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 Estimating ore grades during the exploration phase is often time-consuming and 
costly due to the need for extensive drilling. Geophysical surveys, as the last indirect 
exploration method before drilling, offer valuable insights into subsurface 
mineralization. This study introduces a novel approach for simulating “identical 
twins” of borehole copper grade values using geophysical attributes derived from the 
geoelectrical method in the Kahang porphyry copper deposit, central Iran. By treating 
the simulated values as digital twins of actual borehole grades, we employed four 
machine learning algorithms—Linear Regression (LR), Gradient Boosting (GB), 
Random Forest (RF), and Support Vector Machine (SVM)—to model the complex 
relationships between geophysical inputs and copper grades. After data preprocessing 
with Principal Component Analysis (PCA), a refined dataset was used to train, test, 
and validate each model. The results demonstrate that GB yielded the highest 
predictive accuracy, generating grade estimates closely aligned with actual values. 
This identical twin modeling approach highlights the potential of machine learning to 
enhance early-stage mineral exploration by reducing dependence on costly drilling. 

Keywords 
Linear regression 

Gradient boosting 

Random forest 
Support vector machine 

Identical twin 

1. Introduction  

Generally, porphyry type reserves are the most 
important source of valuable metal elements such 
as copper and molybdenum, along with other 
important elements such as gold and silver in the 
world. According to available statistics, about 50 to 
60 percent copper and more than 95 percent of 
global molybdenum production are obtained from 
these reserves. Most of these deposits have been 
expanded in metallogenic states known as 
porphyry copper belts. The porphyry copper belt of 
Iran, which is part of a large global copper belt with 
a length of four thousand kilometers, coincides 
with the northwest-southeast end with magmatic 
arc of Sahand Bazman or Orumiyeh Dokhtar. Due 
to the fact that the distribution of mineral content 
depends on many factors, the effects of many of 

these factors are not known and are not considered 
in the common mathematical model. Therefore, in 
each modeling, for the distribution of the ore grade, 
there is a simplification and assumptions about 
spatial variations. Distance is the only factor that is 
considered while other factors such as geological 
structure, formation environment, storage shape, 
ore type and degree of mineralization are also 
effective. Fortunately, all of these factors have an 
influence on geophysical data. The attractiveness 
of the intelligent techniques is due to the fact that 
they provide dynamic and nonlinear systems that 
are capable of learning. These techniques do not 
require assumptions about the factors affecting 
spatial variations around a borehole. 
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As the historical trend, artificial neural network 
was used to estimate the storage of a deposit in 
central Iran by Shahabifar. A total of 57 wells are 
considered. To evaluate the designed network, four 
well’s data were completely selected as validation 
data and the rest of the specimens were considered 
for train and test process. After training the neural 
network, the validation rate was about 73%. 
Tahmasebiand Khashkarani used neuro-fuzzy 
algorithm to estimate the copper grade in Kerman 
[1]. According to the results, the network has been 
able to accurately detect the spatial pattern between 
inputs and outputs and accurately evaluate the 
copper grade. 

Karimi has used the multilayer perceptron 
neural network to evaluate the gold grade in 
Zarshouran gold mine [2]. Ghasemi Tabar and his 
colleagues have performed several algorithms, 
including Random Forest and Gradient Boosting 
on the northern anomaly of Choghart under the 
Python programming language [3].All of these 
works focused on the relation estimation between 
drill holes’ grade values. Due to the availability of 
geophysical data and the existence of the 
relationship between geophysical data and bore 
hole values, the other scientists tried to find these 
relationships. Yuan and colleagues optimized the 
inversion of three models of geophysical data with 
the help of Particle Swarm Optimization and Ant 
Colony Optimization [4]. Alimoradi and his 
colleagues used a backpropagation network with 4 
hidden layers to model a dyke with the inversion of 
the magnetometric data [5]. In another research 
with the same theme, with the help of a perceptron 
artificial neural network with two hidden layers, 
the modeling of the electro-seismic data of wells 
has been done [6]. FitzGerald tried to establish a 
relationship between airborne geophysical data and 
identify subsurface structures of the earth by using 
an artificial intelligence feature extraction 
technique [7]. As the most related work, Alimoradi 
and his colleagues evaluated the silver grade of the 
Zarshuran gold mine using drill spatial data, data 
from the Induced Polarization (IP) geophysical 
approach, and the cuckoo search machine learning 
algorithm. The findings indicated that grade values 
can be accurately approximated using geophysical 
data, particularly in locations without drilling data 
[8]. 

The purpose of this research study is to estimate 
the copper values using geophysical attributes and 
borehole coordinates. According to the limitation 
in number of layers, as well as the activation 
function limit and algorithm processing time in 
regular neural networks, it is necessary to use the 
other algorithms with high capabilities such as fast 
processing time, various activation functions, low 
layer or single-layer and high accuracy. Huang and 
his colleagues suggested linear regression (LR) to 
overcome these weaknesses [9]. Wang and his 
colleagues, has been studying the thickness of the 
ore with the help of seismic properties and random 
forest algorithm [10]. This has been a great deal of 
economic and time efficiency. The various 
functions of activation, fast processing time and the 
power of data analysis, which leads to 
generalization, were the reasons for choosing this 
method. Regarding the advantages of these 
algorithms and also two other algorithms (gradient 
boosting and support vector machine), the copper 
grade estimation of this research work has been 
investigated using LR, GB, RF and SVM 
algorithms. 

2.Materials and Method 

Kahang deposit is located in the central Iran, 
near Isfahan historical city. Figure 1 shows the 
location of Kahang deposit on the map as the red 
star. The area is completely mountainous. The 
satellite image of the area is shown in Figure 2. 

The main petrological units of the area are: light 
brown to cream quartz monzo-diorite to quartz 
diorite rocks, the combination of quartz diorite with 
a weathered light brown and fresh light gray 
Eocene volcanic rocks, dacite lavas that can be seen 
in the form of single outcrops in the east of the 
area,dike, dome and thick dacite-rhyodacite lavas 
in light gray to pink color, different types of 
pyroxene-trachy-andesite, quartz-trachy-andesite 
and trachy-andesite. In addition to these features, 
the argillic and advanced argillic alterations in the 
area illustrates that the region is susceptible for 
porphyry deposit formation. After geological 
investigations done by the geology team, 
geophysical investigations were recommended to 
be performed. The main geophysical approach to 
check the target in porphyry type deposits is geo 
electrical method. 
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Figure 1. Geological map of Kahang porphyry copper deposit 

 
Figure 2. Satellite image of the area (Source: Google 

Earth) 

The copper ore in the Kahang study area is not 
represented as a simple homogeneous horizontal 
layer. Instead, it is found within a complex 
geological matrix, where faults and fractures 
influence the mineralization. These geological 
complexities can significantly impact the 
effectiveness of the Vertical Electrical Sounding 
(VES) technique, which is typically more 
successful in areas with uniform subsurface layers. 
Given the heterogeneous nature of the subsurface 
geology at Kahang, the interpretation of VES data 
must consider these complexities to accurately 
assess the distribution of copper mineralization. 
Therefore, our study incorporates additional 
geophysical methods to complement the VES 

results and provide a more comprehensive 
understanding of the subsurface characteristics. 

2.1. Geophysical Study 

The basis of the geoelectrical test is the 
determination of the electrical resistivity of the 
earth. Materials have different electrical resistivity 
and can be defined with resistance test methods. 
According to Ohm's law, when an electric current I 
passes through a conductor with resistivity R, the 
relationship between the created potential (V) is V 
= RI and vice versa. If the potential difference V is 
applied between two conductors, then the current I 
passes through. For different materials, they vary in 
terms of potential. The type of geoelectrical 
method used in Kahang area is the method referred 
to as Vertical Electrical Sounding or VES. 

At the deposit site, eight profiles with a distance 
of 100 meters and parallel to the northeast-
southwest direction have been designed and 
surveyed, with 81 electrical soundings. The 
location of the VES boreholes is shown in Figure 
3. 

After geophysical survey, process and interpret, 
a grid of exploratory drillings was defined. Among 
drilled, sampled and analyzed 
boreholes,5boreholeswere drilled very closely to 
the vertical electrical soundings. Figure 4, shows 
the location of the VES and those 4 drill holes in 
the study area. We selected these5boreholes with 
the 5VESs beside them to define a data matrix as 
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the raw data for intelligent inversion. The 
information that is obtained and put in the matrix 
are borehole coordinates, Cu grade, potential 
value(V), electrical current(I), geometric 
coefficient (K)and resistivity (P). The total 91 data 
set was finalized in which all variables were valid. 

Table 1 shows 23 rows of the data set from surface 
to the depth of 375 m as a sample. To prevent 
interference and lack of proper network 
identification, the principal component analysis 
(PCA) is used to improve network detection. 

 

 
Figure 3. Position of the vertical electrical soundings (Source: Google Earth) 

 
Figure 4. The location of the final selected boreholes along with the location of vertical electrical soundings 

In this work, we utilized a dataset collected 
from the Kahang copper deposit. Each sample 
represents a unique data point that includes various 
geophysical attributes and corresponding copper 
grade values. The dataset was subjected to rigorous 
Quality Assurance/Quality Control (QA/QC) 
protocols to ensure the reliability and accuracy of 

the results. This included duplicate sampling, 
standard reference materials, and blank samples to 
monitor potential contamination and analytical 
errors. 

The analytical methods employed for 
determining the copper grades were based on 
inductively coupled plasma mass spectrometry 

N 
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(ICP-MS), which is recognized for its sensitivity 
and precision in trace element analysis. This robust 
dataset, with its stringent QA/QC measures and 
advanced analytical techniques, provides a solid 
foundation for applying machine learning 

algorithms to predict copper grades based on 
geophysical attributes. The insights gained from 
this dataset not only enhance our understanding of 
the Kahang deposit but also contribute to the 
broader field of mineral exploration. 

 
Table1.Sample data from the total data set 

 X Y Z K V I P Grade (%) 
1 638557 3644608 1.5 12.6 39.0 6.3 77.7 0.0000 
2 638557 3644608 2.5 37.7 28.0 14.1 65.6 0.0000 
3 638557 3644608 3.5 75.4 17.0 14.8 86.6 0.0194 
4 638557 3644608 5.0 155.4 7.0 14.8 73.5 0.0228 
5 638557 3644608 5.0 58.9 17.0 14.0 71.5 0.0228 
6 638557 3644608 7.5 137.4 14.0 27.1 71.0 0.0343 
7 638557 3644608 10.0 347.3 8.0 27.0 73.3 0.0765 
8 638557 3644608 15.0 56.1 3.0 26.2 62.2 0.0320 
9 638557 3644608 25.0 1566.0 2.3 59.0 61.0 0.0222 
10 638557 3644608 25.0 377.0 11.0 60.4 71.2 0.0222 
11 638557 3644608 35.0 3073.0 1.2 59.1 65.1 0.0291 
12 638557 3644608 35.0 754.0 6.0 59.5 76.3 0.0291 
13 638557 3644608 50.0 1554.0 1.2 22.6 82.6 0.0262 
14 638557 3644608 75.0 3517.0 1.2 46.3 91.1 0.0968 
15 638557 3644608 100.0 6264.0 0.5 37.9 82.7 0.0643 
16 638557 3644608 100.0 1507.0 2.8 38.1 110.7 0.0643 
17 638557 3644608 150.0 14114.0 0.5 77.5 92.0 0.0092 
18 638557 3644608 150.0 3470.0 1.3 38.2 118.0 0.0092 
19 638557 3644608 200.0 25104.0 0.5 96.1 130.6 0.0972 
20 638557 3644608 200.0 6217.0 2.3 95.8 149.3 0.0972 
21 638557 3644608 250.0 9750.0 2.1 125.0 163.8 0.1347 
22 638557 3644608 300.0 3073.0 6.4 155.0 178.4 0.0063 
23 638557 3644608 375.0 22015.0 1.3 155.0 184.6 0.1467 

 

2.2. Preprocessing 

The preliminary statistical analysis of the data 
utilized is shown in Table 2. According to the 
measurable characteristics such as the scattering of 
the data utilized in this table appears that most data 
and the scattering within the input data are related 
to Cu grades less than 0.14%, and within the data 

with grades higher than this grade, the number and 
scattering of the data The accessible ones are less. 
In this way, it can be predicted that less precision 
will be achieved within the data with a higher Cu 
grade. Also, the information in Table 3 shows the 
correlation between the input data and the Cu 
grade, which as shown is the foremost correlation 
on the spatial data. 

Table 2. Statistical parameters of the studied data 
 X Y Z K I V P Cu (%) 

mean 638426 3644640 86.81 4276.51 8.62 46.77 112.23 0.13 
std 178.156 66.1024 95.35 6455.8 26.09 37.98 48.28 0.21 
min 638019 3644578 1.5 12.6 0.4 6.3 54.77 0 
25% 638420 3644608 15 377 1.2 15.75 73.38 0.03 
50% 638454 3644620 35 1554 2.3 36 104.5 0.07 
75% 638557 3644654 150 3517 6 81.2 129.6 0.14 
max 638582 3644788 375 25104 187 155 264.7 1.14 

Table 3. Correlations (percent) in inputs and Cu of the studied data 
 X Y Z K I V P 

Cu (%) -0.26 0.26 0.02 0.07 -0.12 0.07 0.07 
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Multiple data analysis has a fundamental role in 
data science. If there are variables in each dataset, 
each variable can have multiple dimensions. Given 
that it is difficult to comprehend multiple-
dimensional space, the Principal Component 
Analysis (PCA)reduces the dimensions of all 
observations based on the combined index and 
classification of similar observations. In this 
method, variables in a multimode space are 
summed up to a set of unconnected components, 
each of which is a linear combination of the main 
variables. The unconnected or less depended 
components are called core components of the 
PCA, derived from the special covariance matrices 
or the correlation matrix of the main variables. In 
general, the main application of the principal 
component analysis method is to reduce the 
number of variables and find the structure of the 
relationship between them. 

The criteria used in this study to find the 
necessary components are: 

 Coordinates of the data as X, Y, and Z which are 
necessary as the input data. 

 Even K as the geometric coefficient will affect 
the geoelectrical parameters, but it should be 
considered as input data since different K values 
can give similar geoelectrical parameters. 

 For other 3 geophysical variables, it is obvious 
that they are dependent on each other. The less 
dependent variable should be selected as the fifth 
input data. 

Table4, shows the dependency of the variables 
to each other. According to the results of this table, 
it can be concluded that V (field potential) should 
be selected as the final input variable. 

Table 4. PCA results 
PC 1st Factor 2nd Factor 3rd Factor 4th Factor 5th Factor 6th Factor 7th Factor 
1 0.00 0.00 0.00 0.00 0.00 0.99 0.07 
2 0.00 0.00 0.00 0.00 0.00 -0.07 0.99 
3 0.59 -0.31 0.00 -0.05 0.73 0.00 0.00 
4 0.52 0.78 0.33 0.00 -0.03 0.00 0.00 
5 -0.15 -0.19 0.55 0.77 0.00 0.00 0.00 
6 0.56 -0.31 -0.28 0.38 -0.59 0.00 0.00 
7 0.20 -0.39 0.70 -0.49 -0.25 0.00 0.00 

 
Figure 5 shows the scattering plot of K, P,I and V. As it is shown in these plots, I and P have a regular trend 

by increasing the depth, but V has the unknown distribution like K. 
Finally, and according to the PCA results, the input data were reduced to X, Y, Z, K and V and copper grade 

was considered as the output. Table5illustrates the final input and output databased on table 1. 

Table5. Sample of the final data set which should be used in machine learning algorithm 
 X Y Z K V Grade (%) 
1 638557 3644608 1.5 12.6 39.0 0.0000 
2 638557 3644608 2.5 37.7 28.0 0.0000 
3 638557 3644608 3.5 75.4 17.0 0.0194 
4 638557 3644608 5.0 155.4 7.0 0.0228 
5 638557 3644608 5.0 58.9 17.0 0.0228 
6 638557 3644608 7.5 137.4 14.0 0.0343 
7 638557 3644608 10.0 347.3 8.0 0.0765 
8 638557 3644608 15.0 56.1 3.0 0.0320 
9 638557 3644608 25.0 1566.0 2.3 0.0222 

10 638557 3644608 25.0 377.0 11.0 0.0222 
11 638557 3644608 35.0 3073.0 1.2 0.0291 
12 638557 3644608 35.0 754.0 6.0 0.0291 
13 638557 3644608 50.0 1554.0 1.2 0.0262 
14 638557 3644608 75.0 3517.0 1.2 0.0968 
15 638557 3644608 100.0 6264.0 0.5 0.0643 
16 638557 3644608 100.0 1507.0 2.8 0.0643 
17 638557 3644608 150.0 14114.0 0.5 0.0092 
18 638557 3644608 150.0 3470.0 1.3 0.0092 
19 638557 3644608 200.0 25104.0 0.5 0.0972 
20 638557 3644608 200.0 6217.0 2.3 0.0972 
21 638557 3644608 250.0 9750.0 2.1 0.1347 
22 638557 3644608 300.0 3073.0 6.4 0.0063 
23 638557 3644608 375.0 22015.0 1.3 0.1467 
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2.3. Grade estimation using machine learning 

Artificial Neural Networks (ANNs) are inspired 
by human brain function and artificial processor 
units. These models are based on the assumption 
that the human brain can be learnt by the neural 
units (neurons). 

In the present study, finalized dataset from the 
PCA processing will be used in four machine 

learning algorithms (Linear Regression, Gradient 
Boosting, Random Forest and Support Vector 
Machine) to find the relationship between 
geoelectrical attributes and the real values of 
copper grade. The method of work is to randomly 
divide the data set into train (70%), test (20%) and 
validation (10%)sets. These sets should be 
normalized before using in each algorithm. 

 

  
(a) (b) 

  
(c) (d) 

Figure 5. Scattering plot of the data (Source: Python 3.6) 

 
Figure 6. Flow chart of the modeling 

Further, the results of each algorithm will be 
shown and discussed. Finally, the best algorithm 
for this study will be defined. 

2.4. Machine learning algorithms 

In this work, we employed four machine 
learning algorithms: Linear Regression (LR), 
Gradient Boosting (GB), Random Forest (RF), and 
Support Vector Machine (SVM) for VES data 
analysis. The selection of these algorithms is 
grounded in their diverse methodologies and 
proven effectiveness in managing complex and 
high-dimensional datasets commonly encountered 
in geophysical applications.  

Linear Regression (LR) serves as a foundational 
linear model that is particularly suitable for binary 
classification tasks, offering interpretability and 
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simplicity in understanding the relationship 
between input features and the target variable. 
However, its linearity may limit its performance in 
capturing more intricate patterns within the data.  

On the other hand, Gradient Boosting (GB) and 
Random Forest (RF) are advanced tree-based 
ensemble methods known for their robustness in 
modeling nonlinear relationships and interactions 
among features. GB builds models sequentially, 
optimizing for errors made by previous models, 
which allows it to achieve high predictive accuracy. 
Conversely, RF constructs multiple decision trees 
and aggregates their predictions, providing 
resilience against overfitting and improving 
generalization on unseen data.  

Support Vector Machine (SVM) is recognized 
for its capability to classify data by finding the 
optimal hyperplane that separates different classes, 
even in high-dimensional spaces. Its strength lies in 
handling nonlinear decision boundaries through the 
use of kernel functions, making it particularly 
effective for complex classification tasks. By 
comparing these algorithms, we aim to identify 
their respective strengths and weaknesses in the 
context of VES data analysis. This comparative 
approach not only enhances our understanding of 
how different features influence performance but 
also allows us to select the most appropriate 
algorithm for specific geophysical scenarios. 
Ultimately, our findings will contribute to more 
accurate interpretations of subsurface 

characteristics, facilitating better decision-making 
in mineral exploration. 

2.4.1. Linear regression 

Linear regression is a supervised statistical 
algorithm which looks for the best relationship 
between some dependent and independent 
variables in a linear manner. The functions are 
based on back propagation algorithms and almost 
this method is suitable for the problems with 
considerable input data. Figure 7 illustrates the 
function of the linear regression algorithm. 

2.4.2. Gradient boosting 

Gradient boosting is a powerful algorithm based 
on decision tree (DT) function which is capable in 
noise data controlling and finding the nonlinear 
model between data [27]. This algorithm looks for 
the weak points in the model and try to boost them 
in order to get the best result. It builds the model in 
a stepwise manner like other booster methods and 
generalizes the variable function of the decision 
tree by allowing arbitrary optimization. The 
Gradient Boosting is an integrated high 
performance and stable algorithm [15]. The 
training process and progress of the enhanced 
gradient algorithm based on the error function and 
repetition of the training process are shown in 
Figure 8. 

 

  
Figure 7. Linear regression function [11] Figure 8. Gradient boosting training process [11] 

2.4.3. Random forest 

Random forest or Random decision forest is a 
hybrid learning method for classification and 
regression, which is based on a structure consisting 
of many decision trees, on the training time and the 
output of classes (classification), or for the average 

predictions of each tree [12]. Random Forest is 
suitable for decision trees that undergo pre-fitting 
in the training set. Although this algorithm is very 
user-friendly and has only two input parameters of 
the network, which are the number of trees and the 
number of variables of subsets, it is not highly 
sensitive to the value of these parameters [13]. On 
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the other hand, the random forest algorithm (Figure 
9) is a tree-based algorithm that uses the features of 
several decision trees to make decisions. In fact, 
this algorithm uses averaging to improve 
performance and control overfitting [14]. 

2.4.4. Support vector machine 

Support vector machine is a supervised learning 
algorithm capable of providing generalization 
performance over a wide range of problems. This 
method is one of the machine learning methods 

which can perform the tasks of binary classification 
and regression estimation. This algorithm performs 
the classification by building an n-dimensional 
hyperplane that optimally divides the data into two 
or more separate categories, which maximizes the 
margin of separation between different categories. 
In other words, the super plane determines the 
separation of different categories in such a way that 
each category has the largest distance from others 
[16]. In Figure 10, the procedure of the support 
vector machine algorithm in differentiating groups 
of similar data has been shown. 

 

 
 

Figure 9. Random forest performance procedure [15] Figure 10. Support vector machine performance 
[17] 

3. Results and Discussion 

Figure 11 shows the results of training for each 
machine learning model. As it can be seen, gradient 
boosting has the best performance in training data 
set and all real and predicted values completely 
overlapped, with regression value about 1. After 
training, each model should be applied for the test 
data set to check the compatibility of models in 
predicting copper grades from input data which 
have not involved in the training procedure. By 
doing this stage, each model can be modified in 
training parameters to get the best test estimation 
values. Figure 12 shows the results of testing each 
network. 

According to the test results, it is clear that all 
four algorithms have almost similar performance in 
predicting test data. The weak point of all models 
is to predict the value of sample with copper grade 
more than 1. Table 6 explains this problem. As it 
can be seen, more than 75 percent of the real grades 
are less than 0.04 %. Also checking whole data set 
illustrates that less than 10 percent of the data have 
assay value more than 1 %. This will influence the 

model performance specifically for test and 
validation data. There are two scenarios for this 
issue: The first scenario is to keep these values and 
accept the model performance with mentioned 
problem in detecting these values. The second 
scenario is to eliminate these high values. Although 
models will get better fitting to the real data in this 
scenario, but the main problem is the elimination of 
near 10% of the data with values that affect the final 
reserve estimation model. Also this will reduce the 
number of data less than 91. Since this study is a 
research work to show the compatibility of 
machine learning in estimating grade values from 
geophysical attributes, we chose the first scenario, 
but will give some comments to enhance the model 
performance in high grade values in concluding 
remarks chapter. 

Finally, the models applied to the validation 
data set which are unknown for the algorithms. 
This process shows the robustness of the models in 
predicting data from other geophysical surveys but 
in the same area. Figure 13 shows the results of 
applying models on validation data. 
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Table 6. Statistical parameters of the modeling data 
 Cu (%) Predicted Cu (%) 

Mean 0.13 0.11605178 
Std 0.21 0.170844185 
Min 0 0 
25% 0.035 0.04 
50% 0.07 0.07 
75% 0.14 0.14 
max 1.14 1.14 

 

 

 

 
Figure 11. Results for training data set 

0

0.5

1

1.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65

Cu(%) Predicted Cu(%)

GB

0

0.5

1

1.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65

Cu(%) Predicted Cu(%)

RF

0

0.5

1

1.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65

Cu(%) Predicted Cu(%)

SVM

-0.5

0

0.5

1

1.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65

Cu(%) Predicted Cu(%)

LR



Ghasemi Tabar et al. Journal of Mining & Environment, Published online 

 

11 

 
Figure 12. Results for testing data set 
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Figure 13. Results for validation data set 

Table 7 shows a brief result for any model in the 
form of error and regression values. This table also 
confirm the graphical results shown in previous 
figures and illustrates that the best algorithm in this 
modeling is gradient boosting. Except the data with 
high grade values which are not enough in quantity to 

be completely known for models in this study, all 
grade values can be estimated accurately by this 
algorithm. Figure 14 also shows the scattering and 
spatial accuracy of the results predicted by the GB 
algorithm. 

Table7. Brief results of four metaheuristic models 
Model  Mean absolute error Mean squared error Median absolute error 

Linear regression 
Train 0.07 0.01 0.05 
Test 0.12 0.05 0.06 
Valid 0.18 0.12 0.09 

SVM 
Train 0.07 0.01 0.06 
Test 0.14 0.05 0.08 
Valid 0.17 0.10 0.08 

Random forest 
Train 0.02 0.00 0.01 
Test 0.10 0.04 0.03 
Valid 0.14 0.08 0.05 

Gradient boosting regressor 
Train 0.00 0.00 0.00 
Test 0.11 0.06 0.02 
Valid 0.05 0.01 0.04 
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Figure 14. Result of GB algorithm (Source: Python 

3.6) 

4. Conclusions 

Exploration drilling to get direct samples and 
real grade values of the ore of interest exerts some 
difficulties such as increasing time and cost in 
performing reserve estimation. Geophysical data, 
as the last indirect data in any exploration project, 
have invaluable mathematical based information 
about the deposit. In this paper, we successfully 
implemented and tested four machine learning 
computational agent (LR, GB, RF and SVM) to 
consider the unknown nonlinear relationships 
between geophysical attributes and copper ore 
grade in our prediction problem. Our approach uses 
coordinates, geometric coefficient and field 
potential as input system variables. Intelligent 
machines seek the relationship between these input 
variables adaptively and strives to a desirable 
output which is, in our case, the real copper grade 
values obtained from the direct sampling after 
exploration core drilling. 

We considered a newly explored deposit for 
testing our methodology. Kahang cooper deposit 
case showed that the gradient boosting machine 
learning algorithm could train itself very well with 
practically complete correlation between real 
copper grade values and the predicted ones 
(correlation coefficient R of almost one). The 
algorithm also exhibited a remarkable capability in 
estimating test and validation data, even though the 
error values increased a bit in test process for which 
we speculate the followings as possible reasons for 
this peculiarity: 

 The number of data for this modeling was 91 data 
set which is low to give the best result. 

 Among 91 data, less than 10 percent of the data 
have grade values more than 0.4 % which makes 
the training process of the machine some 
difficult. 

The remedy would be obtaining more data and 
increase the number of valid data set (with logic 
distribution between high, medium and low 
grades), then augmenting the training of the 
algorithm with the new dataset. We speculate this 
would enhance the accuracy of the algorithm 
predictions for the test and validation data and even 
increase the generalization of the machine in the 
area of interest. 

our findings from the Kahang copper deposit 
not only demonstrate the effectiveness of the 
Gradient Boosting algorithm in predicting copper 
grade values but also provide valuable insights for 
similar geophysical exploration projects. The 
strong correlation observed between the predicted 
and actual copper grades underscores the potential 
of using machine learning techniques to improve 
reserve estimation processes in various geological 
settings. While this study focuses on the Kahang 
deposit, the methodologies and insights derived 
can be applied to other mineral exploration sites 
with comparable geophysical attributes. Future 
research should aim to validate our approach across 
different deposits, which would further establish 
the robustness and adaptability of our machine 
learning framework in diverse geological 
environments. By expanding the dataset and 
exploring additional case studies, we can enhance 
the generalizability of our findings and contribute 
to more efficient exploration practices in the 
mining industry. 
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  و   برزمان   معمولاً  گسترده  يهايحفار  به  ازین  لیدلبه  مواد معدنی  اکتشاف  مرحله  در  کانسنگ  اریع   برآورد
 اطلاعات  ،ي حفار  از  شیپ  می رمستقیغ   اکتشاف   روش  نیآخر  عنوانبه   یکیزیژئوف  يهاروش .  است  نهیپرهز

 يسازهیشب  با استفاده از  نینو  يکردیرو  مطالعه،  نیا  در.  دهندیم  ارائه  یرسطحیز  ییزای کان  درباره  يارزشمند
سازي    همسان»  يدوقلوها« مدل  هاي  در  مس  اریع   ریمقادبراي    ي هایژگیو  از   استفاده  با  یاکتشاف   گمانه 

  شده   یمعرف  رانیا  مرکز  در  واقع  کهنگ  يریپورف   مس  معدن  در  یکیژئوالکتر  روش  از  بدست آمده  یکیزیژئوف
 تم یالگور  چهار  ،گمانه ها   یواقع  اری ع   تالی جید  يدوقلوها  عنوانبه  شدهيسازه یشب  ریمقاد گرفتن نظر  در  با.  است

  بردار   نیماش  و)  RF(  یتصادف  جنگل  ،)GB(  تقویت شده  انیگراد  ،)LR(  یخط  ونی رگرس  شامل  نی ماش  يریادگی
  پس .  شدند  گرفته  کاربه   مس  ار یع   و  یکیزی ژئوف  يهاي ورود  نیب  دهیچیپ  روابط  يسازمدل   يبرا)  SVM(  بانیپشت

 و  آزمون  آموزش،  يبرا  شدهنهیبه  داده  مجموعه  ،)PCA(  یاصل  يهامؤلفه  لیتحل  با  هاداده  پردازششیپ  از
 ینیبش یپ دقت نیبالاتر تقویت شده انیگراد تمیالگور که داد نشان ج ینتا. د یگرد استفاده مدل هر یاعتبارسنج

  همسان،   يدوقلوها  يسازمدل   کردیرو  نیا.  بود  کینزد  اریبس  یواقع  ریمقاد  به  آن  اریع   يبرآوردها  و  داشته   را
هاي  لیپتانس  به  یوابستگ  کاهش  و  هیاول  مراحل   در  ،ی معدن  اکتشافات  بهبود  در  را  ن یماش  يریادگی  روش 
  . سازدی م برجسته نهیپرهز يهايحفار
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  ی خط  ونیرگرس
  شده  تیتقو انینگراد

  ی جنگل تصادف 
  بان ی بردار پشت ن یماش
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