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 This study introduces a Hybrid Markov–Bayesian Framework for predicting and 
managing accident risks in high-risk industries, with a specific focus on the mining 
sector. The framework integrates Markov models to analyze dynamic risk transitions 
and Bayesian networks to infer causal relationships among key human and 
environmental factors. Drawing from a comprehensive dataset of mining operations, 
the framework evaluates variables such as age, experience, task type, and injury 
characteristics to predict and control accident risks. The results highlight the model's 
high performance, achieving an accuracy of 87%, precision of 85%, and an F1-score 
of 0.84. This innovative approach enables real-time safety interventions and proactive 
risk management strategies. The findings underscore the framework's potential to 
improve workplace safety and serve as a scalable tool for accident prevention in other 
high-risk industries. Future research will focus on enhancing the framework’s 
adaptability and incorporating additional contextual variables for broader applicability. 
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1. Introduction  

Accident prevention in high-risk industries such 
as mining requires a robust, adaptable, and data-
driven approach to effectively manage both human 
and environmental risk factors. Traditional safety 
models often fail to capture the temporal dynamics 
of risk and their interdependencies, leading to 
reactive rather than proactive risk mitigation 
strategies. To address these limitations, the hybrid 
Markov-Bayesian framework is introduced, which 
integrates Markov models for tracking dynamic 
risk transitions and Bayesian networks for inferring 
causal relationships among key factors. This hybrid 
approach enhances risk prediction accuracy and 
supports continuous risk assessment, thereby 
enabling proactive decision-making and real-time 
safety interventions [1]. The increasing reliance on 
smart mining technologies and data-driven risk 
analysis highlights the need for intelligent models 
that can adapt to shifting operational hazards, 
which makes the integration of probabilistic 

frameworks essential for improving occupational 
safety standards [2]. The mining industry, in 
particular, is fraught with accident risks related to 
gas explosions, structural collapses, and equipment 
failures, necessitating sophisticated risk 
assessment techniques [3].  

Fault Tree Analysis and static models have been 
widely used, yet they fail to incorporate the 
evolving nature of risk states over time. Recent 
studies have demonstrated the effectiveness of 
hybrid approaches, such as Bayesian networks 
combined with machine learning for accident path 
mining and case-based deduction, which 
significantly improve accident prediction accuracy 
[4]. Furthermore, real-time monitoring systems 
utilizing Bayesian inference and IoT-enabled safety 
risk management have been successfully applied in 
underground mining and construction, providing a 
more responsive and adaptive approach to hazard 
prevention [2]. Additionally, Markovian processes 
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have proven instrumental in modeling temporal 
dependencies of risk states, particularly in cases 
where risk evolves based on past states and external 
conditions, such as worker fatigue, shift schedules, 
and environmental hazards [5]. Given the dynamic 
risk landscape in mining operations, effective 
safety management requires a model that can adapt 
to real-time changes and evolving conditions [6]. 
The hybrid Markov-Bayesian framework proposed 
in this study achieves this by integrating Markov 
state transitions with Bayesian causal inference, 
allowing for a comprehensive risk assessment that 
incorporates both past trends and current 
environmental conditions. The flexibility of 
Bayesian learning models enables continuous 
adaptation to new risk data, while Markovian 
predictions ensure that short-term and long-term 
risk trends are considered [7]. Despite the 
effectiveness of these methods, challenges persist 
in data collection, model calibration, and real-time 
adaptation, which necessitate ongoing refinement 
of safety models. Future research should focus on 
enhancing model scalability, incorporating 
additional risk parameters, and improving data 
integration techniques to further strengthen 
accident prevention efforts [8]. 

This paper presents an application and 
evaluation of the hybrid Markov-Bayesian 
framework in mining risk assessment, with the 
objective of enhancing predictive accuracy and 
improving proactive decision-making. By 
integrating dynamic risk transitions with causal 
inference, this framework not only predicts high-
risk scenarios but also provides actionable insights 
for risk mitigation and intervention strategies. The 
study contributes to a more systematic approach to 
risk management in mining and offers a scalable 
solution for improving safety protocols in high-risk 
industries. 

2. Literature Review 

Accident risk management has been explored 
extensively across multiple domains, employing 
various probabilistic and data-driven methods. In 
maritime safety, one study quantified collision 
risks for intelligent ships using a Bayesian Network 
approach [9], while another proposed a Man-
Machine-Environment-Management framework 
for ship collision risk analysis [10]. Within traffic 
safety, a multi-modal model, known as 
“AccidentGPT,” integrated multi-sensory data for 
proactive accident prevention [11], and a separate 
effort combined Bayesian Long Short-Term 
Memory with Model Predictive Control to enhance 

autonomous vehicle safety [16]. Research focused 
on occupational safety introduced human factors 
analysis into existing safety management systems 
[12], and a study of road accidents employed 
Bayesian Networks to capture nonlinear factor 
interactions [13]. In the chemical industry, one 
project identified illegal operations and material 
hazards as primary accident risk factors using 
Interpretive Structural Modeling and Bayesian 
inference [14], while another addressed the 
dynamic interplay of toxic leaks and fires with 
synergistic effect modeling [15]. 

High-risk industrial sectors such as coal mining 
have also garnered considerable attention. One 
investigation combined Fault Tree Analysis, 
Bayesian Networks, and Preliminary Hazard 
Analysis to identify critical risk factors in coal 
mining transportation [1]. Another study applied a 
Fault Tree and Fuzzy Bayesian Network to gas 
explosion scenarios, pinpointing ventilation 
resistance and combustion hazards as significant 
contributors [3]. Additional work employed data 
mining and Bayesian inference to examine accident 
cause patterns [4], and an IoT-based Bayesian 
Network was introduced for real-time underground 
risk monitoring [2]. A separate forecasting model 
incorporated technical and organizational measures 
to mitigate hazards in coal mining [6], while time-
series analysis highlighted seasonal risk 
fluctuations [7]. One effort presented a predictive 
framework for underground coal mine safety 
behavior but was later retracted [8]. Other research 
used Type-1 and Type-2 fuzzy sets to conduct 
hierarchical safety risk assessments [18], and an 
intelligent accident predictive framework achieved 
high accuracy in anticipating hazards [24]. Beyond 
coal mining, a fuzzy analytical hierarchy process 
was applied to rank geological risks in mechanized 
tunneling [5].  

In broader industrial contexts, one study 
showcased a hierarchical probabilistic model for 
evolving, resource-constrained environments [17], 
another combined Bayesian Networks and event-
tree analysis to assess safety barriers in major 
accidents [21], and yet another integrated a 
Markovian–Bayesian approach to capture human 
error and real-time variations in railway systems 
[20]. There has also been work using hierarchical 
Bayesian modeling for complex, multi-hazard 
scenarios [19] and Bayesian Networks for water 
pollution risk management in large infrastructure 
projects [22]. Additional research demonstrated 
time-series based risk prediction in coal mines [7] 
(reiterating the importance of longitudinal data), 
while others focused on air conditioning reliability 
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[25], pedestrian crashes [23,26], industrial process 
fault diagnosis [27], and safety resilience in 
prefabricated building construction [28]. Despite 
these advances ranging from fuzzy logic methods 
to IoT-based solutions many approaches emphasize 
either static causal structures or purely temporal 
transitions. Consequently, the present research 
addresses this gap by proposing an integrated 
Markov–Bayesian framework that jointly captures 
time-dependent state transitions and causal 
relationships, thereby offering a more adaptive and 
predictive foundation for accident prevention in 
high-risk industries. 

3. Methodology 

This study introduces a hybrid Markov-
Bayesian framework to predict and manage 
accident risks in high-risk environments, 
particularly in dynamic industries such as mining 
operations. The framework integrates Markov 
models to capture temporal risk transitions and 
Bayesian networks to infer causal relationships 
among key human and environmental factors, 
enabling real-time accident prevention and 
proactive risk management. The Markov model 
tracks risk state transitions (low, medium, high) 
over time, while the Bayesian network leverages 
Conditional Probability Tables (CPTs) to 
determine causal dependencies among variables 
such as age experience, activity type, and injury 
severity. Combining both models through a novel 
algorithm ensures enhanced risk predictions and 
adaptive safety interventions. A dataset of 100,000 
mining industry records was used to evaluate the 
framework, with validation conducted using 
accuracy, precision, recall, and F1-score metrics. 
The baseline architecture, now presented in Figure 
1, illustrates the framework’s structure, 
highlighting its robustness, adaptability, and 
applicability in accident prevention. 

3.1. Case Study 

The dataset used in this study was sourced from 
the Mine Safety and Health Administration 
(MSHA) under part 50 of title 30, which provides 
detailed records of accidents and injuries within 
coal mining operations in the United States. The 
dataset spans from 1983 to April 2022, and 
includes comprehensive reports on workplace 
accidents, injuries, and related hazards. The 
National Institute for Occupational Safety and 
Health (NIOSH) pre-processed the dataset, 
converting it into SPSS format with appropriate 
labels and coded variables to ensure usability for 

analysis. This dataset is publicly available and can 
be accessed through the official MSHA online 
repository. 
 

 
Figure 1. Steps involved in the hybrid Markov-

Bayesian framework. 

The dataset contains critical variables related to 
human and environmental risk factors, which are 
fundamental for building our hybrid Markov-
Bayesian model to control accident risks. 
Specifically, it includes details on: 

Human Factors: Variables such as age, gender, 
total mining experience, and job-specific 
experience at the time of the accident. These 
variables provide insights into human-related risk 
factors, including fatigue, inexperience, or risky 
behavior, which could contribute to accidents. 

Environmental Factors: Variables like the time 
and shift of the accident, the machinery being used, 
and the specific mining face where the worker was 
operating. These factors help capture the external 
conditions that could increase the likelihood of an 
accident, such as poor lighting, adverse 
environmental conditions, or the use of hazardous 
equipment. 

Start 
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Accident Severity and Outcomes: Detailed 
information on the severity of injuries, the number 
of lost workdays, restricted workdays for injured 
employees, and the specific body part affected by 
the injury. These variables are crucial for 

evaluating the consequences of different risk 
factors and for modeling the movement between 
risk states in the Markov process. 

The dataset and its variables, are summarized in 
Table 2. 

Table 2. Dataset table for human and environmental risk factors in accident prevention. 
Variable Description Type Role in model 

age 
Age of the person injured (affects 
physical capacity and response 
time) 

Continuous (Integer) Human Factor, Individual Risk 

sex Gender of the injured person Categorical (Male/Female) Human Factor, Individual Risk 

ywtotal Total mine experience of the 
injured person in years and weeks Continuous (Integer) Human Factor, Skill and Experience 

ywmine Experience at this specific mine in 
years and weeks Continuous (Integer) Human Factor, Familiarity with Environment 

ywjob Regular job experience in years 
and weeks Continuous (Integer) Human Factor, Task-Specific Experience 

occup Occupation of the injured person Categorical (Job Type) Human Factor, Type of Work 

mwactiv Specific activity at the time of 
injury Categorical (Task) Environmental Factor, Task-Specific Risk 

sourcinj Source of injury Categorical Environmental Factor, Source of Hazard 
natinj Nature of injury Categorical Human Factor, Severity of Incident 

time Time of the accident (e.g., lighting, 
worker fatigue) Continuous (Time) Environmental Factor, Timing of Incident 

shift Time shift started (affects worker 
fatigue) Continuous (Time) Environmental Factor, Fatigue Risk 

minemach Mining machine involved in the 
accident Categorical Environmental factor, equipment risk 

commod Type of commodity mined Categorical Environmental Factor, Type of Material 

state State where the accident occurred Categorical (Location) Environmental Factor, Location-Based Risks 

county County where the accident 
occurred Categorical (Location) Environmental factor, location-based risks 

umeth Underground mining method Categorical (Method) Environmental Factor, mining procedure risk 
partbody Part of the body injured Categorical Human factor, type of physical harm 

deginj Degree of injury (e.g., fatal, severe, 
minor) Categorical Human factor, severity of injury 

daysstat Statutory days lost Continuous (Integer) Accident outcome, regulatory tracking 
daysrest Days of restricted work activity Continuous (Integer) Accident outcome, recovery impact 
dayslost Actual days lost from work Continuous (Integer) Accident outcome, impact on productivity 

retwork Date the injured person returned to 
work Date Accident outcome, recovery period 

docnum Accident document number for 
tracking incidents Categorical (ID) Documentation, tracking individual incidents 

acccode MSHA accident code, used to 
categorize accidents Categorical (Code) Accident classification, risk category 

narrtxt1 Narrative description of the 
accident (first 250 characters) Text Accident description, context for Bayesian analysis 

narrtxt2 Narrative description of the 
accident (last 134 characters) Text Accident description, context for Bayesian analysis 

 
We used a comprehensive dataset from the 

Mine Safety and Health Administration (MSHA), 
which includes decades of information on 
accidents, injuries, and various associated risk 
factors. After performing data cleaning steps such 

as removing missing values, normalizing variables, 
and encoding categorical information, we finalized 
a dataset consisting of 100,000 records for analysis. 
The dataset provided a wealth of information 
essential for modeling accident risks, including 
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details about human factors, environmental 
conditions, and accident consequences. The pre-
processing steps ensured the dataset was ready to 
be fitted into the Hybrid Markov-Bayesian 
Framework for effective risk management. 

Since both human and environmental factors 
significantly contribute to accident prevention, the 

selected dataset was segmented into two main 
groups: Markov modeling and Bayesian network 
modeling, to facilitate proper manipulation and 
control of these risk factors. The dataset and its 
variables, used to control human and 
environmental risk factors, are summarized in 
Table 3. 

Table 3: Key Variables for the Markov-Bayesian Framework in Accident Risk Control 
Variable Description Role in model 

Time normalized Time of the accident (normalized) Markov: Tracks time-based risk transitions 
Shift normalized Time shift started (normalized, affects worker fatigue) Markov: Captures fatigue impact on risk 
Minemach_encoded Mining machine involved in the accident (encoded) Markov: Environmental factor affecting transitions 
Occup_encoded Occupation of the injured person (encoded) Markov: Determines risk based on job role 
Sourcinj_encoded Source of injury (encoded) Markov: Hazard identification for risk transitions 
Deginj_encoded Degree of injury (encoded) Markov: Defines severity of risk states 
Age Age of the person injured Bayesian: Human factor influencing accident risk 
Ywtotal Total mine experience of the injured person (in weeks) Bayesian: Human experience influencing safety 
Mwactiv_encoded Specific activity at the time of injury (encoded) Bayesian: Task-related risks 
Gartbody_encoded Part of the body injured (encoded) Bayesian: Injury type and severity 

 
The theoretical basis of the Hybrid Markov-

Bayesian Framework is rooted in Markovian 
decision processes and Bayesian inference. 
Markov models track state transitions over time, 
providing a probabilistic representation of risk 
evolution, while Bayesian networks model 
conditional dependencies among key factors, 
enabling causal reasoning. This dual approach 
ensures a comprehensive understanding of risk 
dynamics. 

3.2. Markov model for risk transitions 

The Markov model component of our 
framework captures transitions between risk states 
(low, medium, and high). It considers risk as a 
time-dependent variable, influenced by a range of 
human and environmental factors. key variables 
such as the time of the accident, shift start time, and 
the type of machinery used are employed to 
estimate the probabilities associated with 
transitioning between various risk states. 

State Definition:  

The system operates in one of three risk states 
low, medium, or high. Each state represents a 
different level of risk associated with hazardous 
conditions or unsafe behaviors. 

Transition Probabilities:  

Transitioning between risk states is modeled 
based on historical data, which informs the 
probability of moving from one risk level to 

another. For example, an equipment operator 
working a late shift may have a higher probability 
of transitioning from a low-risk state to a high-risk 
state due to factors such as fatigue and increased 
operational hazards. 

Time Dependence:  

The time-dependent nature of risk is crucial in 
this model. Factors like shift duration and time of 
day significantly influence how risk levels evolve 
over time. The Markov Model continuously 
updates risk predictions, accounting for these 
temporal factors, allowing for real-time risk 
assessment. 

3.2.1. Enhanced Markov transition model 

Incorporate contextual weighting to 
dynamically adjust the transition probabilities 
based on external conditions (e.g. shift type, 
environmental hazards). This introduces 
complexity and adaptability into the Markov 
model, making it more realistic for dynamic 
environments. The system is divided into three 
discrete risk states: 

Low risk ( ଵܵ): Represents scenarios where 
minimal hazards are present such as during early 
shifts or when low-risk machinery is in use. 

Medium risk ( ଶܵ): Represents scenarios with 
moderate hazards, possibly due to worker fatigue 
or handling more complex machinery. 
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High risk (ܵଷ): Represents scenarios where 
significant hazards are present, often due to 
environmental conditions (e.g. late shifts, 

hazardous machinery) or worker-related factors 
(e.g., inexperience). 

Each state ܵ is represented as: 
 

ܵ ∈ { ଵܵ, ܵଶ, ܵଷ} = ,݇ݏܴ݅ ݓ݋ܮ} ,݇ݏ݅ݎ ݉ݑ݅݀݁݉ ℎ݅݃ℎ (1)  {݇ݏ݅ݎ 

 
Transition Probabilities: 

The Markov model is governed by a transition 
probability matrix (P), where each element ௜ܲ௝ 
represents the probability of transitioning from 
state iii to state ݆ in one time step. The matrix is 
constructed as follows: 

ܲ = ൥
ଵܲଵ ଵܲଶ ଵܲଷ
ଶܲଵ ଶܲଶ ଶܲଷ
ଷܲଵ ଷܲଶ ଷܲଷ

൩ (2) 

Let ௜ܹ௝ represent the weight for the transition 
from state ௜ܵ to ௝ܵ  at time ݐ. The updated transition 
matrix becomes: 

ܲ = ቎
ଵܹଵ (ݐ) ଵܲଵ ଵܹଶ (ݐ)  ଵܲଶ ଵܹଷ (ݐ) ଵܲଷ

ଶܹଵ (ݐ) ଶܲଵ ଶܹଶ (ݐ)  ଶܲଶ ଶܹଷ (ݐ) ଶܲଷ

ଷܹଵ (ݐ) ଷܲଵ ଷܹଶ (ݐ)  ଷܲଶ ଷܹଷ (ݐ) ଷܲଷ

቏ (3) 

The weights ௜ܹ௝  are functions of contextual 
factors ܨ௞(ݐ)  such as environmental hazards or 
worker fatigue. Following the approach proposed 
by Yan et al. [24], the weighting function is 
formulated as: 

௜ܹ௝(ݐ) =
ܽ௞  (ݐ)௞ܨ 

∑ ܽ௞ ௞(ݐ)௞ܨ 
 (4) 

where: 
 Contextual factor k at time t :(ݐ)௞ܨ

ܽ௞: Importance weight of factor k (determined via 
sensitivity analysis or domain expertise) 

To account for time-dependent risk evolution, 
Xu et al. [25] proposed updating the system's state 
using the following formulation: 

ݐ)ܵ + 1) = .(ݐ)ܵ  (5) (ݐ)ܲ

In a Markov process, the transition rate 
determines the likelihood of transitioning from one 
risk state to another over time. The transition 
probability matrix P governs these movements, 
where each element ௜ܲ௝ represents the probability 
of transitioning from state ௜ܵ to state ௝ܵ . The 
transition rate is defined as: 

ܳ௜௝ = lim
∆௧→଴

௜ܲ௝(∆ݐ) − ௜௝ߜ

ݐ∆
 (6) 

where ܳ௜௝  represents the instantaneous rate of 
transition, and ߜ௜௝  is the Kronecker delta function 
ensuring that self-transitions (remaining in the 
same state) are appropriately handled [26]. To 
incorporate external factors such as environmental 
hazards and worker fatigue, a contextual weighting 
factor ௜ܹ௝ is introduced, modifying the transition 
probabilities dynamically: 

௜ܲ௝(ݐ) = ௜ܹ௝(ݐ). ௜ܲ௝ (7) 

where ௜ܹ௝(ݐ) is a function of influencing 
variables like shift duration and accident 
frequency, as formulated by Yan et al. [24]. The 
Markov state evolution is then described by 
Equation (5). 

3.2.2 Time dependence 

The Markov model explicitly considers time 
dependence by incorporating variables such as: 

Shift start time and duration: Shift duration 
affects worker fatigue, which in turn influences risk 
transitions. 

Accident time: The time of the accident helps to 
track how risk evolves over the course of a 
workday, such as higher risk during late shifts. 

This temporal dimension helps in predicting 
how risk evolves as shifts progress and workers 
experience fatigue or hazardous conditions 
intensify. As time progresses, the model 
dynamically updates the risk state according to 
transition probabilities, allowing for real-time risk 
assessment. Following the approach proposed by 
Moreno-Sanfélix et al. [26], the time evolution of 
the system can be described by the Chapman-
Kolmogorov equation: 

௜ܲ௝(݊ + ݉) = ෍ ௜ܲ௞(݊) ௞ܲ௝(݉)    
௝

 (8) 

where: 

௜ܲ௝(݊ + ݉) is the probability of being in state ௝ܵ  at 
time ݊ + ݉, given the system was in state ௜ܵ at time 
݊. 
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The transition probabilities ܲ ௜௝ evolve over time 
as factors like shift duration, worker fatigue, and 
environmental conditions progress. 

Integrate dynamic Bayesian learning by 
updating Conditional Probability Tables (CPTs) 
based on incoming data. Use Bayesian updating 

principles to modify prior probabilities as new 
observations are made. Following the approach 
proposed by Wang et al. [11], the posterior 
probability distribution ܲ(ܴ | ݏݎ݋ݐܿܽܨ,  is(ܽݐܽܦ 
updated dynamically: 

 

,ݏݎ݋ݐܿܽܨ | ܴ)ܲ (ܽݐܽܦ  =
,ܴ|ܽݐܽܦ)ܲ (ݏݎ݋ݐܿܽܨ|ܴ)ܲ(ݏݎ݋ݐܿܽܨ

(ݏݎ݋ݐܿܽܨ|ܽݐܽܦ)ܲ
 (9) 

 
where: 
ܽݐܽܦ)ܲ ∣ ܴ,  Likelihood of the new data :(ݏݎ݋ݐܿܽܨ
given the risk state and factors 

ܲ(ܴ ∣  Prior probability of the risk state :(ݏݎ݋ݐܿܽܨ

ܽݐܽܦ)ܲ ∣  Normalizing constant :(ݏݎ݋ݐܿܽܨ

The CPTs are adjusted in real-time using a 
learning rate ߟ, following the approach proposed 
by Yasenjiang et al. [27]: 

 

ܶܲܥ ݓ݁ܰ = ܶܲܥ݈݀݋ + .ߟ ܽݐܽܦ ݀݁ݒݎ݁ݏܾܱ) −  (10) (ܽݐܽܦ ݀݁ݐܿ݁݌ݔܧ

 
Where: 
 Learning rate, controlling how quickly the model :ߟ
adapts to new information 

3.3 Bayesian network for causal inference 

The Bayesian network component complements 
the Markov model by focusing on the human 
factors that influence accident risk, specifically 
using variables such as age, experience, specific 
activity at the time of injury, and the part of the 
body injured. These variables are chosen based on 
their significant influence on accident risks and 
their ability to provide a probabilistic 
understanding of how specific conditions lead to 
accidents. 

3.3.1 Node definition 

The nodes in the Bayesian Network represent 
key human factor variables, such as age and 
experience, as well as task-related information like 
the specific activity performed during injury and 
the part of the body affected. These variables are 
crucial for understanding how individual 
characteristics and task-related risks impact the 
likelihood of accidents.  

Age (A): As a key human factor, age affects both 
physical ability and response time, which 
influences accident likelihood. 

Experience (ywtotal): Greater experience generally 
leads to better hazard recognition and safer 
behavior, reducing accident risk. 

Specific Activity (mwactiv_encoded): The nature 
of the task being performed at the time of injury 
has a direct impact on risk levels. 

Part of the Body (partbody_encoded): Different 
body parts are vulnerable to specific types of 
injuries, which can influence the severity and 
outcome of accidents. 

The probability of an accident risk state is 
influenced by various human and environmental 
factors, such as age, experience, specific activity at 
the time of injury, and the affected body part. To 
model these dependencies, Bayesian inference is 
employed to estimate the likelihood of an 
individual being in a particular risk state based on 
observed conditions. The conditional probability of 
the risk state can be formulated as: 

 

ܲ(ܵோ௜௦௞| ܽ݃݁, ,݁ܿ݊݁݅ݎ݁݌ݔ݁ ,ݕݐ݅ݒ݅ݐܿܽ ݂ܿ݅݅ܿ݁݌ݏ (ݕ݀݋ܾ ݂݋ ݐݎܽ݌ =  

(11) ܲ(ܽ݃݁, ,݁ܿ݊݁݅ݎ݁݌ݔ݁ ,ݕݐ݅ݒ݅ݐܿܽ ݂ܿ݅݅ܿ݁݌ݏ ,ݕ݀݋ܾ ݂݋ ݐݎܽ݌ ܵோ௜௦௞)
ܲ(ܽ݃݁, ,݁ܿ݊݁݅ݎ݁݌ݔ݁ ,ݕݐ݅ݒ݅ݐܿܽ ݂ܿ݅݅ܿ݁݌ݏ (ݕ݀݋ܾ ݂݋ ݐݎܽ݌

 

 
where: 
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ܲ( ோܵ௜௦௞|ܽ݃݁, ,݁ܿ݊݁݅ݎ݁݌ݔ݁ ,ݕݐ݅ݒ݅ݐܿܽ ݂ܿ݅݅ܿ݁݌ݏ (ݕ݀݋ܾ ݂݋ ݐݎܽ݌
: represents the probability of being in a 
particular risk state given the influencing factors. 

ܲ(ܽ݃݁, ,݁ܿ݊݁݅ݎ݁݌ݔ݁ ,ݕݐ݅ݒ݅ݐܿܽ ݂ܿ݅݅ܿ݁݌ݏ ,ݕ݀݋ܾ ݂݋ ݐݎܽ݌ ோܵ௜௦௞)
: denotes the joint probability of all factors 
occurring simultaneously. 

ܲ(ܽ݃݁, ,݁ܿ݊݁݅ݎ݁݌ݔ݁ ,ݕݐ݅ݒ݅ݐܿܽ ݂ܿ݅݅ܿ݁݌ݏ  (ݕ݀݋ܾ ݂݋ ݐݎܽ݌
is the marginal probability of the influencing 
variables, which serves as a normalizing 
constant. 

This Bayesian formulation enables the model to 
update probability estimates dynamically, refining 
risk assessments as new observations become 
available [11,27]. Bayesian updating modifies the 
conditional probability tables (CPTs) in real-time, 
ensuring adaptive risk evaluation. The posterior 
probability distribution of risk state given observed 
factors and real-time data is updated using 
Equation (9). 

To maintain responsiveness, the CPTs are 
dynamically adjusted using Equation (9), where ߟ 
represents the learning rate that controls the rate of 
adaptation to new information [25]. This adaptive 
mechanism ensures that the model remains aligned 
with evolving workplace conditions, thereby 
improving the reliability of accident risk 
assessments over time. The integration of Bayesian 
inference with Markov-based risk transition 
modeling enhances real-time accident prediction 
and safety management by capturing the 
dependency relationships between worker 
characteristics and accident likelihood [5]. The 
ability to update risk probabilities dynamically 
ensures more effective accident prevention 
strategies, contributing to improved workplace 
safety in high-risk environments [18]. 

3.3.2. Conditional Probability Tables (CPTs): 

Each variable in the Bayesian Network is linked 
to its parent nodes through a Conditional 
Probability Table (CPT). These CPTs define the 
probability of being in a specific risk state based on 
a combination of human factors. 

To facilitate structured probabilistic inference, 
the CPT variables are categorized into four discrete 
classes: 

Class 0 (Lowest Risk): Represents the safest 
conditions, such as younger age groups, 
extensive experience, and low-risk activities. 

Class 1 (Moderate-Low Risk): Includes workers 
with intermediate age or experience, or those 
performing slightly hazardous tasks. 

Class 2 (Moderate-High Risk): Workers handling 
moderately complex tasks or with some exposure 
to hazardous conditions fall into this category. 

Class 3 (Highest Risk): Represents severe injury-
prone conditions, including working with high-
risk machinery, hazardous environments, and 
less experienced personnel. 

The classification scheme follows Bayesian 
discretization principles, ensuring that categorical 
assignments are data-driven. A similar 
categorization approach was applied by Yan et al. 
[24] in mobility risk modeling, demonstrating the 
effectiveness of discrete Bayesian classifications. 
The probabilities within each CPT are estimated 
using Bayesian parameter learning from historical 
accident datasets. The probability of a given risk 
state S_Risk conditioned on its influencing factors 
is computed using Equation (11). The Bayesian 
updating process dynamically refines the CPTs 
using real-time incident reports. This ensures that 
probabilities reflect the latest operational 
conditions, as demonstrated in Wang et al. [28], 
where a Data-driven Bayesian Network Model was 
used for dynamic safety resilience evaluation in 
industrial environments. Figure 2 displays the 
Conditional Probability Tables (CPTs) for four key 
variables influencing accident risk predictions 
within the Hybrid Markov-Bayesian framework. 
The first plot shows the probabilities for age, where 
age (1) has the highest likelihood of affecting risk. 
The second plot represents experience (ywtotal), 
indicating that individuals with medium experience 
(ywtotal (1)) have the highest probability of 
contributing to risk. The third plot illustrates the 
probabilities for activity (mwactiv_encoded), with 
low-risk and medium-risk activities (mwactiv (0) 
and mwactiv (1)) having equal and high influence 
on risk. Finally, the fourth plot shows the part of 
the body injured (partbody_encoded), where 
partbody (1), representing more severe injuries, 
holds the highest likelihood of influencing accident 
risk.  
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Figure 2. Conditional Probability Tables (CPTs) for age, experience, activity, and part of body in the hybrid 

Markov-Bayesian framework. 

3.3.3. Inference and risk control: 

Using Bayesian inference, the probability of 
accidents and the severity of risks can be predicted 
based on observed data. For example, given the 

evidence that a worker is experienced but operating 
high-risk machinery during a late shift, the system 
can infer the likelihood of transitioning to a high-
risk state: 

 

ܲ(ܵோ௜௦௞ = ℎ݅݃ℎ|݁݀݁ܿ݊݁݅ݎ݁݌ݔ = ,ݓ݋݈ ݕݐ݅ݒ݅ݐܿܽ = ,ݕ݇ݏ݅ݎ ݕ݀݋ܾ ݂݋ ݐݎܽ݌ = ܾܽܿ݇) (12) 

 
In practice, this inference process is updated in 

real-time. As new data is gathered (e.g., the shift 
changes, machinery type is logged, or injury 
reports are filed), the Bayesian Network 
recalculates the probabilities dynamically. This 
constant updating of probabilities ensures that risk 

predictions are always aligned with the most 
current conditions on the ground. 

 
3.4. Hybrid framework integration 

The final risk state prediction formula 
incorporates both weighted Markov transitions and 
real-time Bayesian updates: 

 

ܲ(ܴ௧ାଵ |ݏݎ݋ݐܿܽܨ, (ܽݐܽܦ = ෍ ܲ(ܴ௧ାଵ |ܵ௧ , .(ܽݐܽܦ ܲ(ܵ௧|ݏݎ݋ݐܿܽܨ, (ܽݐܽܦ
ௌ೟

 (13) 

 
where: 
ܲ( ௧ܵ|ݏݎ݋ݐܿܽܨ,  Bayesian network output :(ܽݐܽܦ
updated with real-time data 

ܲ(ܴ௧ାଵ | ௧ܵ ,  Weighted Markov transition :(ܽݐܽܦ
probabilities adjusted for contextual factors 

Algorithm: Adaptive hybrid Markov-Bayesian 
framework. 
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Input: 
Historical data: A (age), E (experience), M (machinery), I (injury), R (risk state) 
Contextual factors: ܨ௞  for each factor k at time t(ݐ)
Initial Markov transition matrix: P 
Initial Bayesian Conditional Probability Tables (CPTs) 

Initialization: 
1. Estimate prior CPTs for the Bayesian network. 
2. Calculate the baseline Markov transition matrix, P, from historical data. 

Step 1: Contextual weighting (Markov model) 
For each time step t: 
a. Compute contextual weights ௜ܹ௝(ݐ) for transitions from state ௜ܵ  to ௝ܵ: 

௜ܹ௝(ݐ) =
ܽ௞  (ݐ)௞ܨ 

∑ ܽ௞ ௞(ݐ)௞ܨ 
 

b. Update the Markov transition matrix with the weights: 
(ݐ)ܲ  = (ݐ)ܹ   ⋅  ܲ 

Step 2: Bayesian Inference with Real-Time Updates 
For each observation (new data): 
a. Update the Bayesian CPTs dynamically: 
ܶܲܥ ݓ݁ܰ = ܶܲܥ݈݀݋ + .ߟ ܽݐܽܦ ݀݁ݒݎ݁ݏܾܱ) −  (ܽݐܽܦ ݀݁ݐܿ݁݌ݔܧ
b. Compute posterior probabilities for the risk state: 

,ݏݎ݋ݐܿܽܨ | ܴ)ܲ (ܽݐܽܦ  =
,ܴ|ܽݐܽܦ)ܲ (ݏݎ݋ݐܿܽܨ|ܴ)ܲ(ݏݎ݋ݐܿܽܨ

(ݏݎ݋ݐܿܽܨ|ܽݐܽܦ)ܲ
 

Step 3: Hybrid Integration 
For each state transition: 
a. Compute final risk state probabilities: 
ܲ(ܴ௧ାଵ |ݏݎ݋ݐܿܽܨ, (ܽݐܽܦ = ෍ ܲ(ܴ௧ାଵ |ܵ௧ , .(ܽݐܽܦ ܲ( ௧ܵ|ݏݎ݋ݐܿܽܨ, (ܽݐܽܦ

ௌ೟

 

Output: 

Predicted risk state: ܴ௧ାଵ 
Updated transition matrix: P(t) 
Updated Bayesian CPTs 

End Algorithm 
 
3.5. Validation and testing 

The effectiveness of the hybrid framework was 
validated using a dataset of 100,000 records, 
focusing on human factors such as age, experience, 
specific tasks, and the part of the body injured. The 
model’s accuracy in predicting high-risk states and 
identifying the main causes of accidents was 
evaluated using standard classification 
performance metrics: accuracy, precision, recall, 
and F1-score. To assess model performance, the 
following standard formulas were used: 

Accuracy measures the overall correctness of 
the model in predicting risk states: 

ݕܿܽݎݑܿܿܣ =
ܶܲ + ܶܰ

ܶܲ + ܶܰ + ܲܨ + ܰܨ
 (14) 

where TP (True Positives) and TN (True 
Negatives) are correctly classified risk states, while 
FP (False Positives) and FN (False Negatives) 
represent misclassified cases. Precision quantifies 
the proportion of correct positive predictions out of 
total predicted positives: 

݊݋݅ݏ݅ܿ݁ݎܲ =
ܶܲ

ܶܲ + ܲܨ
 (15) 

Higher precision indicates fewer false alarms 
when predicting high-risk states. Recall 
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(sensitivity) assesses the model's ability to capture 
all actual positive instances: 

ܴ݈݈݁ܿܽ =
ܶܲ

ܶܲ + ܰܨ
 (16) 

A high recall means the model effectively 
identifies most of the actual high-risk cases. F1-
Score is the harmonic mean of precision and recall, 
balancing both metrics: 

1ܨ − ݁ݎ݋ܿܵ = 2 ×
݊݋݅ݏ݅ܿ݁ݎܲ × ܴ݈݈݁ܿܽ
݊݋݅ݏ݅ܿ݁ݎܲ + ܴ݈݈݁ܿܽ

 (17) 

This metric is crucial in safety-sensitive 
applications, where a trade-off between false 
positives and false negatives must be considered. 
These metrics were computed based on the actual 
accident risk states observed in the dataset and the 
predicted classifications by the hybrid Markov-
Bayesian model. As supported by Wang et al. [11], 

similar Bayesian evaluation techniques have been 
used in industrial safety resilience studies, 
reinforcing the effectiveness of precision-recall-
based validation approaches. 

3.5.1. Scenario breakdown: 

In Figure 3, the risk state (ܴ) is influenced by 
several variables including age (ܣ), experience (ܧ), 
specific activity at the time of injury (ܯ஺), and part 
of the body injured ( ஻ܲ). The joint probability 
distribution P (A, E, ܯ஺, ஻ܲ, R) represents the 
likelihood of these variables, along with the risk 
state, represents the likelihood of these variables, 
along with the risk state, occurring together.  

In Bayesian Networks, joint probabilities are 
often decomposed into conditional probabilities. 
For this model, the joint probability is calculated 
as: 

 

ܲ(A, E, ,஺ܯ ஻ܲ , R) = ܲ(ܴ ∣ ,ܣ ,ܧ ,஺ܯ ஻ܲ) ⋅ (ܣ)ܲ ⋅ (ܧ)ܲ ⋅ .(஺ܯ)ܲ ܲ( ஻ܲ) (18) 

 
Each term in this expression represents: 
ܲ(A, E, ,஺ܯ ஻ܲ , R): The probability of the risk state 
given the other factors (the conditional probability of 
the risk state). 

 .The marginal probability of age :(ܣ)ܲ

 .The marginal probability of experience :(ܧ)ܲ

 The marginal probability of the specific :(஺ܯ)ܲ
activity at the time of injury. 

ܲ( ஻ܲ ): The marginal probability of the part of the 
body injured. 

For instance, to compute the joint probability of 
a worker with the following conditions: 

Age = 30 years 

Experience = 5 years 

Specific Activity = Welding and cutting 

Part of Body = Hand 

Risk State = High Risk 

The joint probability: 

 
݇ݏܴ݅ ℎ݃݅ܪ)ܲ ∣ 30 , 5, ,݃݊݅ݐݐݑܿ ݀݊ܽ ݈ܹ݃݊݅݀݁ (݀݊ܽܪ ⋅ ܲ(30) ⋅ ܲ(5) ⋅ (݃݊݅ݐݐݑܿ ݀݊ܽ ݈ܹ݃݊݅݀݁)ܲ ⋅  (19) (݀݊ܽܪ)ܲ

 
is calculated as: 

 

,30,5 | ݇ݏܴ݅ ℎ݃݅ܪ)ܲ ,ݎ݈ܹ݁݀݁ ܹ݈݁݀݅݊݃ ݉ܽܿℎ݅݊݁, 1200, (݃݊݅݊ݎ݋ܯ ⋅ ܲ(30) ⋅ ܲ(5) ⋅ (ݎ݈ܹ݁݀݁)ܲ
⋅ ܲ(ܹ݈݁݀݅݊݃ ݉ܽܿℎ݅݊݁) ⋅ ܲ(1200) ⋅  (20) (݃݊݅݊ݎ݋ܯ)ܲ
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Figure 3. Bayesian Network for accident risk control. 

4. Results 

Table 4 represents a sample of the normalized 
and encoded dataset used in the Markov-Bayesian 

framework. Each variable has been preprocessed 
into a numerical or categorical format that allows it 
to be effectively used in the model. 

Table 4. Sample data from the dataset. 

Time Shift Occupation Machinery Source 
of Injury 

Degree of 
Injury Age Experience 

(Weeks) Activity Body 
Part 

0.3583 0.9071 2 4 1 4 33 104 3 0 
0.5392 0.5358 4 3 1 1 44 936 0 3 
0.4708 0.5708 3 0 0 2 44 208 3 1 
0.4563 0.4888 3 2 4 1 57 1196 1 4 
0.6825 0.0013 3 2 3 0 51 1456 1 0 

 
Table 5 shows the probabilities of moving from 

one risk state to another. Each row represents a 
current risk state, while each column shows the 
probability of transitioning to the next risk state 
(low, medium, or high). 

High risk states have the highest probability of 
remaining in a high-risk state (0.6019). 

Medium risk states show a moderate probability 
of transitioning to a high-risk state (0.5959), 
suggesting that fatigue and operational hazards are 
critical in these situations. 

Low risk states are less stable, with a significant 
chance (0.5982) of moving to a high-risk state, 
particularly if the external conditions worsen (e.g., 
due to hazardous machinery or late shifts). 

Table 6 show the probability distribution of the 
risk states, given the data. The three risk states (0 = 

Low, 1 = Medium, 2 = High) are presented with 
their probabilities. 

Table 5. Markov model transition matrix. 
From / To Low risk Medium risk High risk 
Low risk (0) 0.1981 0.2036 0.5982 
Medium risk (1) 0.2006 0.2035 0.5959 
High risk (2) 0.1998 0.1983 0.6019 

Table 6, Inference from Bayesian network. 
Risk state (encoded) Probability 

Low risk (0) 0.6063 
Medium risk (1) 0.2803 
High risk (2) 0.1134 

 
The low-risk state has the highest probability 

(60.63%), indicating that most of the data points lie 
within a low-risk environment. 
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However, medium-risk and high-risk states 
together make up nearly 40% of the dataset. This 
suggests a significant number of scenarios where 
human and environmental factors push the system 
into more dangerous conditions. 

Figure 4 illustrates the performance of the 
hybrid Markov-Bayesian framework Model across 
four key validation metrics: Accuracy, Precision, 
Recall, and F1-Score.  

The model achieves an accuracy of 87%, 
indicating a high proportion of correct predictions. 
The precision of 85% reflects the model's 
effectiveness in correctly identifying high-risk 
cases, while the recall of 83% demonstrates its 
ability to capture all relevant high-risk scenarios. 
The F1-Score, a harmonic mean of precision and 

recall, is 0.84, signifying a well-balanced model in 
terms of both metrics. 

The integration of the Markov transition matrix 
and Bayesian inference enhances the 
understanding of accident risk dynamics, 
particularly in identifying high-risk transitions 
influenced by operational factors such as shift 
timing and machinery type [26,27]. Bayesian 
inference further underscores the critical role of 
human factors, including experience and age, in 
shaping accident likelihood, reinforcing previous 
research on predictive risk modeling [2,11]. These 
results highlight the necessity of real-time risk 
monitoring and proactive intervention strategies, 
particularly in high-risk environments where 
worker attributes and environmental conditions 
significantly impact safety outcomes [1,3]. 

 

 

 
Figure 4. Validation metrics for hybrid framework 

model. 
Figure 5. Markov chain state transition diagram. 

 
5. Discussion 

The results of this study demonstrate the 
potential of the hybrid Markov-Bayesian 
framework in forecasting and controlling accident 
risks, particularly in high-risk environments such 
as mining, where inherent hazards are prevalent, 
and commercial productivity is lower. By 
integrating the Markov and Bayesian approaches, 
this model combines the strengths of both 
techniques: using Markov models to track dynamic 
transitions in risk states and Bayesian networks to 
infer causal relationships by accounting for 
dependencies among human factors and 
environmental conditions. 

The findings indicate a strong balance between 
accuracy (87%) and recall (85%), which means that 
the model not only excels in identifying true high-
risk scenarios but also minimizes false positives. 
This is particularly crucial in safety-sensitive 

industries, where misclassification can have severe 
consequences. Moreover, the model achieved an 
F1-score of 0.84, further highlighting its reliability 
and suitability for enhancing safety protocols and 
risk management practices. 

Additionally, the validation metrics underscore 
the significant impact of human factors such as age, 
on accident risks, along with the nature of injuries 
and specific activities. These insights suggest 
opportunities for targeted interventions, such as 
specialized training for younger or less experienced 
workers, and stricter safety measures around high-
risk machinery. 

6. Conclusions 

This study demonstrates that the hybrid 
Markov-Bayesian framework is an effective and 
adaptive tool for dynamically assessing and 
managing accident risks in high-risk industries, 
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particularly within mining operations. By 
integrating Markov models to capture risk state 
transitions over time and Bayesian networks to 
infer causal relationships among key human and 
environmental factors; the framework provides a 
highly predictive and responsive risk management 
approach. The validation results confirm its 
robustness and accuracy, achieving 87% accuracy, 
85% precision, and an F1-score of 0.84, 
underscoring its reliability in accident prediction 
and risk assessment. 

From a practical perspective, this framework 
enables real-time safety interventions by 
continuously updating risk probabilities based on 
incoming operational data. The ability to 
dynamically capture risk evolution, factoring in 
elements such as shift duration, fatigue levels, and 
environmental hazards, enhances proactive 
decision-making and improves accident prevention 
strategies. Unlike traditional static models, which 
struggle to accommodate rapid changes in risk 
exposure, this adaptive framework responds 
dynamically to evolving workplace conditions. 
Furthermore, by identifying critical risk factors—
such as worker experience, task complexity, and 
injury patterns—organizations can implement 
targeted safety measures, including specialized 
training programs, automated risk monitoring 
systems, and enhanced safety protocols. 

Beyond its applicability in mining, the 
framework provides a scalable solution adaptable 
to other high-risk sectors, such as construction, 
transportation, and manufacturing, where real-time 
risk assessment is crucial. Future research should 
focus on improving the framework’s adaptability 
by integrating additional contextual parameters, 
such as psychological stress factors, equipment 
deterioration trends, and environmental variability, 
to enhance risk prediction accuracy further. 
Additionally, longitudinal studies across diverse 
operational environments will be essential to 
validate the long-term effectiveness of the model in 
real-world applications. Ultimately, the Hybrid 
Markov-Bayesian Framework represents a 
significant advancement in industrial risk 
assessment and management. By leveraging 
advanced statistical modeling techniques and real-
time data processing, it offers a comprehensive, 
dynamic, and actionable approach to reducing 
accident rates and improving workplace safety. Its 
adoption across industries has the potential to 
transform safety management strategies, shifting 
organizations from reactive risk management 
toward proactive accident prevention, thereby 

fostering safer and more resilient work 
environments. 
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برا  يزیب- مارکوف  یبیچارچوب ترک  کیمطالعه    نیا   ع یحوادث در صنا  سکیر  تیری و مد  ینیبشیپ  يرا 
و تمرکز  با  اکندی م  یبر بخش معدن معرف  ژهیپرخطر،  تلف  نی.  با  برا  يهامدل   قیچارچوب    ل ی تحل  يمارکوف 

علّ  يبرا  يزیب  يهاو شبکه  سکیر  تیدر وضع  ایپو  يگذارها   ی طیو مح  یعوامل انسان  انیم  یاستنباط روابط 
بهره  یطراح  يدیکل با  است.  عملمجموعه  کیاز    يریگشده  از  جامع  پ  ،ی معدن  اتیداده   يشنهادیچارچوب 

  ی ابیحوادث ارز  سکیو کنترل ر  ینیبش ی را جهت پ  بیآس  يهای ژگیو و  تیمانند سن، تجربه، نوع فعال  ییرهای متغ
و    ٪85  ینیبش ی، دقت پ٪87دقت    کهي طوربه  دهد،ی را نشان م  يشنهادیمدل پ  يعملکرد بالا  ج ی. نتاکندی م

با    F1  ازیامت ا  0.84برابر  است.  مداخله  کردیرو  نیحاصل شده  امکان  واقع  یمنیا  يها نوآورانه  زمان  و    یدر 
م   دستانهش یپ  سکیر  تیریمد  يراهبردها فراهم  پتانس  هاافتهی.  آوردی را  ا  نیا  لیبر  بهبود  در   ی منیچارچوب 

 قاتیدارند. تحق  دیتأک  سکیپرر  عیصنا  ریاز حوادث در سا  يریشگیپ  يبرا  ریپذاسیمق  يبزارکار و ارائه ا  طیمح
تر تمرکز  گسترده  يکاربردها يبرا شتریب يانه یزم يرهایانطباق چارچوب و گنجاندن متغ تیبر ارتقاء قابل ندهیآ

  . خواهد داشت

    کلمات کلیدي 

  ی بی چارچوب ترک
  مارکوف  مدل

  ي ز یب شبکه
  معدن  صنعت
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