[1]. Cleeton, J. (1997) Air-deck Techniques: Improvements in costs and efficiency linked with the use of gas bags. Quarry Managemente-Institute of Quarrying,
[2]. Guido, A. D., Gianluca, C., Dario, L., & Andrea, A. (2021). Analysis of the improvement of production process in a limestone quarry. International Multidisciplinary Scientific GeoConference: SGEM, 21 (1.1), 235-242.
[3]. Akbari, M., Lashkaripour, G., Bafghi, A. Y., & Ghafoori, M. (2015). Blastability evaluation for rock mass fragmentation in Iran central iron ore mines. International Journal of Mining Science and Technology, 25 (1), 59-66.
[4]. Lowery, M., Kemeny, J., & Girdner, K. (2001). Advances in blasting practices through the accurate quantification of blast fragmentation. Mining engineering-new york then littleton colorado-, 53 (10), 55-61.
[5]. Latham, J.-P., Van Meulen, J., & Dupray, S. (2006). Prediction of fragmentation and yield curves with reference to armourstone production. Engineering geology, 87 (1-2), 60-74.
[6]. Adamson, W., Scherpenisse, C., & Diaz, J. (1999). The use of blast monitoring/modelling technology for the optimisation of development blasting. Proc Explo-99, Kalgoolie, WA, 35-41.
[7]. Crosby, W., & Bauer, A. (1982). Wall Control Blasting in Open Pits. Mining Engineering, 34 (2), 155-158.
[8]. Rezaei, M., Monjezi, M., & Varjani, A. Y. (2011). Development of a fuzzy model to predict flyrock in surface mining. Safety science, 49 (2), 298-305.
[9]. Dehghani, H., & Ataee-Pour, M. (2011). Development of a model to predict peak particle velocity in a blasting operation. International Journal of Rock Mechanics and Mining Sciences, 48 (1), 51-58.
[10]. Monjezi, M., Rezaei, M., & Varjani, A. Y. (2009). Prediction of rock fragmentation due to blasting in Gol-E-Gohar iron mine using fuzzy logic. International Journal of Rock Mechanics and Mining Sciences, 46 (8), 1273-1280.
[11]. Singh, T., & Singh, V. (2005). An intelligent approach to prediction and control ground vibration in mines. Geotechnical & Geological Engineering, 23, 249-262.
[12]. Armaghani, D. J., Mahdiyar, A., Hasanipanah, M., Faradonbeh, R. S., Khandelwal, M., & Amnieh, H. B. (2016). Risk assessment and prediction of flyrock distance by combined multiple regression analysis and Monte Carlo simulation of quarry blasting. Rock Mechanics and Rock Engineering, 49, 3631-3641.
[13]. Khandelwal, M., & Saadat, M. (2015). A dimensional analysis approach to study blast-induced ground vibration. Rock Mechanics and Rock Engineering, 48, 727-735.
[14]. Rezaeineshat, A., Monjezi, M., Mehrdanesh, A., & Khandelwal, M. (2020). Optimization of blasting design in open pit limestone mines with the aim of reducing ground vibration using robust techniques. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 6, 1-14.
[15]. Tribe, J., Koroznikova, L., Khandelwal, M., & Giri, J. (2021). Evaluation and assessment of blast-induced ground vibrations in an underground gold mine: a case study. Natural Resources Research, 30, 4673-4694.
[16]. Wang, W., Bergholm, F., & Stephansson, O. (2020) Image analysis of fragment size and shape. In: Rock Fragmentation by Blasting. CRC Press, pp 233-243
[17]. Mead, D., Moxon, N., Danell, R., & Richardson, S. The use of air-decks in production blasting. In: International symposium on rock fragmentation by blasting, 1993. pp 437-443
[18]. Chiappetta, R., & Mammele, M. E. Analytical high-speed photography to evaluate air decks, stemming retention and gas confinement in presplitting, reclamation and gross motion applications. In: Proc. of the 2 nd Int. Symp. on Rock Fragmentation by Blasting, 1987.
[19]. Tannant, D., & Peterson, J. Evolution of blasting practices at the Ekati Diamond Mine. In: 17th International Mining Congress and Exhibition of Turkey, 2001.
[20]. Correa, C. E. (2003). Use of air-decks to reduce subdrillings in Escondida mine. Fragblast, 7 (2), 79-86.
[21]. Floyd, J. (2004). Power deck optimization. Power Deck Company Blast Dynamics.
[22]. Chiapetta, R., & Wyciskalla, J. (2004). Bottom-hole and multiple power decks-Independent test results of a new blasting technique. Quarry Management, 31 (2), 21-32.
[23]. Moser, P., & Vargek, J. Blasting with air decks in the bottom of blast holes. In: Vienna Conference Proceedings 2007, 2007. pp 205-216
[24]. Sazid, M., & Singh, T. Mechanism of air deck technique in rock blasting-a brief review. In: Fourth Indian Rock Conference, no. May, 2013. pp 29-31
[25]. Kabwe, E. (2017). Improving collar zone fragmentation by top air-deck blasting technique. Geotechnical and Geological Engineering, 35, 157-167.
[26]. Saharan, M. R., Sazid, M., & Singh, T. (2017). Explosive energy utilization enhancement with air-decking and stemming plug,‘SPARSH’. Procedia engineering, 191, 1211-1217.
[27]. Zhang, X. J., Wang, X. G., & Yu, Y. L. The application of deck charge technology in Hua Neng open pit Mine. In: E3S Web of Conferences, 2018. EDP Sciences, p 03031
[28]. Amiri, H. (2019). Analysis of hole geometry on air deck in surface blasting (case study:Chah Gaz Iron mine). Ms thesis, Tarbiat Modares University, Engineering faculty.
[29]. Zarei, M., Shahabi, R. S., Hadei, M. R., & Louei, M. Y. (2022). The use of air decking techniques for improving surface mine blasting. Arabian Journal of Geosciences, 15 (19), 1545.
[30]. Yin, Z., Wang, D., Wang, X., Dang, Z., & Li, W. (2021). Optimization and application of spacing parameter for loosening blasting with 24-m-high bench in barun open-pit mine. SHOCK and vibration, 2021, 1-13.
[31]. Bakhshandeh Amnieh, H., Aref Mand, E., & Porghasemi Saghand, M. (2022). Controlling backbreak and improving technical and economic parameters in Mishdovan Iron Ore Mine. Journal of Mineral Resources Engineering, 7 (1), 99-111.
[32]. Zuo, J., Yang, R., Gong, M., Ma, X., & Wang, Y. (2022). Fracture characteristics of iron ore under uncoupled blast loading. International Journal of Mining Science and Technology, 32 (4), 657-667.
[33]. Roy, P. P., Sawmliana, C., & Singh, R. K. (2023). Optimization of powder factor, fragmentation and oversized boulders through subsystem studies in an opencast coal mine. International Journal of Mining & Geo-Engineering (2).
[34]. Rezaei, M., Monjezi, M., Matinpoor, F., Bolbanabad, S. M., & Habibi, H. (2023). Simulation of induced flyrock due to open-pit blasting using the PCA-CART hybrid modeling. Simulation Modelling Practice and Theory, 129, 102844.
[35]. Rad, H. N., Hasanipanah, M., Rezaei, M., & Eghlim, A. L. (2018). Developing a least squares support vector machine for estimating the blast-induced flyrock. Engineering with Computers, 34, 709-717.
[36]. Monjezi, M., Rezaei, M., & Yazdian, A. (2010). Prediction of backbreak in open-pit blasting using fuzzy set theory. Expert Systems with Applications, 37 (3), 2637-2643.
[37]. Zhang, Z.-X. (2016) Rock fracture and blasting: theory and applications. Butterworth-Heinemann,
[38]. Chiappetta, R. F. (2004). New blasting technique to eliminate subgrade drilling, improve fragmentation, reduce explosive consumption and lower ground vibrations. Journal of explosives engineering, 21 (1), 10-12.
[39]. Kuznetsov, V. (1973). The mean diameter of the fragments formed by blasting rock. Soviet mining science, 9, 144-148.
[40]. Cunningham, C. The Kuz-Ram model for prediction of fragmentation from blasting. In: Proc. first int. symp. on rock fragmentation by blasting, 1983. pp 439-453
[41]. Kim, K. (2006) Blasting design using fracture toughness and image analysis of the bench face and muckpile. Virginia Tech.
[42]. Potts, G., & Ouchterlony, F. (2005) The capacity of image analysis to measurefragmentation, an evaluation using Split Desktop®. Swedish Blasting Research Centre; Luleå tekniska universitet.