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Identical twin

Estimating ore grades during the exploration phase is often time-consuming and
costly due to the need for extensive drilling. Geophysical surveys, as the last indirect
exploration method before drilling, offer valuable insights into subsurface
mineralization. This study introduces a novel approach for simulating “identical
twins” of borehole copper grade values using geophysical attributes derived from the
geoelectrical method in the Kahang porphyry copper deposit, central Iran. By treating
the simulated values as digital twins of actual borehole grades, we employed four
machine learning algorithms—Iinear Regression (LR), Gradient Boosting (GB),
Random Forest (RF), and Support Vector Machine (SVM)—to model the complex
relationships between geophysical inputs and copper grades. After data preprocessing
with Principal Component Analysis (PCA), a refined dataset was used to train, test,
and validate each model. The results demonstrate that GB yielded the highest
predictive accuracy, generating grade estimates closely aligned with actual values.
This identical twin modeling approach highlights the potential of machine learning to
enhance early-stage mineral exploration by reducing dependence on costly drilling.

1. Introduction

these factors are not known and are not considered

Generally, porphyry type reserves are the most
important source of valuable metal elements such
as copper and molybdenum, along with other
important elements such as gold and silver in the
world. According to available statistics, about 50 to
60 percent copper and more than 95 percent of
global molybdenum production are obtained from
these reserves. Most of these deposits have been
expanded in metallogenic states known as
porphyry copper belts. The porphyry copper belt of
Iran, which is part of a large global copper belt with
a length of four thousand kilometers, coincides
with the northwest-southeast end with magmatic
arc of Sahand Bazman or Orumiyeh Dokhtar. Due
to the fact that the distribution of mineral content
depends on many factors, the effects of many of
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in the common mathematical model. Therefore, in
each modeling, for the distribution of the ore grade,
there is a simplification and assumptions about
spatial variations. Distance is the only factor that is
considered while other factors such as geological
structure, formation environment, storage shape,
ore type and degree of mineralization are also
effective. Fortunately, all of these factors have an
influence on geophysical data. The attractiveness
of the intelligent techniques is due to the fact that
they provide dynamic and nonlinear systems that
are capable of learning. These techniques do not
require assumptions about the factors affecting
spatial variations around a borehole.
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As the historical trend, artificial neural network
was used to estimate the storage of a deposit in
central Iran by Shahabifar. A total of 57 wells are
considered. To evaluate the designed network, four
well’s data were completely selected as validation
data and the rest of the specimens were considered
for train and test process. After training the neural
network, the validation rate was about 73%.
Tahmasebiand Khashkarani used neuro-fuzzy
algorithm to estimate the copper grade in Kerman
[1]. According to the results, the network has been
able to accurately detect the spatial pattern between
inputs and outputs and accurately evaluate the
copper grade.

Karimi has used the multilayer perceptron
neural network to evaluate the gold grade in
Zarshouran gold mine [2]. Ghasemi Tabar and his
colleagues have performed several algorithms,
including Random Forest and Gradient Boosting
on the northern anomaly of Choghart under the
Python programming language [3].All of these
works focused on the relation estimation between
drill holes’ grade values. Due to the availability of
geophysical data and the existence of the
relationship between geophysical data and bore
hole values, the other scientists tried to find these
relationships. Yuan and colleagues optimized the
inversion of three models of geophysical data with
the help of Particle Swarm Optimization and Ant
Colony Optimization [4]. Alimoradi and his
colleagues used a backpropagation network with 4
hidden layers to model a dyke with the inversion of
the magnetometric data [5]. In another research
with the same theme, with the help of a perceptron
artificial neural network with two hidden layers,
the modeling of the electro-seismic data of wells
has been done [6]. FitzGerald tried to establish a
relationship between airborne geophysical data and
identify subsurface structures of the earth by using
an artificial intelligence feature extraction
technique [7]. As the most related work, Alimoradi
and his colleagues evaluated the silver grade of the
Zarshuran gold mine using drill spatial data, data
from the Induced Polarization (IP) geophysical
approach, and the cuckoo search machine learning
algorithm. The findings indicated that grade values
can be accurately approximated using geophysical
data, particularly in locations without drilling data

[8].
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The purpose of this research study is to estimate
the copper values using geophysical attributes and
borehole coordinates. According to the limitation
in number of layers, as well as the activation
function limit and algorithm processing time in
regular neural networks, it is necessary to use the
other algorithms with high capabilities such as fast
processing time, various activation functions, low
layer or single-layer and high accuracy. Huang and
his colleagues suggested linear regression (LR) to
overcome these weaknesses [9]. Wang and his
colleagues, has been studying the thickness of the
ore with the help of seismic properties and random
forest algorithm [10]. This has been a great deal of
economic and time efficiency. The various
functions of activation, fast processing time and the
power of data analysis, which leads to
generalization, were the reasons for choosing this
method. Regarding the advantages of these
algorithms and also two other algorithms (gradient
boosting and support vector machine), the copper
grade estimation of this research work has been
investigated using LR, GB, RF and SVM
algorithms.

2.Materials and Method

Kahang deposit is located in the central Iran,
near Isfahan historical city. Figure 1 shows the
location of Kahang deposit on the map as the red
star. The area is completely mountainous. The
satellite image of the area is shown in Figure 2.

The main petrological units of the area are: light
brown to cream quartz monzo-diorite to quartz
diorite rocks, the combination of quartz diorite with
a weathered light brown and fresh light gray
Eocene volcanic rocks, dacite lavas that can be seen
in the form of single outcrops in the east of the
area,dike, dome and thick dacite-rhyodacite lavas
in light gray to pink color, different types of
pyroxene-trachy-andesite, quartz-trachy-andesite
and trachy-andesite. In addition to these features,
the argillic and advanced argillic alterations in the
area illustrates that the region is susceptible for
porphyry deposit formation. After geological
investigations done by the geology team,
geophysical investigations were recommended to
be performed. The main geophysical approach to
check the target in porphyry type deposits is geo
electrical method.
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Figure 1. Geological map of Kahang porphyry copper deposit
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Figure 2. Satellite image of the area (Source: Google
Earth)

The copper ore in the Kahang study area is not
represented as a simple homogeneous horizontal
layer. Instead, it is found within a complex
geological matrix, where faults and fractures
influence the mineralization. These geological
complexities can significantly impact the
effectiveness of the Vertical Electrical Sounding
(VES) technique, which is typically more
successful in areas with uniform subsurface layers.
Given the heterogeneous nature of the subsurface
geology at Kahang, the interpretation of VES data
must consider these complexities to accurately
assess the distribution of copper mineralization.
Therefore, our study incorporates additional
geophysical methods to complement the VES

results and provide a more comprehensive
understanding of the subsurface characteristics.

2.1. Geophysical Study

The basis of the geoelectrical test is the
determination of the electrical resistivity of the
earth. Materials have different electrical resistivity
and can be defined with resistance test methods.
According to Ohm's law, when an electric current I
passes through a conductor with resistivity R, the
relationship between the created potential (V) is V
= RI and vice versa. If the potential difference V is
applied between two conductors, then the current [
passes through. For different materials, they vary in
terms of potential. The type of geoelectrical
method used in Kahang area is the method referred
to as Vertical Electrical Sounding or VES.

At the deposit site, eight profiles with a distance
of 100 meters and parallel to the northeast-
southwest direction have been designed and
surveyed, with 81 electrical soundings. The
location of the VES boreholes is shown in Figure
3.

After geophysical survey, process and interpret,
a grid of exploratory drillings was defined. Among
drilled, sampled and analyzed
boreholes,5boreholeswere drilled very closely to
the vertical electrical soundings. Figure 4, shows
the location of the VES and those 4 drill holes in
the study area. We selected theseSboreholes with
the 5VESs beside them to define a data matrix as
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the raw data for intelligent inversion. The
information that is obtained and put in the matrix
are borehole coordinates, Cu grade, potential
value(V), electrical  current(I),  geometric
coefficient (K)and resistivity (P). The total 91 data
set was finalized in which all variables were valid.

Figure 3. Position of the vertical electrical soundings (Source: Google Earth)
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Table 1 shows 23 rows of the data set from surface
to the depth of 375 m as a sample. To prevent
interference and lack of proper network
identification, the principal component analysis
(PCA) is used to improve network detection.

2009
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Figure 4. The location of the final selected boreholes along with the location of vertical electrical soundings

In this work, we utilized a dataset collected
from the Kahang copper deposit. Each sample
represents a unique data point that includes various
geophysical attributes and corresponding copper
grade values. The dataset was subjected to rigorous
Quality Assurance/Quality Control (QA/QC)
protocols to ensure the reliability and accuracy of

the results. This included duplicate sampling,
standard reference materials, and blank samples to
monitor potential contamination and analytical
erTors.

The analytical methods employed for
determining the copper grades were based on
inductively coupled plasma mass spectrometry
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(ICP-MS), which is recognized for its sensitivity
and precision in trace element analysis. This robust
dataset, with its stringent QA/QC measures and
advanced analytical techniques, provides a solid
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algorithms to predict copper grades based on
geophysical attributes. The insights gained from
this dataset not only enhance our understanding of
the Kahang deposit but also contribute to the

foundation for applying machine learning broader field of mineral exploration.
Tablel.Sample data from the total data set
X Y y/ K \4 1 P Grade (%)
1 638557 3644608 1.5 12.6 39.0 6.3 77.7 0.0000
2 638557 3644608 2.5 37.7 28.0 14.1 65.6 0.0000
3 638557 3644608 3.5 75.4 17.0 14.8 86.6 0.0194
4 638557 3644608 5.0 155.4 7.0 14.8 73.5 0.0228
5 638557 3644608 5.0 58.9 17.0 14.0 71.5 0.0228
6 638557 3644608 7.5 137.4 14.0 27.1 71.0 0.0343
7 638557 3644608 10.0 3473 8.0 27.0 73.3 0.0765
8 638557 3644608 15.0 56.1 3.0 26.2 62.2 0.0320
9 638557 3644608 25.0 1566.0 2.3 59.0 61.0 0.0222
10 638557 3644608 25.0 377.0 11.0 60.4 71.2 0.0222
11 638557 3644608 35.0 3073.0 1.2 59.1 65.1 0.0291
12 638557 3644608 35.0 754.0 6.0 59.5 76.3 0.0291
13 638557 3644608 50.0 1554.0 1.2 22.6 82.6 0.0262
14 638557 3644608 75.0 3517.0 1.2 46.3 91.1 0.0968
15 638557 3644608 100.0 6264.0 0.5 37.9 82.7 0.0643
16 638557 3644608 100.0 1507.0 2.8 38.1 110.7 0.0643
17 638557 3644608 150.0 14114.0 0.5 77.5 92.0 0.0092
18 638557 3644608 150.0 3470.0 1.3 38.2 118.0 0.0092
19 638557 3644608 200.0 25104.0 0.5 96.1 130.6 0.0972
20 638557 3644608 200.0 6217.0 2.3 95.8 149.3 0.0972
21 638557 3644608 250.0 9750.0 2.1 125.0 163.8 0.1347
22 638557 3644608 300.0 3073.0 6.4 155.0 178.4 0.0063
23 638557 3644608 375.0 22015.0 1.3 155.0 184.6 0.1467

2.2. Preprocessing

The preliminary statistical analysis of the data
utilized is shown in Table 2. According to the
measurable characteristics such as the scattering of
the data utilized in this table appears that most data
and the scattering within the input data are related
to Cu grades less than 0.14%, and within the data

with grades higher than this grade, the number and
scattering of the data The accessible ones are less.
In this way, it can be predicted that less precision
will be achieved within the data with a higher Cu
grade. Also, the information in Table 3 shows the
correlation between the input data and the Cu
grade, which as shown is the foremost correlation
on the spatial data.

Table 2. Statistical parameters of the studied data

X Y Y4 K 1 \4 P Cu (%)
mean 638426 3644640 86.81 4276.51 8.62 46.77 112.23 0.13
std 178.156 66.1024 95.35 6455.8 26.09 37.98 48.28 0.21
min 638019 3644578 1.5 12.6 0.4 6.3 54.77 0
25% 638420 3644608 15 377 1.2 15.75 73.38 0.03
50% 638454 3644620 35 1554 2.3 36 104.5 0.07
75% 638557 3644654 150 3517 6 81.2 129.6 0.14
max 638582 3644788 375 25104 187 155 264.7 1.14
Table 3. Correlations (percent) in inputs and Cu of the studied data
X Y Y4 K 1 \4 P
Cu (%) -0.26 0.26 0.02 0.07 -0.12 0.07 0.07
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Multiple data analysis has a fundamental role in
data science. If there are variables in each dataset,
each variable can have multiple dimensions. Given
that it is difficult to comprehend multiple-
dimensional space, the Principal Component
Analysis (PCA)reduces the dimensions of all
observations based on the combined index and
classification of similar observations. In this
method, variables in a multimode space are
summed up to a set of unconnected components,
each of which is a linear combination of the main
variables. The unconnected or less depended
components are called core components of the
PCA, derived from the special covariance matrices
or the correlation matrix of the main variables. In
general, the main application of the principal
component analysis method is to reduce the
number of variables and find the structure of the
relationship between them.

Journal of Mining & Environment, Published online

The criteria used in this study to find the
necessary components are:

e Coordinates of the data as X, Y, and Z which are
necessary as the input data.

e Even K as the geometric coefficient will affect
the geoelectrical parameters, but it should be
considered as input data since different K values
can give similar geoelectrical parameters.

e For other 3 geophysical variables, it is obvious
that they are dependent on each other. The less
dependent variable should be selected as the fifth
input data.

Table4, shows the dependency of the variables
to each other. According to the results of this table,
it can be concluded that V (field potential) should
be selected as the final input variable.

Table 4. PCA results

PC 1 Factor 2" Factor 3" Factor 4" Factor 5™ Factor 6" Factor 7" Factor
1 0.00 0.00 0.00 0.00 0.00 0.99 0.07
2 0.00 0.00 0.00 0.00 0.00 -0.07 0.99
3 0.59 -0.31 0.00 -0.05 0.73 0.00 0.00
4 0.52 0.78 0.33 0.00 -0.03 0.00 0.00
5 -0.15 -0.19 0.55 0.77 0.00 0.00 0.00
6 0.56 -0.31 -0.28 0.38 -0.59 0.00 0.00
7 0.20 -0.39 0.70 -0.49 -0.25 0.00 0.00

Figure 5 shows the scattering plot of K, P,I and V. As it is shown in these plots, I and P have a regular trend
by increasing the depth, but V has the unknown distribution like K.

Finally, and according to the PCA results, the input data were reduced to X, Y, Z, K and V and copper grade
was considered as the output. Table5illustrates the final input and output databased on table 1.

TableS. Sample of the final data set which should be used in machine learning algorithm

X Y 7 K \%4 Grade (%)
1 638557 3644608 1.5 12.6 39.0 0.0000
2 638557 3644608 2.5 37.7 28.0 0.0000
3 638557 3644608 3.5 754 17.0 0.0194
4 638557 3644608 5.0 1554 7.0 0.0228
5 638557 3644608 5.0 58.9 17.0 0.0228
6 638557 3644608 7.5 1374 14.0 0.0343
7 638557 3644608 10.0 347.3 8.0 0.0765
8 638557 3644608 15.0 56.1 3.0 0.0320
9 638557 3644608 25.0 1566.0 2.3 0.0222
10 638557 3644608 25.0 377.0 11.0 0.0222
11 638557 3644608 35.0 3073.0 1.2 0.0291
12 638557 3644608 35.0 754.0 6.0 0.0291
13 638557 3644608 50.0 1554.0 1.2 0.0262
14 638557 3644608 75.0 3517.0 1.2 0.0968
15 638557 3644608 100.0 6264.0 0.5 0.0643
16 638557 3644608 100.0 1507.0 2.8 0.0643
17 638557 3644608 150.0 14114.0 0.5 0.0092
18 638557 3644608 150.0 3470.0 1.3 0.0092
19 638557 3644608 200.0 25104.0 0.5 0.0972
20 638557 3644608 200.0 6217.0 2.3 0.0972
21 638557 3644608 250.0 9750.0 2.1 0.1347
22 638557 3644608 300.0 3073.0 6.4 0.0063
23 638557 3644608 375.0 22015.0 1.3 0.1467
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2.3. Grade estimation using machine learning

Artificial Neural Networks (ANNSs) are inspired
by human brain function and artificial processor
units. These models are based on the assumption
that the human brain can be learnt by the neural
units (neurons).

In the present study, finalized dataset from the
PCA processing will be used in four machine
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learning algorithms (Linear Regression, Gradient
Boosting, Random Forest and Support Vector
Machine) to find the relationship between
geoelectrical attributes and the real values of
copper grade. The method of work is to randomly
divide the data set into train (70%), test (20%) and
validation (10%)sets. These sets should be
normalized before using in each algorithm.
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Figure 5. Scattering plot of the data (Source: Python 3.6)
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Figure 6. Flow chart of the modeling

Further, the results of each algorithm will be
shown and discussed. Finally, the best algorithm
for this study will be defined.

2.4. Machine learning algorithms

In this work, we employed four machine
learning algorithms: Linear Regression (LR),
Gradient Boosting (GB), Random Forest (RF), and
Support Vector Machine (SVM) for VES data
analysis. The selection of these algorithms is
grounded in their diverse methodologies and
proven effectiveness in managing complex and
high-dimensional datasets commonly encountered
in geophysical applications.

Linear Regression (LR) serves as a foundational
linear model that is particularly suitable for binary
classification tasks, offering interpretability and
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simplicity in understanding the relationship
between input features and the target variable.
However, its linearity may limit its performance in
capturing more intricate patterns within the data.

On the other hand, Gradient Boosting (GB) and
Random Forest (RF) are advanced tree-based
ensemble methods known for their robustness in
modeling nonlinear relationships and interactions
among features. GB builds models sequentially,
optimizing for errors made by previous models,
which allows it to achieve high predictive accuracy.
Conversely, RF constructs multiple decision trees
and aggregates their predictions, providing
resilience against overfitting and improving
generalization on unseen data.

Support Vector Machine (SVM) is recognized
for its capability to classify data by finding the
optimal hyperplane that separates different classes,
even in high-dimensional spaces. Its strength lies in
handling nonlinear decision boundaries through the
use of kernel functions, making it particularly
effective for complex classification tasks. By
comparing these algorithms, we aim to identify
their respective strengths and weaknesses in the
context of VES data analysis. This comparative
approach not only enhances our understanding of
how different features influence performance but
also allows us to select the most appropriate
algorithm for specific geophysical scenarios.
Ultimately, our findings will contribute to more
accurate interpretations of subsurface

[ tmar

Dependent Variable

Independent Variable

Figure 7. Linear regression function [11]

2.4.3. Random forest

Random forest or Random decision forest is a
hybrid learning method for classification and
regression, which is based on a structure consisting
of many decision trees, on the training time and the
output of classes (classification), or for the average

Error
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characteristics, facilitating better decision-making
in mineral exploration.

2.4.1. Linear regression

Linear regression is a supervised statistical
algorithm which looks for the best relationship
between some dependent and independent
variables in a linear manner. The functions are
based on back propagation algorithms and almost
this method is suitable for the problems with
considerable input data. Figure 7 illustrates the
function of the linear regression algorithm.

2.4.2. Gradient boosting

Gradient boosting is a powerful algorithm based
on decision tree (DT) function which is capable in
noise data controlling and finding the nonlinear
model between data [27]. This algorithm looks for
the weak points in the model and try to boost them
in order to get the best result. It builds the model in
a stepwise manner like other booster methods and
generalizes the variable function of the decision
tree by allowing arbitrary optimization. The
Gradient Boosting is an integrated high
performance and stable algorithm [15]. The
training process and progress of the enhanced
gradient algorithm based on the error function and
repetition of the training process are shown in
Figure 8.

A
e ahl+
+ +éfads
P WP
+ |+
oy on
+
Iterations

Figure 8. Gradient boosting training process [11]

predictions of each tree [12]. Random Forest is
suitable for decision trees that undergo pre-fitting
in the training set. Although this algorithm is very
user-friendly and has only two input parameters of
the network, which are the number of trees and the
number of variables of subsets, it is not highly
sensitive to the value of these parameters [13]. On



Ghasemi Tabar et al.

the other hand, the random forest algorithm (Figure
9) is a tree-based algorithm that uses the features of
several decision trees to make decisions. In fact,
this algorithm uses averaging to improve
performance and control overfitting [14].

2.4.4. Support vector machine

Support vector machine is a supervised learning
algorithm capable of providing generalization
performance over a wide range of problems. This
method is one of the machine learning methods

Instance

Random i‘V \

£REN K30K K3 RN

Tree-1 Tree-n

Class-A Class-B Class-B

Majority-Voting 7l

Final-Class

Figure 9. Random forest performance procedure [15]

3. Results and Discussion

Figure 11 shows the results of training for each
machine learning model. As it can be seen, gradient
boosting has the best performance in training data
set and all real and predicted values completely
overlapped, with regression value about 1. After
training, each model should be applied for the test
data set to check the compatibility of models in
predicting copper grades from input data which
have not involved in the training procedure. By
doing this stage, each model can be modified in
training parameters to get the best test estimation
values. Figure 12 shows the results of testing each
network.

According to the test results, it is clear that all
four algorithms have almost similar performance in
predicting test data. The weak point of all models
is to predict the value of sample with copper grade
more than 1. Table 6 explains this problem. As it
can be seen, more than 75 percent of the real grades
are less than 0.04 %. Also checking whole data set
illustrates that less than 10 percent of the data have
assay value more than 1 %. This will influence the

Journal of Mining & Environment, Published online

which can perform the tasks of binary classification
and regression estimation. This algorithm performs
the classification by building an n-dimensional
hyperplane that optimally divides the data into two
or more separate categories, which maximizes the
margin of separation between different categories.
In other words, the super plane determines the
separation of different categories in such a way that
each category has the largest distance from others
[16]. In Figure 10, the procedure of the support
vector machine algorithm in differentiating groups
of similar data has been shown.

+ -

. Support -

vector _~

Support .

vecfor <

@ Supporr

vector -

Figure 10. Support vector machine performance
[17]

model performance specifically for test and
validation data. There are two scenarios for this
issue: The first scenario is to keep these values and
accept the model performance with mentioned
problem in detecting these values. The second
scenario is to eliminate these high values. Although
models will get better fitting to the real data in this
scenario, but the main problem is the elimination of
near 10% of the data with values that affect the final
reserve estimation model. Also this will reduce the
number of data less than 91. Since this study is a
research work to show the compatibility of
machine learning in estimating grade values from
geophysical attributes, we chose the first scenario,
but will give some comments to enhance the model
performance in high grade values in concluding
remarks chapter.

Finally, the models applied to the validation
data set which are unknown for the algorithms.
This process shows the robustness of the models in
predicting data from other geophysical surveys but
in the same area. Figure 13 shows the results of
applying models on validation data.
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Table 6. Statistical parameters of the modeling data

Cu (%) Predicted Cu (%)
Mean 0.13 0.11605178
Std 0.21 0.170844185
Min 0 0
25% 0.035 0.04
50% 0.07 0.07
75% 0.14 0.14
max 1.14 1.14
1.5 LR

0.5
0

1 357 91113151719212325272931333537394143454749 515355575961 6365
-0.5

=@=u(%) ==@="Predicted Cu(%)

= GB
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1 357 9 1113151719212325272931333537394143454749 51 535557596163 65
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Figure 11. Results for training data set
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Figure 12. Results for testing data set
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Figure 13. Results for validation data set

Table 7 shows a brief result for any model in the
form of error and regression values. This table also
confirm the graphical results shown in previous
figures and illustrates that the best algorithm in this
modeling is gradient boosting. Except the data with
high grade values which are not enough in quantity to

be completely known for models in this study, all
grade values can be estimated accurately by this
algorithm. Figure 14 also shows the scattering and
spatial accuracy of the results predicted by the GB

algorithm.

Table7. Brief results of four metaheuristic models

Model Mean absolute error Mean squared error Median absolute error
Train 0.07 0.01 0.05
Linear regression Test 0.12 0.05 0.06
Valid 0.18 0.12 0.09
Train 0.07 0.01 0.06
SVM Test 0.14 0.05 0.08
Valid 0.17 0.10 0.08
Train 0.02 0.00 0.01
Random forest Test 0.10 0.04 0.03
Valid 0.14 0.08 0.05
Train 0.00 0.00 0.00
Gradient boosting regressor Test 0.11 0.06 0.02
Valid 0.05 0.01 0.04
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Figure 14. Result of GB algorithm (Source: Python
3.6)

4. Conclusions

Exploration drilling to get direct samples and
real grade values of the ore of interest exerts some
difficulties such as increasing time and cost in
performing reserve estimation. Geophysical data,
as the last indirect data in any exploration project,
have invaluable mathematical based information
about the deposit. In this paper, we successfully
implemented and tested four machine learning
computational agent (LR, GB, RF and SVM) to
consider the unknown nonlinear relationships
between geophysical attributes and copper ore
grade in our prediction problem. Our approach uses
coordinates, geometric coefficient and field
potential as input system variables. Intelligent
machines seek the relationship between these input
variables adaptively and strives to a desirable
output which is, in our case, the real copper grade
values obtained from the direct sampling after
exploration core drilling.

We considered a newly explored deposit for
testing our methodology. Kahang cooper deposit
case showed that the gradient boosting machine
learning algorithm could train itself very well with
practically complete correlation between real
copper grade values and the predicted ones
(correlation coefficient R of almost one). The
algorithm also exhibited a remarkable capability in
estimating test and validation data, even though the
error values increased a bit in test process for which
we speculate the followings as possible reasons for
this peculiarity:

e The number of data for this modeling was 91 data
set which is low to give the best result.

e Among 91 data, less than 10 percent of the data
have grade values more than 0.4 % which makes
the training process of the machine some
difficult.
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The remedy would be obtaining more data and
increase the number of valid data set (with logic
distribution between high, medium and low
grades), then augmenting the training of the
algorithm with the new dataset. We speculate this
would enhance the accuracy of the algorithm
predictions for the test and validation data and even
increase the generalization of the machine in the
area of interest.

our findings from the Kahang copper deposit
not only demonstrate the effectiveness of the
Gradient Boosting algorithm in predicting copper
grade values but also provide valuable insights for
similar geophysical exploration projects. The
strong correlation observed between the predicted
and actual copper grades underscores the potential
of using machine learning techniques to improve
reserve estimation processes in various geological
settings. While this study focuses on the Kahang
deposit, the methodologies and insights derived
can be applied to other mineral exploration sites
with comparable geophysical attributes. Future
research should aim to validate our approach across
different deposits, which would further establish
the robustness and adaptability of our machine
learning framework in diverse geological
environments. By expanding the dataset and
exploring additional case studies, we can enhance
the generalizability of our findings and contribute
to more efficient exploration practices in the
mining industry.
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