Document Type : Original Research Paper

Authors

1 Department of Mining in Arak university of Technology

2 Arak University of Technology, Arak, Iran

3 Department of Mining Engineering, Arak University of Technology, Arak, Iran

10.22044/jme.2025.15633.3001

Abstract

This work investigates the extraction of sodium sulfate (Na2SO4) from Mighan Playa in Arak, Iran, where 163 boreholes were drilled to depths of up to 20 m revealed a heterogeneous lithology dominated by Glauberite (Na2Ca(SO4)2) and Mirabilite (Na2SO4·10H2O) with average sodium sulfate concentrations of 25% (ranging from 2–32% and peaking at 55% in localized southwestern areas). The playa’s surface is primarily clay-covered (94%) and interbedded with evaporitic facies including Gypsum, Halite, and carbonate minerals. Seasonal water inflows of 200–800 l/s from a wastewater treatment plant, together with 3.5 m-deep extraction pits and gravitational drainage, have resulted in stagnant ponds over 25% of the southern lake area and an annual reduction in surface area of 5–10%. Stratigraphic analysis further indicates pure Glauberite layers (0.5–1 m thick) at depths of 1,653–1,656 m, in contrast with thicker impure Glauberite-Mirabilite sequences (up to 9 m) present between 1,649–1,659 m. To mitigate these challenges, an integrated engineering approach is proposed that includes pumping seepage brine (with a moisture content of 40%) to solar evaporation pools, employing continuous dual-pump slurry systems for tailings management, and implementing hydraulic balancing through retaining walls and winter brine reserves—measures that enhance extraction efficiency by 30–42% in high-concentration zones. These adaptive mining practices, incorporating in-situ brine leaching and advanced wastewater treatment, are designed to meet 70% of Iran’s annual sodium sulfate demand from an 8 km² operational area while reducing environmental degradation.

Keywords

Main Subjects