝑁

𝑖=1

∑ (𝐴𝑖 − −𝐴)2𝑁
𝑖=1

 (1) 

𝑅𝑀𝑆𝐸 = √
∑ (𝑃𝑖 − 𝐴𝑖)

2𝑁
𝑖=1

𝑁
 (2) 

𝑀𝐴𝐸 =
1

𝑁
∑ (𝑃𝑖 − 𝐴𝑖)

𝑁

𝑖=1
 (3) 

where 𝑃𝑖 and 𝐴𝑖 are the predicted and actual 
values of X50, respectively. 

2.3.1. Artificial neural network with genetic 

algorithm (ANNs + GA) 

Artificial neural networks are computational 
models inspired by the human brain, designed to 

recognize patterns and make predictions [68]. They 

consist of layers of interconnected nodes that 
transform input data, and their basic function is 

mathematically represented as 𝑦 = 𝑓(𝑊𝑋 + 𝑏), 

where 𝑊 represents the weights, 𝑋 the input, 𝑏 the 

bias, and 𝑓 the activation function. ANNs are 
trained using algorithms such as gradient descent, 

and their key hyperparameters include the number 

of layers, neurons, and the learning rate [69, 70]. 
Genetic Algorithms (GA), inspired by natural 

evolution, optimize these hyperparameters by 

exploring large search spaces. AGA adjusts 



Cotrina-Teatino et al. Journal of Mining & Environment, Vol. 16, No. 4, 2025 

 

1203 

parameters such as the number of layers and 

neurons, and its process includes selection, 
crossover, and mutation of solutions, represented 

as 𝑐ℎ𝑖𝑙𝑑 = 𝛼 ∗ 𝑝𝑎𝑟𝑒𝑛𝑡1 + (1 − 𝛼) ∗ 𝑝𝑎𝑟𝑒𝑛𝑡2. 

The combination of ANNs + GA enhances the 
network’s predictive ability by optimizing tasks 

such as fragmentation and cost prediction in 

mining [71]. Table 5 specifies the final 

hyperparameter values selected by the Genetic 
Algorithm for the prediction of fragmentation (X50) 

and drilling and blasting costs. For fragmentation, 

the final learning rate was 0.04, with a batch size of 
11 and 56 epochs. For costs, the learning rate was 

1.80, with a batch size of 76, and the number of 

epochs was 76. 

Table 5. Hyperparameters used in ANNs + AG. 

Hyperparameter Value (X50) Hyperparameter Value (Cost) 

Learning rate  0.04 Learning rate  1.80 
Batch size 15 Batch size 76 
Number of epochs  56 Number of epochs  76 
Neurons per layer 64 y 32 Neurons per layer 10 y 5 
Activation function ReLU Activation function ReLU 
Loss function MSE Loss function MSE 
Optimization algorithm Adam Optimization algorithm Adam 
Selection algorithm 3 Selection algorithm 3 

Crossover algorithm 0.5 Crossover algorithm 0.5 
Mutation algorithm 0.2 Mutation algorithm 0.2 

 
2.3.2. Random forest with genetic algorithm (RF 

+ GA) 

The Random Forest (RF) algorithm is an 
ensemble learning method that builds multiple 

decision trees and uses majority voting for 

classification or averaging for regression. Its 

formula for a prediction is �̂� = ∑ 𝑓𝑡(𝑥)𝑇
𝑡=1 , where 

𝑇 is the number of trees and 𝑓𝑡(𝑥) is the prediction 

of tree 𝑡. The key hyperparameters include the 

number of trees (𝑛𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠), the maximum depth 

(𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ), and the minimum number of 

samples to split a node (𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠_𝑠𝑝𝑙𝑖𝑡) [72–

74]. The Genetic Algorithm (GA) is used to 

optimize these hyperparameters by searching for 
the best configuration through iterations of 

selection, crossover, and mutation. This hybrid RF-

GA approach improves model performance, 

particularly useful for predicting fragmentation and 
costs in mining by efficiently handling the 

complexity of geological data [75]. The final 

optimized values for fragmentation prediction 

include 71.36 estimators, a maximum depth of 
15.00, and 20.52 minimum samples for splitting. 

For cost prediction, the final values include 90.00 

estimators, the same maximum depth of 15, and 3 
minimum samples for splitting. For both 

fragmentation and cost prediction, the same 

selection (value 3), crossover (value 0.5), and 
mutation (value 0.2) algorithms were used, 

ensuring consistency in the optimization approach 

employed (see Table 6). 

Table 6. Hyperparameters used in RF+AG. 

Hyperparameter Value (X50) Hyperparameter Value (Costs) 

Number of estimators 71.36 Number of estimators 90.0 
Maximum depth 15.0 Maximum depth 15 
Minimum samples for split 20.52 Minimum samples for split 3 
Selection algorithm 3 Selection algorithm 3 
Crossover algorithm 0.5 Crossover algorithm 0.5 
Mutation algorithm 0.2 Mutation algorithm 0.2 

 

2.3.3. Decision tree with Genetic Algorithm (DT 

+ GA) 

The Decision Tree (DT) is a predictive model 

that uses rules derived from data to make 

predictions, where each node represents a feature, 
each branch a decision rule, and each leaf an 

outcome. The key hyperparameters include the 

maximum depth (𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ), the minimum 

number of samples to split a node 

(𝑚𝑖𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠𝑠𝑝𝑙𝑖𝑡
) and the criterion for splitting 

quality (entropy or Gini index). Mathematically, 

entropy is defined as 𝐻(𝑋) = − ∑ 𝑝𝑖log (𝑝𝑖)𝑛
𝑖=1 , 

where 𝑝𝑖 is the probability of class i. The hybrid 

DT-GA model optimizes these hyperparameters by 

selecting, crossing, and mutating configurations to 
maximize the tree's accuracy in tasks such as 

predicting fragmentation and costs in mining, 

enhancing its robustness against geological data 
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variability [76, 77]. For fragmentation prediction, a 

maximum depth of 0.52 and a minimum of 13.26 
samples for splitting were selected, while for cost 

prediction, a learning rate of 7.09 and a batch size 

of 15.74 were established (see Table 7). 
2.3.4. XGBoost with Genetic Algorithm 

(XGBoost + GA) 

XGBoost is a machine learning algorithm based 

on decision trees that uses boosting to improve 
accuracy in classification and regression tasks. Its 

key hyperparameters include the learning rate 

(𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑟𝑎𝑡𝑒), the number of trees (𝑛𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠), 

the maximum depth (max_𝑑𝑒𝑝𝑡ℎ) and 

regularization terms (𝜆 𝑎𝑛𝑑 𝛼) to prevent 

overfitting. Mathematically, the prediction is 

represented as �̂�𝑖 = ∑ 𝑤𝑘ℎ𝑘(𝑥𝑖)𝐾
𝑘=1 , where 𝑤𝑘 re 

the weights and ℎ𝑘 are the individual trees [37, 78]. 
The Genetic Algorithm (GA) is used to optimize 

the XGBoost hyperparameters, adjusting 

configurations to maximize accuracy and minimize 
error in tasks such as fragmentation and cost 

prediction. This hybrid approach combines the 

efficiency of XGBoost with the exploration 
capabilities of GA, resulting in a robust and 

efficient model [37].  For fragmentation prediction, 

a maximum depth of 4.38 and a minimum of 12.70 

samples per split were selected, while for cost 
prediction, a final learning rate of 0.08 and a batch 

size of 9.29 were established. The optimized 

hyperparameters include a learning rate of 0.05 for 
fragmentation and 0.08 for costs, with 385.07 

estimators for fragmentation and 165.43 for costs. 

Additionally, the Gamma values were adjusted to 
0.04 for fragmentation and 2.24 for costs, and the 

minimum child weight was set to 12.70 for 

fragmentation and 4.40 for costs (see Table 8).  

Table 7. Hyperparameters used in DT + AG. 

Hyperparameter Value (X50)  Value (Costs) 

Maximum depth  0.52 Maximum depth  7.09 
Minimum simples for division 13.26 Minimum simples for division 15.74 
Selection algorithm 3 Selection algorithm 3 
Crossover algorithm 0.5 Crossover algorithm 0.5 

Mutation algorithm 0.2 Mutation algorithm 0.2 

Table 8. Hyperparameters used in XGBoost+AG 

Hyperparameter Value (X50) Hyperparameter Value (Costs) 

Maximum depth 4.38 Maximum depth 9.29 
Learning rate 0.05 Learning rate 0.08 
Number of estimators 385.07 Number of estimators 165.43 
Gamma 0.04 Gamma 2.24 
Minimum child weight 12.70 Minimum child weight 4.40 
Selection algorithm 3 Selection algorithm 3 
Crossover algorithm 0.5 Crossover algorithm 0.5 
Mutation algorithm 0.2 Mutation algorithm 0.2 

 

2.3.5. Support vector regression with particle 

swarm optimization (SVR + PSO) 

Support Vector Regression (SVR) is a machine 

learning technique that extends Support Vector 

Machines (SVM) to regression problems, aiming to 

predict values with the greatest simplicity possible 

within a tolerable margin of error defined by the ∈ 

parameter. The key hyperparameters include the 

regularization parameter 𝐶, which controls the 

penalty for errors, and ∈ which defines the width of 

the tolerance margin. Mathematically, SVR 

optimizes the following function: 

𝑚𝑖𝑛
1

2
‖𝑤‖2 + 𝐶 ∑ max (0, |𝑦𝑖 − 𝑓(𝑥𝑖)|−∈)

𝑛

𝑖=1

 (4) 

where 𝑤 re the model weights, 𝐶 is the 

regularization term, 𝑦𝑖 are the actual values, and, y 

𝑓(𝑥𝑖) are the model predictions. Particle Swarm 

Optimization (PSO) is used to adjust the 

hyperparameters 𝐶, ∈ and the kernel parameter 𝛾 in 
an RBF kernel. PSO guides the hyperparameter 

configuration towards the best possible solution, 

optimizing SVR accuracy in complex and 
nonlinear tasks such as fragmentation and cost 

prediction in mining [79]. This SVR-PSO approach 

is ideal for scenarios with noisy data and nonlinear 
relationships between variables, maximizing 

accuracy through continuous parameter 

optimization [80, 81]. For fragmentation 

prediction, the final optimized values were 𝐶 = 
1000.00, epsilon of 0.01, and gamma of 0.0001, 

while for cost prediction, the optimized values 

were 𝐶 = 1000.0, epsilon of 0.34, and gamma of 
0.20, with lower and upper bounds of [0.1, 0.001, 

0.0001] and [1000, 1, 1], respectively (see Table 9). 
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Table 9. Hyperparameters used in SVR+PSO. 

Hyperparameter Value (X50) Hyperparameter Value (Costs) 

C (Regularization) 1000.00 C (Regularization) 1000.00 
Epsilon 0.01 Epsilon 0.34 
Gamma 0.0001 Gamma 0.20 
Lower limit [0.1, 0.001, 0.0001] Lower limit [0.1, 0.001, 0.0001] 
Upper limit [1000, 1, 1] Upper limit [1000, 1, 1] 

Swarm size 10 Swarm size 10 
Maximum of iterations 10 Maximum of iterations 10 

 
2.3.6. Artificial neural network with particle 

swarm optimization (ANNs + PSO) 

The hybrid ANNs-PSO model combines ANNs 
with Particle Swarm Optimization (PSO) to 

enhance prediction accuracy by tuning 

hyperparameters such as the number of neurons, 

layers, and learning rate. In this approach, PSO 
optimizes these parameters, allowing the ANNs to 

dynamically adjust to minimize errors in tasks like 

rock fragmentation prediction in mining. This 
model is robust and precise, capable of adapting to 

variability in geological and operational data. A 

simple analogy is to imagine explorers (PSO) 

searching for treasure (the optimal configuration), 

adjusting their direction based on clues 

(hyperparameters) to get closer to the goal 
(maximum prediction accuracy) [82–84]. For 

fragmentation prediction, a learning rate of 0.03, a 

batch size of 10, and 90 epochs with 64 and 32 

neurons in the hidden layers were used. For cost 
prediction, the learning rate was 0.1, the batch size 

was 10, and 100 epochs were used with 10 and 5 

neurons in the hidden layers. The lower and upper 
bounds for PSO parameters were set at [0.001, 10, 

10] and [0.1, 100, 100], respectively, with a swarm 

size of 10 and a maximum of 10 iterations for both 
cases (see Table 10). 

Table 10. Hyperparameters used in ANNs + PSO. 

Hyperparameter Value (X50) Hyperparameter Value (Costs) 

Learning rate 0.03 Learning rate 0.1 
Batch size 10 Batch size 10 

Number of epochs 90 Number of epochs 100 
Neurons per layer 64 y 32 Neurons per layer 10 y 5 
Lower limit [0.001, 10, 10] Lower limit [0.01, 10, 10] 
Upper limit [0.1, 100, 100] Upper limit [0.1, 100, 100] 
Swarm size 10 Swarm size 10 
Maximum of iterations 10 Maximum of iterations 10 

 

2.4. Simulation and optimization scenarios 

To improve the predictive accuracy of the 

models and evaluate their practical applicability in 

real mining operations, a series of simulation and 

optimization scenarios were developed. These 
scenarios aimed to analyze how different drilling 

and blasting configurations influence rock 

fragmentation (X50) and total operational costs 
[85–87]. The methodology for these simulations 

follows a structured approach: 

Pessimistic scenario: Represents suboptimal 
blasting conditions, where excessive burden and 

spacing result in coarser fragmentation and higher 

operational costs due to inefficient energy 

distribution. Realistic scenario: Simulates current 
operational conditions in the mine, ensuring that 

predicted fragmentation and costs remain within 

historically recorded ranges. Optimistic scenario: 
Implements optimized blast design parameters, 

such as reduced burden and spacing, to achieve 

finer fragmentation and lower drilling and blasting 
costs while maintaining operational efficiency.  

Once the most influential parameters were 

identified, an iterative optimization process was 

conducted to enhance both fragmentation quality 
and cost efficiency. The optimal scenario was 

determined by minimizing costs while ensuring the 

desired fragmentation size, achieving a balance 
between operational effectiveness and economic 

feasibility. 

Subsequently, the best-performing model was 
used to forecast future drilling and blasting costs 

over 30 upcoming blasts, providing valuable 

insights for strategic mine planning and cost 

optimization. 

3. Results and Discussion 

Six hybrid models were used to predict 

fragmentation and optimize drilling and blasting 
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costs in an open-pit mine, with an 80% confidence 

limit 

3.1. Artificial neural network with genetic 

algorithm (ANNs + GA) 

Figure 3 shows the training and validation loss in 

the prediction of fragmentation and total operational 

costs for drilling and blasting. For fragmentation, the 

training loss drops sharply from around 140 to nearly 

0 in less than 15 epochs, stabilizing at values close to 

0. The validation loss shows a similar pattern, starting 

at around 42 and also stabilizing near 0. This indicates 

that the model has effectively learned without 

overfitting. In terms of total operational costs for 

drilling and blasting, the training loss quickly 

decreases from an initial value higher than 3x109, 

stabilizing near 0 after 30 epochs, indicating effective 

model fitting. The validation loss follows a similar 

pattern, confirming that the model does not overfit 

and is able to generalize well for cost prediction. 

Figure 4 shows the predicted fragmentation points, 

which closely align with the actual values, with a 

coefficient of determination (R2) of 0.81 for the 

training set and 0.74 for the test set, indicating high 

accuracy in explaining between 74% and 81% of the 

variability in the fragmentation data. Additionally, the 

data points align closely to the equality line, with an 

R2 of 0.99 for the training set and 0.98 for the test set 

in predicting the total operational cost of drilling and 

blasting. 

 

Figure 3. Training and validation loss graphs. A: Training and validation loss in fragmentation prediction. B: Training and 

validation loss in total operational cost prediction for drilling and blasting. 

 
Figure 4. Comparison of actual vs. predicted values using ANNs + GA. A: Fragmentation training set. B: Fragmentation test 

set. C: Training set for total operational costs of drilling and blasting. D: Test set for total operational costs of drilling and 

blasting. 
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3.2. Decision tree with genetic algorithm (DT + 

GA) 

Figure 5 shows a high correlation between 

actual and predicted fragmentation, with an R2 of 

0.91 for the training set and 0.90 for the test set in 
fragmentation prediction. Additionally, there is a 

close alignment between actual and predicted 

costs, with an R2 of 0.99 for the training set and 

0.95 for the test set in predicting total costs for 
drilling and blasting. 

3.3. Random Forest with Genetic Algorithm (RF 

+ GA) 

In Figure 6 there is a high degree of alignment 

between actual and predicted fragmentation, with 

an R2 of 0.94 for the training set and 0.91 for the 
test set. The data points near the equality line 

indicate that the RF+GA model predicts 

fragmentation with high accuracy, explaining 
between 91% and 94% of the variability in both 

sets. Additionally, the data points align almost 

perfectly with the equality line in cost prediction, 
with an R2 of 1.00 for the training set and 0.99 for 

the test set. 

The most important variable for predicting 

fragmentation is E, with an importance score of 
0.202, followed by the B/D with 0.153, and Hf with 

0.105, indicating their significant influence on the 

fragmentation process. In terms of costs, the most 
relevant variable is drilling cost with an importance 

of 0.779, followed by explosive cost with 0.07, 

suggesting that these are the main factors 
influencing total drilling and blasting costs (see 

Figure 7). 

 
Figure 5. Comparison of actual vs. predicted values using DT+GA. A: Fragmentation training set. B: 

Fragmentation test set. C: Training set for total operational costs of drilling and blasting. D: Test set for total 

operational costs of drilling and blasting. 
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Figure 6. Comparison of actual vs. predicted values using RF + GA. A: Fragmentation training set. B: 

Fragmentation test set. C: Training set for total operational costs of drilling and blasting. D: Test set for total 

operational costs of drilling and blasting. 

3.4. XGBoost with genetic algorithm (XGBoost 

+ GA) 

The predicted fragmentation values closely 
match the actual values, achieving an R2 of 0.96 for 

the training set and 0.91 for the test set, 

demonstrating the high accuracy of the 
XGBoost+GA model. Likewise, the predicted 

drilling and blasting costs show an almost perfect 

alignment with the actual values, with an R2 of 1.00 
for the training set and 0.99 for the test set, 

confirming the model’s reliability in accurately 

estimating total drilling and blasting costs (see 

Figure 8). 
 

 

 
 

3.5. Artificial neural network with particle 

swarm optimization (ANNs + PSO) 

The loss decreases significantly for both the 
training and validation sets during the first 10 

epochs, before stabilizing at very low values, 

indicating good convergence without overfitting. 
In terms of costs, both curves begin at high values 

(greater than 3×109) and stabilize near zero by 

epoch 30 (see Figure 9). 
The predicted fragmentation values closely 

match the actual values, achieving an R2 of 0.82 for 

both the training and test sets, demonstrating the 

good predictive capability of the ANNs+PSO 
model. Similarly, the predicted drilling and blasting 

costs align closely with the actual values, with an 

R2 of 0.97 for the training set and 0.96 for the test 
set, confirming the model’s reliability in cost 

estimation (see Figure 10). 
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Figure 7. Importance of input variables in predictions. A: Importance in fragmentation predictions. B: 

Importance in total operational cost predictions for drilling and blasting. 

 
Figure 8. Comparison of actual vs. predicted values using XGBoost + GA. A: Fragmentation training set. B: 

Fragmentation test set. C: Training set for total operational costs of drilling and blasting. D: Test set for total 

operational costs of drilling and blasting. 
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Figure 9. Training and validation loss graphs with ANNs + PSO prediction. A: Training and validation loss in 

fragmentation prediction. B: Training and validation loss in total operational cost prediction for drilling and 

blasting. 

 
Figure 10. Comparison of actual vs. predicted values using ANNs + PSO. A: Fragmentation training set. B: 

Fragmentation test set. C: Training set for total operational costs of drilling and blasting. D: Test set for total 

operational costs of drilling and blasting. 

A high correlation is observed between actual 
and predicted fragmentation, with an R2 of 0.93 for 

the training set and 0.92 for the test set. The data 

points align consistently with the equality line, 

confirming the accuracy of the SVR+PSO model in 
predicting fragmentation. Figure 11 illustrates 

these results, showing that the predicted costs also 

closely match the actual values, with an R2 of 0.97 
for the training set and 0.98 for the test set. This 

indicates that the model is highly precise in 

estimating total drilling and blasting costs. 
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3.6. Evaluation metrics for predictions using 

hybrid models 

The SVR + PSO model achieved the best 

performance in fragmentation prediction, with an 

RMSE of 0.27, an MAE of 0.21, and an R2 of 0.92 
on the test set, demonstrating high accuracy. The 

XGBoost+GA model followed closely, with an 

RMSE of 0.29, an MAE of 0.22, and an R2 of 0.91. 

Similarly, the RF+GA model performed well, also 
achieving an RMSE of 0.29 and an R2 of 0.91. On 

the training set, the best-performing models were 

XGBoost+GA, both with an RMSE of 0.19 and an 
R2 of 0.96, indicating their strong generalization 

capability. The ANNs+PSO model, although it 

produced reasonable results, lagged behind with an 
RMSE of 0.40 and an R2 of 0.82 on the test set (see 

Table 11). The results obtained in this study are 

comparable to previous research. Zhao et al. [88], 
using hybrid models such as GBoost-BOA, 

achieved an R2 of 0.96 in fragmentation prediction, 

slightly higher than the R2 of 0.92 obtained by the 

SVR + PSO model in this study. Similarly, 
Gebretsadik et al. [89] employed Random Forest 

Regression (RFR), reaching an R2 of 0.94, a value 

close to the R2 of 0.91 obtained with our RF + GA 
model. 

 
Figure 11. Comparison of actual vs. predicted values using SVR + PSO. A: Fragmentation training set. B: 

Fragmentation test set. C: Training set for total operational costs of drilling and blasting. D: Test set for total 

operational costs of drilling and blasting. 

Table 11. Fragmentation prediction evaluation metrics using machine learning models. 

Metrics ANNs + GA RF + GA DT + GA XGBoost + GA SVR + PSO ANNs + PSO 

Test 

RMSE 0.49 0.29 0.30 0.29 0.27 0.40 

MAE 0.40 0.23 0.24 0.22 0.21 0.33 

R2 0.74 0.91 0.90 0.91 0.92 0.82 

Training 

RMSE 0.40 0.23 0.28 0.19 0.24 0.39 

MAE 0.32 0.17 0.21 0.14 0.18 0.33 

R2 0.81 0.94 0.91 0.96 0.93 0.82 
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The RF + GA model achieved the best 

performance in predicting drilling and blasting 
costs, with an RMSE of 414.58, an MAE of 354.14, 

and an R2 of 0.99 on the test set. The XGBoost+GA 

model also performed well, with an RMSE of 
420.80, an MAE of 368.83, and an R2 of 0.99. 

Although the SVR + PSO model had a higher 

RMSE of 679.10, it still maintained a strong 

predictive capability with an R2 of 0.98. On the 

training set, RF + GA and XGBoost + GA once 

again stood out, achieving RMSE values of 168.05 
and 201.29, respectively, along with an R2 of 1.00, 

demonstrating excellent generalization capability. 

While the ANNs+GA model also obtained a high 
R2 of 0.99, its RMSE of 501.89 indicates a higher 

margin of error compared to the top-performing 

models (see Table 12). 

Table 12. Drilling and blasting cost prediction evaluation metrics using machine learning models. 

Metric ANNs + GA RF + GA DT + GA XGBoost + GA SVR + PSO ANNs + PSO 

Test 

RMSE 659.89 414.58 990.41 420.80 679.10 901.88 

MAE 563.93 354.14 832.06 368.83 474.50 738.28 

R2 0.98 0.99 0.95 0.99 0.98 0.96 

Training 

RMSE 501.89 168.05 432.94 201.29 716.36 715.93 

MAE 397.36 127.30 341.98 130.69 416.06 549.41 

R2 0.99 1.00 0.99 1.00 0.97 0.97 

 

The predicted values in the test set closely align 

with the actual values for both fragmentation 
prediction and total drilling and blasting costs. In 

fragmentation prediction (Part A), most points 

predicted by different models are positioned near 
the equality line (dashed line), with the SVR+PSO 

model showing the most consistent alignment, 

demonstrating superior accuracy. Figure 12 
illustrates this comparison, where in total drilling 

and blasting cost prediction (Part B), the RF + GA 

and XGBoost + GA models exhibit the highest 
accuracy, closely matching the actual cost values. 

 
Figure 12. Comparison of actual vs. predicted values in the test set. A: Fragmentation prediction comparison. B: 

Total operational cost prediction comparison for drilling and blasting. 

3.7. Optimization of fragmentation and drilling 

and blasting operational costs 

The optimization of rock fragmentation size 
(X50) and drilling and blasting costs is analyzed 

under three different scenarios: pessimistic, real, 

and optimistic. In the pessimistic scenario, 

fragmentation size remains around 17.6 cm, while 
in the real scenario, it fluctuates between 17.0 cm 

and 17.4 cm. In the optimistic scenario, 

fragmentation is further reduced to a range of 16.6 

cm to 17.0 cm, representing a 5.7% decrease 

compared to the pessimistic scenario. This finer 

fragmentation is achieved by adjusting the burden 
to 3.8 m and the spacing to 4.5 m, improving 

overall fragmentation efficiency. Figure 13 

illustrates these results, highlighting the impact of 

optimized parameters on X50 reduction. 
Meanwhile, Figure 14 presents the optimization of 

drilling and blasting costs, where in the pessimistic 

scenario, costs remain around 63,000 USD. In the 
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real scenario, they vary between 59,000 and 60,000 

USD, while in the optimistic scenario, costs are 
further reduced to a range of 57,000 to 58,000 

USD, achieving a 9.5% reduction compared to the 

pessimistic case. 
The comparison between AI-predicted results 

and real mining data from Peruvian open-pit 

operations. Cardenas et al. [90] and Churra [91] 

demonstrates a high level of accuracy in 
fragmentation prediction and a relatively small 

deviation in cost estimation. The predicted rock 

fragmentation (X50) of 16.80 cm closely aligns with 
the actual mining fragmentation of 17.907 cm, with 

only a 6.18% deviation, confirming the reliability 

of AI models in fragmentation forecasting. 
Similarly, the predicted drilling and blasting costs 

(58,000 USD) are 7.84% lower than the actual 

mining cost of 62,937.03 USD, indicating that 
while machine learning effectively models costs, 

operational and logistical factors not included in 

the dataset may influence real expenditures. These 
minor discrepancies suggest that AI models are 

highly applicable to real mining conditions, with 

potential refinements needed in cost estimation by 

incorporating additional financial and logistical 
variables (see Table 13). Despite these differences, 

the findings validate that AI can serve as a reliable 

tool for optimizing rock fragmentation and cost 
forecasting, enabling data-driven decision-making 

that enhances efficiency, cost-effectiveness, and 

operational predictability in mining processes. 

 
Figure 13. Rock fragmentation size optimization scenarios. 

 
Figure 14. Optimization scenario for total operational costs of drilling and blasting. 

Table 13. Validation of machine learning predictions against real mining data in Peru. 

Metric This study Real mining data [90, 91] Deviation from real data (%) 

Rock fragmentation (cm) 16.80 17.907 6.18 
Drilling and blasting costs (USD) 58,000.00 62,937.03 7.84 
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3.8. Prediction of future total operational costs 

for drilling and blasting 

The prediction of total operational costs for 

drilling and blasting over 30 future blasts using the 

RF+GA model demonstrates a strong correlation 
between predicted and historical costs, where the 

predicted values (red line) follow a similar trend to 

historical data (blue line), reinforcing the model’s 

high predictive capacity. The estimated costs range 
between 50,306 USD and 59,574 USD, remaining 

within historically observed margins, while the 

average cost per blast is 55,180.37 USD, leading to 

a total accumulated cost of 1.7 MUSD for the 30 
projected blasts (see Table 14). These findings 

align with international studies, such as Zhao et al. 

[88], who applied hybrid predictive models to 
estimate blasting costs and achieved stable and 

reliable forecasts. Figure 15 illustrates this trend, 

further validating the model’s capability to 

accurately predict cost variations, demonstrating its 
potential as a reliable tool for economic forecasting 

in mining operations. 

Table 14. Predicted drilling and blasting costs for the 30 future blasts. 

N° blasting Predicted cost (USD) N° blasting Predicted cost (USD) 

1 55,005.23 16 59,506.55 

2 57,384.43 17 56,191.85 

3 50,898.03 18 50,306.59 

4 52,274.83 19 57,458.21 

5 54,499.95 20 54,044.92 

6 54,551.70 21 57,031.42 

7 54,533.11 22 53,499.66 

8 52,715.26 23 57,727.46 

9 59,574.21 24 56,987.80 

10 53,918.04 25 53,540.49 

11 55,373.87 26 52,213.21 

12 58,651.57 27 54,843.00 

13 53,657.34 28 57,220.08 

14 55,751.38 29 54,473.15 

15 57,231.50 30 54,346.26 

Total (USD) 1,655,411.10 

Average (USD) 55,180.37 

 

 
Figure 15. Prediction of total operational costs for 

drilling and blasting over 30 future blasts using RF 

+ GA. 

4. Conclusions 

In this work, drilling and blasting parameters 

and costs in an open-pit mine were optimized using 
hybrid predictive models, with the SVR + PSO 

model showing the highest efficacy for 

fragmentation prediction, achieving an RMSE of 
0.27, an MAE of 0.20, and an R2 of 0.92. For 

predicting the total operational costs of drilling and 

blasting, the best model was RF+GA, with an 

RMSE of 398.87, an MAE of 336.01, and an R2 of 

0.99. Three scenarios pessimistic, real, and 

optimistic were considered in the predictions. In 

the optimistic scenario, the fragment size was 

reduced to 16.6 cm by adjusting key parameters, 
such as the burden and spacing, to 3.8 m and 4.5 m, 

respectively. The total operational costs were 

optimized to an average of 57,000 USD per blast. 
The exploratory data analysis identified key 

factors influencing fragmentation, with the burden-

to-drill diameter ratio (r = 0.96) and uniaxial 
compressive strength (r = 0.95) being the most 

significant. In terms of costs, the number of drill 

holes and the cost of explosives (r = 0.92 and r = 

0.94, respectively) showed a strong correlation 
with total costs. This approach allowed for the 

prediction and projection of future costs for 30 

blasts using the RF + GA hybrid model, resulting 
in a total cost of 1.655 MUSD and an average of 

55,180.37 USD per blast. 

The limitations of this work include the 

exclusion of additional geotechnical variables such 
as soil moisture, rock anisotropy, and rock mass 

density, which could improve prediction accuracy. 

The models could benefit from incorporating these 
variables in future studies. It is also recommended 
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to conduct tests in different geological and 

operational settings, as well as to explore other 
hybrid optimization algorithms, to achieve more 

robust and generalizable optimization in mining 

operations. 
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 چکیده:

  حال، این با.  کندمی  کمک صانعتی  توساعه و  اشاتاال داخلی،  ناخالص  تولید به توجهی  قابل طور به و  کندمی  ایفا  کشاورها  از  بسایاری  اقتصااد در حیاتی  نقش  معدن

  روباز  معدنکاری در  کلیدی  چالش یک  همچنان  ساان ، خردایش  راندمان  و عملیاتی  هایهزینه بر آن مسااتقی   تأثیر  دلیل  به  انفجار و حفاری عملیات سااازیبهینه

  دقت که نوآورانه  رویکردی  اسات،  ترکیبی ماشاین  یادگیری  هایمدل  از اساتفاده با انفجار  و  حفاری  هایهزینه و(  X50) خردایش ساازیبهینه کار این هدف. اسات

 تقویت  ،(DT)  گیریتصامی   هایدرخت  ،(ANNs)  مصانوعی عصابی  هایشابکه:  شاد  داده  توساعه  مدل  شاش.  بخشادمی بهبود را  اقتصاادی  سانجیامکان و  بینیپیش

(  PSO)  ذرات  ازدحام سازیبهینه و(  GA)  ژنتیک  الگوریت   از استفاده  با که  ،(SVR)  پشتیبان بردار  رگرسیون و(  RF)  تصادفی جنگل  ،(XGBoost) شدید  گرادیان

  ،0.27 با  برابر  RMSE با SVR+PSO  مدل. شااد تقساای   آزمایش برای  ٪30 و  آموزش برای  ٪70 به انفجار،  100  شااامل  ها،داده  مجموعه. اندشااده سااازیبهینه

MAE و  0.21  باا برابر  R2  مادل.  آورد دسااات  باه خردایش بینیپیش  برای  را  دقات بااتترین  ،0.92  باا برابر RF+GA  باا  RMSE 414.5۸ باا  برابر،  MAE باا برابر 

  4.5 به  متر  5.0) فاصاله  و(  متر  3.۸  به  متر  4.3) بار  کاهش  با ساازیبهینه ساناریوهای. داشات هزینه  بینیپیش در را اثربخشای  بیشاترین  ،0.99 با  برابر R2  و  354.14

  آمریکا  دتر  57000 به  آمریکا  دتر  ۶3000)  هزینه درصادی  9.5  کاهش  و(  مترساانتی  1۶.۶ به  مترساانتی  17.۶)  X50  در درصادی  5.7  کاهش به و  شادند اجرا(  متر

  طور  باه کاه زد  تخمین  را آمریکاا  دتر  میلیون 1.7  کال  هزیناه ،RF+GA  مادل از  اساااتفااده  باا  آیناده  انفجاار  30 برای  هاابینیپیش. یاافتناد دسااات( انفجاار هر  ازای باه

 یک  و  کندمی تأیید انفجار  راندمان  بهبود و  هزینه  ساازیبهینه در  را  ماشاین یادگیری  اثربخشای  هایافته  این. اسات انفجار  هر  ازای به  آمریکا  دتر  551۸0  متوساط

 .دهدمی ارائه معدن عملیات سازیبهینه برای داده بر مبتنی قوی رویکرد
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