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 This study focuses on predicting the drillability of granitic rocks—precisely the wear 
rate of button bits, by integrating rock strength and mineralogical properties. The 
objective is to develop a predictive model for bit wear rate using a Rock Engineering 
System (RES) approach. Key rock parameters (uniaxial compressive strength, porosity, 
specific gravity, and the mineral content of quartz, plagioclase, hornblende, and biotite) 
were analysed via a RES interaction matrix to derive a new Drillability Index capturing 
their combined influence. This analysis revealed that UCS and porosity are the most 
influential factors in the system. The resulting RES-based model correlates strongly 
with observed bit wear rates, achieving a high coefficient of determination (R² ≈ 0.93) 
and low prediction errors (RMSE = 2.79, MAE = 2.14). The MAPE (= 38%) indicates 
a marked improvement in accuracy over traditional regression methods. Integrating 
mechanical and mineralogical factors is a novel approach to drillability prediction, 
providing a more comprehensive account of rock characteristics than conventional 
models. Validation results show that the RES-derived Drillability Index reliably 
predicts field performance, offering practical value for optimising drilling operations 
and guiding geomechanical analysis. Additionally, the study proposes a drillability 
classification scheme to further support the field application of the findings. 
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1. Introduction 

Drilling is one of the most critical activities 
within mining, geotechnical engineering, and 
petroleum exploration due to its direct impact on 
excavation productivity, operational expenses, 
and equipment wear. The contribution of numerous 
elements, such as rock characteristics, drill bit 
selection, and drilling settings, determine the 
impact of drilling activities. The mechanisms of 
penetration, bit performance and energy 
consumption have been investigated previously [1-
2], but they have reinforced the discrepancies in 
the interactions between geological and 
mechanical properties. The most significant factors 
affecting rock drillability, simply the ease of the 
rock being drilled, are rock strength, mineralogical 
composition, texture, and operational parameters 
during the drilling process [3-4]. In recent years, 

rock mechanical properties, including rock UCS, 
tensile strength, porosity, and specific gravity, 
which are considered significant in drillability, 
have been investigated [5]. There are several 
studies into the drillability index (DI), combining 
geomechanical properties and operational drilling 
parameters.  A novel drillability index was 
developed based on 65 rock mass samples, which 
achieved an error range of ±7% in the penetration 
rate prediction [6]. Later, the researcher achieved a 
94% effectiveness in evaluating carbide bit wear 
within rotary drilling procedures by employing 
digital-image processing technologies to assess 
drill bit wear. In a real-world application [7]. 
Another study on the effects of bit hardness, 
drilling machine parameters and rock mechanical 
properties on noise during hard rock drilling 
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discovered that bit wear increases noise intensity 
by 21 per cent, making noise analysis a potential 
indirect indicator of bit deterioration [8]. 

Drillability prediction and bit wear analysis are 
critical to optimising the performance of drilling 
operations in mining and petroleum. Many studies 
are enhancing prediction precision through 
machine learning, empirical modelling, and 
experimental validation methods. The long Short-
Term Memory (LSTM) model was used to evaluate 
bit wear predicting trends in Southwest Nigeria 
mines, and it achieved an accuracy of prediction up 
to 92.5% [2]. By leveraging real-time drilling data 
from 300 boreholes, their model achieved orders of 
magnitude improvement over conventional 
regression techniques. On the other hand, a study 
on extensive bit wear modelling based on 25 
drilling operations concluded that bit degradation 
was highly correlated (R² = 0.89) to operational 
parameters such as rotary speed and thrust force 
[9]. Similarly, the prediction of optimal drilling 
rates using the Bourgoyne and Young model 
achieved a predictive accuracy of 93%, which is 
an improvement from the 82% completed using the 
traditional approach [10]. The introduction of the 
Rock Mass Drillability Index (RMDI) to estimate 
the drilling rates for open-pit mines resulted in a 
low prediction error, with a root mean square error 
of 1.85, while verifying its accuracy over 100 
boreholes [11]. 

The physico-mechanical properties of rock 
formations directly impact drillability and bit wear. 
The strength of the rock is one of the most critical 
parameters for drilling because it is directly related 
to the amount of energy expended in penetrating 
the rock. Among the parameters studied for rock 
drillability, uniaxial compressive strength (UCS) is 
one of the most commonly tested and previous 
studies have strongly correlated it with penetration 
rate. Evidence has shown that increasing UCS 
(90.56–121.43 MPa) reduced the penetration rate 
with a 98.5% coefficient of determination, 
representing a strong inverse correlation [12]. A 
95% inverse correlation on the UCS-penetration 
rate relationship further reinforces UCS as an 
essential parameter influencing drilling efficiency 
[13]. A polynomial model has demonstrated that 
UCS has a high precision for predictability of drill 
rates in underground mining with an R² of 0.92 
[14]. A machine-learning approach to enhance 
penetration rate estimations reported that UCS 

complementary features improve drillability 
predictions more accurately [15]. More 
importantly, rocks with UCS > 150 MPa exhibited 
a much lower penetration rate, while UCS < 100 
MPa eased the drilling [16]. Besides UCS, some 
other parameters have also been studied as 
determinants of drillability, especially Brazilian 
tensile strength (BTS) and point load strength 
index (PLI). BTS moderately correlates with 
penetration rate, particularly in fine-grained rocks 
where tensile failure mechanisms play a more 
significant role in drilling performance [17]. 
Conversely, the relationship between drilling-
specific energy (DSE) and formation 
geomechanical properties in oil drilling 
applications reported a predictive correlation (R²) 
of 0.88 [18]. In another significant study, a 
probabilistic ensemble learning model to assess 
penetration rates in multifaceted geological 
environments offered a 15% accuracy boost 
compared to traditional deterministic models [19]. 
These studies demonstrate a continuous 
comparison of data-driven methodologies against 
past drilling performances and the adoption of real-
time operational parameters into prediction 
models for drill performance prediction. 

Meanwhile, BTS and UCS data used as inputs 
to a fuzzy evaluation model obtained higher 
accuracy of classified drillabilities between 
lithologies [20]. An investigation of the influence 
of the porosity of rocks revealed that values 
exceeding 0.19 reduce drillability negatively, 
especially in sandstones, owing to the pore collapse 
and energy dissipation during the drilling [21]. The 
development of and combination of Composite 
Penetration Rate Index (CPRI) with UCS, BTS and 
porosity to estimate drillability in metamorphic 
rocks achieved R² of 0.92 [22]. However, studies 
have primarily emphasised individual strength 
parameters rather than their collective influence on 
drillability and wear rate of bits. Thus, including 
UCS and BTS, as well as porosity and specific 
gravity, into a single drillability index allows this 
study to provide a more holistic and pragmatic 
evaluation of drillability in rocks, advancing the 
field with a more integrated approach. A 
comparison of multiple scales of rock hardness 
revealed that penetration rate had the most 
significant correlation (R²= 0.87) with Schmidt 
hammer hardness (SH) and Brazilian tensile 
strength (BTS) [23]. Further, micro-fabric analysis 
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(such as grain size and interlocking texture) 
explains 30% of the variance in the drillability 
index (DI) across 120 rock samples [24]. In the 
same classification, the relationship between UCS 
(70–160 MPa) and porosity (1.2%–8.5%) values 
on horizontal drilling rates in marble quarries 
shows that the penetration rate decreases by 45% 
when the UCS values increase [25]. However, 
increased rock porosity helps to improve drilling 
efficiency. 

Meanwhile, the study of pneumatic top hammer 
drills on five rock types using a laboratory-
controlled experiment reported penetration rates of 
2.5 m/min for high-strength granite and 10.8 m/min 
for soft limestone [26]. Moreover, an experimental 
drilling simulator used to examine drilled-cutting 
transport efficiency covering 35 test scenarios 
confirms that the optimal fluid viscosity lowers bit 
wear by 28% and enhances cutting transport 
efficiency by 37% under controlled operating 
regimes [27]. However, the mineralogical 
properties, especially the contents of quartz and 
feldspar, have been confirmed to be the main 
factors affecting drill bit wear and penetration 
efficiency [20-21]. 

Mineralogy is also vital in impacting 
drillability, as mineral hardness, grain size, and 
texture affect penetration rates and bit wear. One of 
the most complex particle forms is quartz, which 
has a high hardness (Mohs scale 7), greater 
abrasiveness, and incremental penetration of the 
bit wear. Lin & Kuangdi [1] showed that rocks 
containing >40% quartz produced much lower 
penetration rates and more wear on tungsten 
carbide drill bits than rocks with <40% quartz. 
Similarly, Wang et al. [20] utilised a two-layer 
fuzzy evaluation model and found quartz and iron 
content to be the most dominant parameters 
affecting drillability. Chen et al. [21] explored the 
impact of porosity, permeability, and mineralogical 
composition on drillability, reporting an 
exponential decrease between porosity and 
drillability post-0.19 due to drill-induced energy 
absorption and the collapsing of pores. Also, 
Srivastava and Vemavarapu [22] developed the 
Composite Penetration Rate Index (CPRI) with 
mineralogical properties included in the drillability 
assessment, which reached a predictive accuracy of 
R² = 0.92 in metamorphic rocks. Intensifying 
drillability in terms of the mineral content has been 
discussed in the literature, and previous studies 

related to mineralogical contents, mainly feldspar 
and biotite contents, have interpreted that feldspar 
acts to increase rock strength. However, with its 
platy cleavage structure, biotite increases the 
weakness of the rock matrix, thereby hindering 
drillability. Because of their weak and laminated 
structures, biotite-rich rocks require lower specific 
energy in the drilling [28]. These findings have 
resulted in the development of many predictive 
models to improve the accuracy of drillability 
prediction, such as empirical equations, machine 
learning models, and hybrid methods [26-28]. 
Unfortunately, these studies do not provide a 
comprehensive framework incorporating rock 
strength, mineralogical properties, and bit wear 
rate under the same spectrum. While numerous 
studies are dedicated to predicting penetration rate, 
most neglect the multi-parametric impact of rock 
properties on drilling efficiency. 

Recent progress in machine learning and 
artificial intelligence (AI) have improved 
drillability predictions significantly. The 
prediction of penetration rates using deep learning 
and ANNs had high accuracy for complex 
geological conditions [17, 29]. Meanwhile, deep 
learning models have been used to combine rock 
properties as input features to quantitatively predict 
the mineralogical and mechanical properties of 
rock mass [15]. A hybrid machine learning model 
has been used to enhance rate of penetration (ROP) 
predictions by accounting for mechanical 
properties and drilling parameters [30]. Another 
approach is implementing Monte Carlo simulations 
[7] and stochastic modelling [31] to put an 
uncertainty value on drillability predictions. In 
carbonate reservoirs, the models used were based 
on support vector machines and decision tree 
models to optimise penetration rate and torque on 
a bit [28]. This approach showed an improvement 
in accuracy of 15–20% compared to conventional 
empirical methods. However, many of these 
models still rely heavily on local datasets, 
hindering their application across different rock 
formations. Machine learning has gained 
momentum in drillability studies and has achieved 
higher accuracy and efficiency in prediction. K-
Nearest Neighbors (KNN) and Multi-layer 
Perceptron (MLP) models have also been used to 
predict the rate of penetration (ROP) of oil and gas 
wells, obtaining R² values of 0.92 and 0.94, 
respectively [32]. This study addressed the pros of 
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AI models in capturing non-linear geological 
changes. Meanwhile, automated image processing 
techniques have been used to evaluate cemented 
carbide bit wear and reduce manual error rates from 
traditional assessment techniques by 35% [7]. 
This evolution is a clear trajectory from 
associatively regular models to perceptually 
intelligent ones that can handle complex datasets to 
predict penetration rates and wear on the lateral 
bits more accurately. 

The Rock Engineering System (RES) approach 
addresses several civil engineering challenges. The 
RES has been used extensively to formulate an 
assessment framework for rock mass blastability 
[33] and define environmental risk criteria for 
reservoir pollution. [34] In the same way, it has 
been employed for radioactive waste 
management, applied in safety factor prediction of 
circular failure [35], investigation of traffic-
induced air pollution [37], and prediction of tunnel 
boring machine (TBM) penetration rates [38]. In 
this respect, researchers have used RES to assess 
the risk of spontaneous coal combustion [39] and 
predict powder factors from rock mass and 
geometric parameters [40]. Additional applications 
are related to rock mass classification [41] and 
flyrock distance prediction in surface blasting 
[42]. Moreover, it was used to develop a model for 
predicting blast-induced peak particle velocity 
(PPV) [43]. One such prominent work designed a 
predictive model for iron ore oxides' rotary 
abrasion penetration rate [44]. The authors applied 
the RES methodology and achieved R² of 0.91 
when relating the penetration rate with the bit wear, 
rock properties and drilling parameters [44]. 
However, no study has used RES for fragmentation 
prediction or considered the interaction between 
controllable and uncontrollable parameters and 
how these affect blast outcomes in various 
geological domains. 

Although significant efforts have been made to 
predict penetration rates and assess drillability, 
little has been done to investigate the multi-
interaction impact of rock strength and 
mineralogical composition on the bit wear rate. 
Despite recent advancements, most studies 
concentrate on the individual implications of 
mineralogical inputs independently of their 
cumulated effects and their possible interaction 
with rock mechanical properties. Most models' 
approaches are empirical and/or semi-empirical 
and thus static regarding geology. In addition, UCS 

has been the only parameter analysed to predict 
parameters and their effect on bit wear and overall 
drillability. The goal of this study is to fill this gap 
by developing a holistic drillability index (DI) that 
integrates quantitative values for quartz, 
plagioclase, hornblende, and biotite in the 
understanding of the efficiency of rock drilling, 
which involves the formation of a ground 
drillability index suitable for practical application 
in the field. This study proposes a Rock 
Engineering System (RES)–based drillability 
index to overcome these challenges and increase 
predictive capability associated with different 
geological conditions. 

2. Methods 
2.1. The Study Areas 

The scope of this study is based on the south-
western Nigerian Basement Complex (latitudes 
7˚00'00" to 8˚00'00" N and longitudes 3˚00'00" to 
5˚00'00" E), which has a wide variety of 
Precambrian rocks [45]. The Migmatite-Gneiss 
Complex, meta-sedimentary sequences, and the 
Pan-African granitoids [46] mainly make up this 
section. The first is the Migmatite-Gneiss 
Complex, which is composed of predominantly 
migmatites, banded gneisses and granite gneisses. 
These rocks show structural heterogeneities 
expressed by dominant N-S and NNE-SSW 
trending foliations and lineaments, indicative of 
several deformation episodes [46]. The gneissic 
terrains are interspersed with meta-sedimentary 
sequences, primarily schist and quartzite, which 
reflect low to medium-grade metamorphism 
characteristic of the green schist faces. These older 
units are intruded by the Pan-African granitoids 
(locally called "Older Granites"), which comprise 
granites, syenites and diorites that were emplaced 
during the Pan-African orogeny (about 600 million 
years ago) [47]. These formations have different 
physico-mechanical properties, making them 
suitable for construction and engineering. The 
mineralogical composition of rocks here in the 
complex, density variations, low porosity and high 
durability within the rock units [46] is attested to 
by studies of the Precambrian basement rocks. The 
Unconfined Compressive Strength (UCS) is in the 
order of 82.50 to 228.50 MPa, indicating that these 
rocks have moderate to high strength and can be 
used for various engineering purposes [40, 49]. 
The Basement Complex rocks cover 
almost 100% of the total land surface area of Oyo 
State [50]. The geological map of the study area is 
in Figure 1. 
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2.2. Data Collection 

Two hundred and forty (240) drilling activities 
(30 in each location) were monitored to record the 
penetration rate and bit wear in eight selected 
quarries around Oyo State, Nigeria. Forty-five 
samples of granitic lumps were collected from the 
benches in the quarry for laboratory analysis. The 
systematic methodology outlined in the flowchart 
in Figure 2 begins with field investigation and data 
collection and branches out to field monitoring 
and laboratory testing. Field monitoring was used 

to estimate penetration rates, while laboratory 
testing was used to determine rock properties 
(UCS, Sp, n) and mineralogical properties (Q, H, 
P, B). The data collected was then analysed 
through a Rock Engineering System (RES) 
approach to calculate the bits' drillability index 
(DI). Overall, these analyses culminate into model 
evaluation, resulting in two components—one for 
RES Model Development and one for Regression; 
together, the two allow for model evaluation across 
this multi-faceted process. 

  
Figure 1. The Geology of Oyo State [51] Figure 2. The Flowchart of the Research Process 

2.3. Estimation of Rock Mechanical Properties 

The rock mechanical properties investigated in 
this study are the uniaxial compressive strength 
(UCS), Specific gravity (Sp) and porosity (n) were 
evaluated according to the standard and procedure 
of the International Society of Rock Mechanics 
[52]. Accordingly, UCS, Sp, and n were estimated 
using Equations 1 to 3. 

ܥ =
ܲ
ܣ

=
4ܲ

 ଶ (1)ܦߨ

௦ܩ =
௦ܯ

௪ܯ
 (2) 

݊ =
௦௧ܯ − ௦ܯ

ܸ
× 100 (3) 

Where Co is the UCS (MPa), P is the applied 
peak load (kN), D is the diameter of the sample (m) 
and, A is the cross-sectional area of the sample 
(m2), Ms is the mass of the sample and Mw is the 

mass of water displaced, n is porosity (%), V is the 
bulk volume (cm3), Msat is the saturated surface dry 
mass (g) and Ms is the mass of the sample after 
oven-dried (g). 

2.4. The Mineralogy Component  

This study exposed the selected rock samples to 
optical analysis and determined modes by counting 
points through Swift Model E equipment with an 
automated stage fitting device. A thin section of 
samples prepared for microprobe analysis was 
examined. The samples were prepared in about 30 
mm x 40 mm, and the total counts were from 1500 
to 2000 for individual samples.  This test was 
conducted by covering the entire surface of the thin 
section. Minerals counted were quartz, plagioclase, 
hornblende, biotite, and accessory minerals.  
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2.5. Penetration and Wear Rate  

The performance of the drilling bits was 
evaluated by measuring their penetration rates 
using Equation 4. The drilling performance was 
evaluated using the same bits diameter, feed 
pressure, rotation pressure and speed, low pressure, 
air pressure, and drill-hole length (8 m).  A series 
of drilling experiments were performed, during 
which the wear rate was measured for the drilling 
bits at regular intervals using Equation 5. The mass 
loss method measured the abrasiveness and wear 
rate of the drilling bits by weighing them before 
and after the drill bit reached a depth of 8 m. A 
digital weighing balance was used to measure the 
bit weight, with a resolution of 0.1 g [53]. Most 
losses would occur at the bit matrix and cutter head 
because both will be exposed to the rock [54]. 

ݎܲ =
ܦܦ
ܶ 

 (4) 

ܹ = ܹ

ܶ
 (5) 

Where Pr is the penetration rate (m/s), DD is the 
drilling depth measured in meter and T (seconds) 
is the time taken to drill to the measured depth, Wr 
is the wear rate (mg/s), WL is weight loss (g) and T 
is the drilling time (s). 

2.6. Rock Engineering System for Drilliability 
Index 

The rock engineering system is a powerful tool 
introduced by Hudson [55] for characterising 
effective parameters in rock engineering problems 
[54]. The RES method can handle multi-variable 
and non-linear interactions of rock properties, 
making it a desirable tool for solving rock 
engineering problems, such as Drilliability. 
Notably, the RES approach can model the 
asymmetric nature of rock mass to precisely 
evaluate rock properties and non-numeric 
parameters that significantly influence its 
engineering applicability [55-56]. Three main steps 
were involved in developing the RES-based bits 
efficiency evaluation. They identify parameters 
that influence risk incidences in rock drilling, 
investigate their pattern of interactions to evaluate 
the significance (weighty factor) of each parameter 
in the overall risk conditions and estimate the 
corresponding Reliability index (DI). Parameters 
identified by literature to influence drilling 
efficiency were evaluated and recorded. The inter-
relationship among uniaxial compressive strength, 
specific gravity, porosity, mineralogical 

composition and penetration rate was used to 
determine the Drilliability index, which explains its 
efficiency. The wear rate was correlated with the 
Drilliability index to develop a model for 
predicting bit efficiency. 

2.6.1. Interaction Matrix 

The critical component of the RES is the 
interaction matrix, which describes the relationship 
between perpendicular parameters and summarises 
the influence of all the parameters using the cause, 
effect and weighty factor. The matrix constructed 
to evaluate the interaction of parameters in the RES 
is such that parameters identified to influence the 
parameter under investigation are lined along the 
central diagonal. The coding for a parameter's 
influence level on others is computed in the matrix 
table along their perpendicular cells. Figure 3 (a & 
b) shows how two and multiple-parameter 
relationships are arranged in the interaction matrix 
table, respectively. The ESQ coding approach was 
adopted in this study to evaluate the relationship 
between the parameters [55]. In the ESQ coding 
approach, the interaction degrees are coded 0, 1, 2, 
3, 4, and 5, which indicate no, weak, medium-
strong and critical interactions, respectively (Table 
1) [55]. The programming of parameters' 
interaction in the matrix table is done by computing 
the value that matches the influence of the 
relationship of two in their adjacent cells. The 
developed matrix for the relationship between 
parameters influencing bit drillability is in Figure 
3. 

Table 1. ESQ interaction coding method [55] 
Coding Description 

0 No interaction 
1 Weak interaction 
2 Medium interaction 
3 Strong interaction 
4 Critical interaction 

 
Figure 3. Interaction Matrix with (a) Two 
Parameters (b) Multiple Parameters [55]. 
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2.6.2. Estimation of the Weighty Factor 

The two-way relationship of the parameters, the 
value of the horizontal and vertical addition of the 
coding values for individual parameters in the 
matrix, is referred to as the Cause (Ci) and Effect 
(Ei), respectively (Equations 6–7). The summation 
and difference of the value of the Cause and Effect 
of individual parameters estimated in the 
interaction table are known as the interaction 
intensity and dominance of the matrix system, 
respectively. The significance of each parameter is 
often determined by plotting the coordinate of 
Effect against Cause. Equal values of the Cause 
and Effect are lined on the diagonal centre of the 
Cause and Effect plot in the figure. It indicates the 
point of equilibrium between dominance and 
subordination. Likewise, those parameters that fall 
on the left side of the equilibrium points are the 
subordinate parameters in the matrix system, while 
those on the left side are the dominant. The 
influence of individual parameters in the 
interaction table is estimated using the percentage 
factor, known as the weighty factor (αi), and the 
estimation formula is in Equation 8 [55-56, 58-59]. 
The results of the weighty factor are in Table 4. 

ܥ =  ܫ



ୀଵ

 (6) 

ܧ =  ܫ



ୀଵ

 (7) 

ߙ =
ܥ) + (ܧ

(∑ ܥ + ∑ ܧ ) × 100 (8) 

where Ci is the cause of the ith parameter, Ei is 
the effect of the ith parameter.  

2.6.3. Estimation of Drilliability Index  

The RES approach for estimating the drillability 
index was adopted from literature [4, 40, 42-43, 
58], where the approach was used to estimate 
indexes to solve rock engineering problems. This 

concept was first introduced to estimate rock 
fragmentation's vulnerability index (VI) and 
identify vulnerable areas in tunnelling operations 
[58]. Applying the RES approach to drilling bit 
selection involves considering poor penetration 
rate and increased wear index risks in drilling 
operations [4, 40, 43]. The variations in DI were 
the basis for determining the level of risk and were 
estimated in this study using Equation 9. The 
classification of DI is divided into three main 
categories with different severity on the 
normalized scale of 0–100, as shown in Table 6, 
while the results for the estimated drillability index 
are in Table 7. 

ܫܦ = 100 −  ߙ
ܳ

ܳ௫
 

ୀଵ

 (9) 

where Qi and Qmax are the value (rating) of the 
ith parameter, and the maximum value assigned for 
the ith parameter (normalization factor), 
respectively.  

3. Results and Discussion 

Critical parameters associated with rock 
drillability and bit wear rates are summarized in 
Table 2 based on the study results. The UCS 
varied between 137.23 and 162.8 MPa, 
demonstrating the high strength of the rock. The 
estimated penetrated rate recorded was between 
2.37 and 2.80 m/min, while the wear rate was 
0.000292 to 0.00305 g/s. The specific gravity of the 
rock had a value between 2.40 and 3.20, and the 
porosity was between 1.20 and 2.50%. These 
results were compared with earlier studies 
conducted in the geological basement of South-
western Nigeria, where similar trends were 
observed with high UCS, moderate penetration 
rates and low-to-moderate wear rates [1-2]. 
However, minor value variations can be limited to 
geological heterogeneities like changes in 
mineralogy and grain size and structural 
discontinuities, which draw attention to the need 
for localized studies for accurate drilling 
performance prediction. 

Table 2. Data Characteristics 
No Parameter Unit Symbol Min Max 
1 UCS MPa UCS 137.23 162.8 
2 Quartz % Q 40 49 
3 Plagioclase % P 21 28 
4 Hornblende % H 4 9 
5 Biotite % B 7 21 
6 Penetration Rate m/min Pr 2.37 2.80 
7 Specific Gravity - SP 2.40 3.20 
8 Porosity % n 1.20 2.50 
9 Wear Rate g/s Wr 0.000292 0.00305 
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3.1. Analysis of the Interaction between 
Parameters that Influence Bit Wear Rate 

Table 3 presents the coded interaction matrix of 
variables under investigation, and the results used 
for the cause-effect analysis are presented in Table 
4. Cause (C) and Effect (E) represent the 
significance and influence of each parameter in the 
matrix [54]. The degree of dominance of each 
parameter in the interaction matrix is the difference 
in their Cause and Effect (C-E). It can be inferred 
from Table 4 that Quartz (Q) and Plagioclase (P) 
recorded the highest positive values of dominance 
(20 and 14, respectively), indicating that they are 
strong drivers in the matrix system. Meanwhile, the 
penetration rate (Pr), uniaxial compressive strength 
(UCS), porosity (n), and specific gravity (Sp) 
showed negative (C–E) values. The interpretation 
is that these are sensitive or dependent (with high 
Effect values) parameters strongly regulated by 

mineralogical composition. In particular, Pr 
recorded the highest negative value of -23 for the 
degree of dominance, indicating the most 
susceptible to influence from other variables. 
Therefore, it is proper to suggest that the high 
interaction values obtained for these variables 
correlate with the abrasive characteristics of these 
minerals, which seem to impact drill-bit wear 
significantly. Moreover, the intensity rating for the 
individual parameter in the interaction matrix is the 
addition of the coded values for cause and effect 
(C+E). In Table 4, UCS and porosity had the 
highest intensity rating of 24, indicating their total 
interactivity. Consequently, both tables point to 
Quartz and Plagioclase as major contributors to 
drilling behaviour. However, UCS, porosity and 
penetration rate show strong sensitivity, 
highlighting the interconnected nature of rock 
properties and their joint relationships to drilling 
performance and bit wear. 

Table 3. Interaction Matrix for Factors Affecting Wear Rate 
UCS 0 0 0 0 4 0 2 

4 Q 2 2 2 4 4 2 
3 0 P 2 2 3 3 3 
2 0 0 H 2 4 1 2 
3 0 0 2 B 2 2 3 
0 0 0 0 0 Pr 0 0 
3 0 0 0 0 3 Sp 3 
3 0 0 0 0 3 3 n 

Table 4. The weighting factor of the parameters 
Parameter Cause (C) Effect (E) C-E C+E αij 

UCS 6 18 -12 24 14.46 
Q 20 0 20 20 12.05 
P 16 2 14 18 10.84 
H 11 6 5 17 10.24 
B 12 6 6 18 10.84 
Pr 0 23 -23 23 13.86 
Sp 9 13 -4 22 13.25 
n 9 15 -6 24 14.46 

Total 83 83 0 166 100 
 
3.2. Cause-Effect Analysis 

The Cause-Effect diagram in Figure 4 shows a 
polling interdependency relationship among rock 
Drilliability parameters. Quartz (Q), Plagioclase 
(P), Biotite (B), and Hornblende (H) emerged as 
important (Cause) parameters in terms of their 
significant Effect on wear rate and penetration 
efficiency. In contrast, penetration rate (Pr), 
uniaxial compressive strength (UCS), porosity (n), 
and specific gravity (Sp) were parameters more 
sensitive to Effect, and their response was 
mineralogical composition dependent. This 
behaviour is comparable to previous studies that 
showed that mechanical behaviour during drilling 

was dominated by rock mineralogy. Similar 
relationships was described by previous 
researchers, noting that Quartz was a key factor 
influencing the drill-bit wear because of its 
abrasive characteristics [1]. Penetration rate relates 
significantly to rock strength and porosity, as 
increased UCS values usually decrease the drilling 
efficiency [2]. The current findings confirm these 
interactions, suggesting the need for integrated 
mineralogical and mechanical analyses to predict 
drilling performance in geological basement 
complexes accurately. 
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Figure 4. Cause-Effect Diagram 

3.3. Rating of parameters  

Parameters considered for this study were rated 
based on their general classification system, and 
coding was assigned depending on how they 
influenced the drill wear rate. The ESQ coding 
classification is divided into five groups, with 
values ranging from 0 to 4. Zero represents the 
worst scenario of the influence of such a parameter 
on drillability, while four is the best. Zero means 
poor effect or unfavourable condition, and 4 
implies the most favourable condition. Table 5 
presents the rating of the parameter used in this 
study. The ratings were in accordance with 
previous studies employing RES solutions and 
vetted by three professionals in the field of rock 
drilling [4, 40, 43]. 

Table 5. Ratings for parameters influencing DI 
Parameters Symbol Values and Ratings 

Uniaxial Compressive Strength UCS 
(MPa) 

Value <25 25 – 50 51 – 100 101 – 250 >250  
Rating 4 3 2 1 0  

Quartz Q (%) Value <20 20-40 40-60 60-80 80-100  
Rating 4 3 2 1 0  

Plagioclase P (%) Value <20 20-40 40-60 60-80 80-100  
Rating 0 1 2 3 4  

Hornblende H (%) Value <20 20-40 40-60 60-80 80-100  
Rating 4 3 2 1 0  

Biotite B (%) Value <20 20-40 40-60 60-80 80-100  
Rating 0 1 2 3 4  

Penetration Rate Pr 
(m/min) 

Value <0.2 0.2-0.24 0.24-0.26 0.26-0.28 0.28-3.0 >3.0 
Rating 5 4 3 2 1 0 

 Sp Value <2.0 2.0-2.5 2.5-3.0 >3.0   
 Rating 3 2 1 0   
Porosity n (%) Value <1.5 1.5-2.5 2.5-3.5 >3.5   
  Rating 0 1 2 3   

 
3.4. Drilliability Index Classification and Its 
Implications for Rock Drilling Performance 

The classification, as well as the calculation of 
the Drilliability Index (DI), is presented in Tables 
6 and 7, which also emphasize the importance of 
DI in terms of classifying drilling risk as very low 
(0-20), low (20-40), medium (40-60), high (60-80), 
and very high (80-100) [4, 40, 43]. Table 7 
calculates DI for a button bit, which creates values 
ranging from 45.25 to 50.88, representing the 
medium drillability category (III). Such DI values 
indicate moderate drilling difficulties, which can 
be expected for moderately abrasive and hard 

rocks. Similar classifications had been reported in 
previous studies undertaken in geological 
basement complexes like those in Southwestern 
Nigeria [2]. The mechanical testing for DI of 
diorite found similar DI values, which were 
reported as medium to high, consistent with quartz-
rich rocks' abrasive nature. Moreover, further 
supporting these findings, moderate penetration 
and wear rates were related to moderate DI levels 
at intermediate DI levels [2]. As a result, the 
current DI classification correlates with previous 
research, confirming its legitimacy as a drilling 
performance predictor and can serve as a practical 
guide for drilling planning and optimisation. 

Table 6. Classification of Drillability Index 
Risk Description Very Low Low Medium High Very High 

Category I II III IV V 
DI 0 – 20 20-40 40 – 60 60– 80 80-100 
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Table 7. Estimated Drilliability Index (DI) for the Button Bit 
Parameter UCS Q P H B Pr Sp n 

DI Wr B α 14.46 12.05 10.84 10.24 10.84 13.86 13.25 14.46 
Qmax 4 4 4 4 4 5 3 3 

1 1 2 0 4 1 2 1 1 50.01 14.869 
2 1 2 1 4 1 1 0 3 45.25 30.500 
3 1 2 1 4 1 1 1 1 50.47 3.000 
4 1 2 1 4 0 2 1 2 45.48 30.357 
5 1 2 1 3 0 3 1 1 50.41 4.476 
6 1 2 1 4 1 1 2 0 50.88 2.923 
7 1 2 1 4 0 2 1 1 50.30 8.915 
8 1 2 1 4 0 2 1 1 50.30 8.261 

 
3.5. Model for the Prediction of Drillability 
Index using Bit Wear Rate 

The estimated drillability index was correlated 
linearly with the measured wear rate, and the 
results show that the drillability index decreases as 
the wear rate increases (Figure 5). This finding 
indicates that the drillability index measures the 
ease of drilling and that the wearing rate of bits is 
essential in determining the success of drilling 
operations. Also, a linear regression analysis 
between the drillability index and wear rate was 
used to develop a model for the button-bit wear 
rate, which is presented in Equation 9. The 
variance analysis of the model shows that it is 

statistically significant with a p-value <0.05 and a 
coefficient of determination of 0.933, indicating a 
strong relationship between the two parameters, 
and only 0.067% of the variance in wear rate that 
the drillability index cannot explain. Similarly, the 
model was used to predict the wear rate for the 
drilling bits, and the results were correlated with 
the measured wear rate. The results show a positive 
linear relationship between the predicted and the 
measured wear rate (Figure 6) with the r-square 
value of 0.933. 

ܹ  = (ܫܦ)4.7387−  +  245.75 (10) 

 

  
Figure 5. Wear Rate against Drilliability Index for 

Button Bit 
Figure 6. Relationship between Predicted and 

Measured Wear Rate 

3.6. Model Performance Analysis 

This study employed two approaches to 
evaluate the developed RES DI model. The first 
approach is the estimation of DI using 
multivariable regression analysis, and the results 
are compared using error analysis. 
Multicollinearity analysis of the prediction 
variables using the Variance Inflation Factor (VIF) 
was done using Equation 11. UCS and penetration 
rate exhibit severe multicollinearity and were 
removed. The multiple regression model is 

presented in Equation 12. The regression model's 
variance analysis shows that the coefficient of 
determination (R2) is 0.8523, and the model is 
significant at 0.00253. Figure 7 compares the RES 
and regression predicted values with the measure 
bit wear and shows how closely each model 
matches actual values, identifying where 
deviations occur. The RES model more closely 
represents measured values, whereas the regression 
model has more variation at lower values. 
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ܨܫܸ =
1

1 − ܴ
 (11) 

ܹ = 1.43݊ − 2.14ܳ + 87.81ܵ − 1.38ܲ
− ܪ5.80 − ܤ0.96 − 47.784 (12) 

 
Figure 7. Comparison of RES and Regression 

Predictions with the Measured Bit Wear 

4. Error Analysis 

The accuracy of the developed models and their 
goodness of fit were then assessed by statistical 
measures like mean absolute error (MAE), root 
mean square error (RMSE), and mean absolute 
percentage error (MAPE). Theoretically, a 

predictive model is considered exceptional when 
RMSE is 0, R2 is 1, MAE is o and MAPE is 0%. 
The formula for estimating MAPE, RMSE, and 
MAE are presented in Equations 13-15, 
respectively. As shown in Table 8, the RES Model 
outperforms the Regression Model in terms of 
MAE (2.14 compared to 3.00) and RMSE (2.79 
compared to 4.13), signifying improved predictive 
accuracy. The RES Model's MAPE is 38.17%, 
while the Regression Model's is 57.87%, which 
makes RES more reliable. Both models, however, 
illustrate that there is scope to optimise further and 
reduce prediction errors. 

ܧܲܣܯ =
1
݊

 ቆ
ܺ (௦௨ௗ) − ܺ (ௗ௧ௗ)

ܺ (௦௨ௗ)
ቇ



ୀଵ

× 100 (13) 

(ݔ)ܧܵܯܴ = ඩ
1
݊

൫ܺ (௦௨ௗ) − ܺ (ௗ௧ௗ)൯
ଶ



ୀଵ

 (14) 

ܧܣܯ =
1
݊

൫ܺ (௦௨ௗ) − ܺ (ௗ௧ௗ)൯


ିଵ

 (15) 

where Xi (measured), Xi (predicted), Ẍi (measured), Ẍi 

(predicted) and n are the measured, predicted, mean of 
measured and mean of predicted variables 
respectively, whilst n is the number of 
observations.  

Table 8. Model Error Metrics Comparison 
Model R2 MAE RMSE MAPE (%) 

RES Model 0.9327 2.14 2.79 38.17 
Regression Model 0.8523 3.00 4.13 57.87 

 
5. Conclusions 

This study used a Rock Engineering System 
(RES) approach to integrate multiple rock 
properties and successfully predict drill bit wear in 
granitic rocks. The key influences on wear were 
quantified by constructing an interaction matrix 
with mechanical (e.g., uniaxial compressive 
strength, porosity) and mineralogical (quartz, 
plagioclase, hornblende, biotite) parameters. All 
factors had notable impacts, with uniaxial 
compressive strength and porosity emerging as the 
most dominant (~14.5% each). This multi-factor 
analysis led to a drillability index correlating 
strongly with observed bit wear rates (R² = 0.933), 
confirming that lower wear corresponds to higher 
drilling efficiency. The results highlight the 
effectiveness of the RES methodology in capturing 
complex interactions. This contribution 
demonstrates how multi-parameter rock 

characteristics can collectively determine drilling 
performance and improve operational efficiency 
and drilling economics. 

One of the strengths of this study is its 
comprehensive, systematic approach. The RES 
framework allowed the incorporation of virtually 
unlimited parameters, complemented by extensive 
field and laboratory data (240 drilling records from 
eight quarries and 45 rock samples to ensure robust 
model development. This integrated strategy 
yielded a reliable predictive model for bit wear and 
introduced a new classification system for rock 
drillability, guiding bit selection and drilling 
optimization. However, the findings are 
constrained by the study’s scope: the model is 
calibrated for specific granitic rocks and mineral 
compositions, which may limit its generalizability 
to other settings. Additionally, as an expert-driven 
methodology, the RES approach relies on the 
quality of expert judgment in defining interaction 
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matrices, potentially introducing some 
subjectivity. Future research should validate and 
refine the model across diverse rock types and 
mineral assemblages and incorporate additional 
drilling parameters to broaden its applicability. 
Such efforts would extend this work’s 
contributions and further establish RES as a 
versatile tool in rock engineering practice. 
Furthermore, the influence of other factors such as 
discontinuities, drill type, and operator experience 
on penetration rate should be considered important 
for future research. 
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  چکیده:

تمرکز دارد. هدف،   یشـناس ـیبا ادغام مقاومت سـنگ و خواص کان - يادکمه  يهامته  شینرخ سـا  قاًیدق -  یتیگران  يهاسـنگ  يحفار  تیقابل  ینیبشیمطالعه بر پ نیا
عه  ا يبرا  کنندهینیبشیمدل پ  کیتوسـ تفاده از رو شینرخ سـ ت. پارامترهاRESسـنگ ( یمهندس ـ سـتمیس ـ  کردیمته با اسـ ار نگس ـ  يدیکل  ي) اسـ  ي(مقاومت فشـ

وص و محتوا  ،يمحورتک  کیشـدند تا    لیو تحل هیتجز RESبرهمکنش    سیماتر کی  قی) از طرتیوتیهورنبلند و ب  وکلاز،یکوارتز، پلاژ  یمعدن  يتخلخل، وزن مخصـ
ــاخص قابل ــود. ا  کند،یآنها را ثبت م  یبیترک  ریکه تأث دیجد يحفار  تیش ــتخراج ش ــان داد که   لیو تحل هیتجز نیاس عوامل در   نیرگذارتریو تخلخل تأث UCSنش

ا RESبر   یهسـتند. مدل حاصـل مبتن  سـتمیس ـ   ین یبشیپ  ي) و خطاهاR² ≈ 0.93بالا (  نییتع بیدارد و به ضـر  یمته مشـاهده شـده همبسـتگ  شیبه شـدت با نرخ سـ
است. ادغام  یسنت  ونیرگرس  يهانسبت به روش  قت) نشان دهنده بهبود قابل توجه در د38%(=    MAPE.  ابدیی) دست مRMSE = 2.79  ،MAE = 2.14( نییپا

ناس ـیو کان  یکیعوامل مکان ت که در مقا يحفار  تیقابل  ینیبشیپ  يبرا نینو  يکردیرو ،یشـ هیاسـ رح جامع  يهابا مدل  سـ وم، شـ نگ ارائه   يهایژگیاز و  يترمرسـ سـ
 یو ارزش عمل  کندیم  ینیبشیپ يرا به طور قابل اعتماد  یدانی، عملکرد مRESشـده از مشـتق يحفار  تیکه شـاخص قابل  دهدینشـان م یاعتبارسـنج ج ی. نتادهدیم

  یبان یپشــت يرا برا  يحفار  تیقابل  يبندطرح طبقه کیمطالعه   نیا ن،ی. علاوه بر ادهدیارائه م  یکیژئومکان  يهالیتحل تیو هدا  يحفار  اتیعمل يســازنهیبه يبرا
 .کندیم شنهادیپ هاافتهی یدانیاز کاربرد م شتریب

  .، متهRES ش،ینرخ نفوذ، نرخ سا ،يحفار تیشاخص قابل کلمات کلیدي:

 

 

 

 


