[1]. Palmstrom, A. & Stille, H. (2007). Ground behaviour and rock engineering tools for underground excavations. Tunnelling and Underground Space Technology, 22(4), 363-376.
[2]. Bahaaddini, M. & Hosseinpour Moghadam, E. (2019). Evaluation of empirical approaches in estimating the deformation modulus of rock masses. Bulletin of Engineering Geologt and Environment, 78(5), 3493-3507.
[3]. Bahaaddini, M., Serati, M., Khosravi, M.H. &Hebblewhite, B. (2022). Rock Joint Micro-Scale Surface Roughness Characterisation using Photogrammetry Method. Journal of Mining and Environment, 13(1), 87-100.
[4]. Mohammadi, H.R., Mansouri, H., Bahaaddini, M. & Jalalifar, H. (2017). Investigation into the effect of fault properties on wave transmission. International Journal for Numerical and Analytical Methods in Geomechanics, 41(17), 1741-1757.
[5]. Verma, H.K., Samadhiya, N.K., Singh, M., Goel, R.K. & Singh, P.K. (2018). Blast induced rock mass damage around tunnels. Tunnelling and Underground Space Technology, 71, 149-158.
[6]. Brown, E.T. & Hoek, E. (1980) Underground Excavations in Rock (1st ed.), CRC Press, 532 P.
[7]. Barton, N., Lien, R. & Lunde, J. (1974). Engineering classification of rock masses for the design of tunnel support. Rock Mechanics and Rock Engineering, 6(4), 189-236.
[8]. Foderà, G.M., Voza, A., Barovero, G., Tinti, F. & Boldini, D. (2020). Factors influencing overbreak volumes in drill-and-blast tunnel excavation. A statistical analysis applied to the case study of the Brenner Base Tunnel – BBT. Tunnelling and Underground Space Technology, 105, 103475.
[9]. Mahtab, M.A., Rossler, K., Kalamaras, G.S. & Grasso, P. (1997). Assessment of geological overbreak for tunnel design and contractual claims. International Journal of Rock Mechanics and Mining Sciences, 34(3), 185.e181-185.e113.
[10]. Mohammadi, H., Ebrahimi-Farsangi, M.A., Jalalifar, H., Ahmadi, A.R. & Javaheri, A. (2016). Extension of excavation damaged zone due to longwall working effect. Journal of Mining and Environment, 7(1), 13-24.
[11]. Jing, L. & Hudson, J.A. (2002). Numerical methods in rock mechanics. International Journal of Rock Mechanics & Mining Sciences, 39(4), 409-427.
[12]. Singh, S.P. & Xavier, P. (2005). Causes, impact and control of overbreak in underground excavations. Tunnelling and Underground Space Technology, 20(1), 63-71.
[13]. Khalili, S., Monjezi, M., Amini-Khoshalan, H. & Saghat-Foroush, A. (2024). Evaluation the effect of blast pattern on overbreak area around the Miyaneh-Ardabil railway tunnel. Journal of Mining and Environment, 15(3), 1149-1160.
[14]. Farrokh, E., Rostami, J. & Laughton, C. (2012). Study of various models for estimation of penetration rate of hard rock TBMs. Tunnelling and Underground Space Technology, 30, 110-123.
[15]. Innaurato, N., Mancini, R. & Cardu, M. (1998). On the influence of rock mass quality on the quality of blasting work in tunnel driving. Tunnelling and Underground Space Technology, 13(1), 81-89.
[16]. Schmitz, R.M., Viroux, S., Charlier, R. & Hick, S. (2006). The role of rock mechanics in analysing overbreak: application to the Soumagne tunnel. Proc, Eurock 2006: Multiphysics Coupling and Long Term Behaviour in Rock Mechanics. Liège, Belgium, 9-12 May, 631-636.
[17]. Dey, K. & Murthy, V.M.S.R. (2012). Prediction of blast-induced overbreak from uncontrolled burn-cut blasting in tunnels driven through medium rock class. Tunnelling and Underground Space Technology, 28, 49-56.
[18]. Gong, F.Q., Li, X.B. & Zhang, W. (2008). Over-excavation forecast of underground opening by using Bayes discriminant analysis method. Journal of Central South University of Technology, 15(4), 498-502.
[19]. Jang, H. & Topal, E. (2013). Optimizing overbreak prediction based on geological parameters comparing multiple regression analysis and artificial neural network. Tunnelling and Underground Space Technology, 38, 161-169.
[20]. Daraei, A. & Zare, S. (2018). Prediction of overbreak depth in Ghalaje road tunnel using strength factor. International Journal of Mining Science and Technology, 28(4), 679-684.
[21]. Mottahedi, A., Sereshki, F. & Ataei, M. (2018). Overbreak prediction in underground excavations using hybrid ANFIS-PSO model. Tunnelling and Underground Space Technology, 80, 1-9.
[22]. Dershowitz, W.S. & Einstein, H.H. (1988). Characterizing rock joint geometry with joint system models. Rock Mechanics and Rock Engineering. 21(1), 21-51.
[23]. Hekmatnejad, A., Emery, X. & Elmo, D. (2019). A geostatistical approach to estimating the parameters of a 3D Cox-Boolean discrete fracture network from 1D and 2D sampling observations. International Journal of Rock Mechanics and Mining Sciences, 113, 183-190.
[24]. Dershowitz, W.S. & Herda, H.H. (1992). Interpretation of fracture spacing and intensity. Proc, The 33rd US Symposium on Rock Mechanics (USRMS). Santa Fe, New Mexico, ARMA-92-0757.
[25]. Staub, I., Fredriksson, A. & Outters, N. (2002). Strategy for a rock mechanics site descriptive model. Development and testing of the theoretical approach. Svensk Kärnbränslehantering AB, Swedish Nuclear Fuel and Waste Management Co. R-02-02.
[26]. Hadjigeorgiou, J. (2012). Where do the data come from?. Mining Technology, 121(4), 236-247.
[27]. Elmo, D., Rogers, S., Stead, D. & Eberhardt, E. (2014). Discrete Fracture Network approach to characterise rock mass fragmentation and implications for geomechanical upscaling. Mining Technology, 123(3), 149-161.
[28]. Noroozi, M., Kakaie, R. & Jalali, M.E. (2015). 3D stochastic rock fracture modeling related to strike-slip faults. Journal of Mining and Environment, 6(6), 169-181.
[29]. Elmo, D., Stead, D. & Rogers, S. (2015). Guidelines for the quantitative description of discontinuities for use in discrete fracture network modelling. Proc, 13th ISRM International Congress of Rock Mechanics, Montreal, Canada, 10-13 May.
[30]. Grenon, M., Landry, A., Hadjigeorgiou, J. & Lajoie, P.L. (2017). Discrete fracture network based drift stability at the Éléonore mine. Mining Technology, 126(1), 22-33.
[31]. Noroozi, M., Rafiee, R. & Najafi, M. (2018). Stability analysis of support systems using a coupled FEM-DFN model (Case study: a diversion tunnel at Lorestan dam site, Iran). Journal of Mining and Environment, 9(2), 485-497.
[32]. Rabiei-Vaziri, M., Tavakoli, H. & Bahaaddini, M. (2022). Statistical analysis on the mechanical behaviour of non-persistent jointed rock masses using combined DEM and DFN. Bulletin of Engineering Geology and Environment, 81(5), 177.
[33]. Ghaedi Ghalini, M., Bahaaddini, M. & Amiri Hossaini, M. (2022). Estimation of in-situ block sze distribution in jointed rock masses using combined photogrammetry and discrete fracture network. Journal of Mining and Environment, 13(1), 175-184.
[34]. Rogers, S. & Booth, P. (2014). Integrated photogrammetry and DFN modelling for improved rock mass characterisation and engineering design. Proc, 15th Australasian Tunnelling Conference 2014. Carlton South: The Australasian Institute of Mining and Metallurgy, 203–208.
[35]. General Mechanics Company. (2017). Engineering geology report of eastern tube of Alborz tunnel (north portal) excavation from P.K. 1+600 to 1+800 (Ch. 52+568 to 52+368). GeoData Engineering, Alborz Tunnel.
[36]. General Mechanics Company. (2017). Excavation Profiles (North portal). GeoData Engineering, Alborz Tunnel.
[37]. Hammah, R.E. & Curran, J.H. (1998). Fuzzy cluster algorithm for the automatic identification of joint sets. International Journal of Rock Mechanics and Mining Sciences, 35(7), 889-905.
[38]. Pierce, M. (2017). An introduction to random disk discrete fracture network (DFN) for civil and mining engineering applications. ARMA e-Newslatter, 20, 3-8.
[39]. Bonnet, E., Bour, O., Odling, N.E., Davy, P., Main, I., Cowie, P., et al. (2001). Scaling of fracture systems in geological media. Reviews of Geophysics, 39(3), 347-383.
[40]. Davy, P. (1993). On the frequency-length distribution of the San Andreas Fault System. Journal of Geophysical Research: Solid Earth, 98(B7), 12141-12151.
[41]. Priest, S.D. (1993) Discontinuity Analysis for Rock Engineering, Springer.
[42]. Cottrell, M., Kamera, R. & Hermanson, J. (2017). FracMan kinematic stability assessment of tunnels in Forsmark layout D2. Svensk kärnbränslehantering AB (Swedish Nuclear Fuel and Waste Management). P-15-19.
[43]. Baecher, G.B., Lanney, N.A. & Einstein, H.H. (1977). Statistical description of rock properties and sampling. Proc, The 18th US Symposium on Rock Mechanics (USRMS). Colorado, USA, 22 June, ARMA-77-0400.
[44]. Goodman, R.E. & Shi, G. (1985) Block theory and its application to rock engineering. New Jersey: Prentice-Hall, 338 P.