[1]. Jimeno, C. L., Jimeno, E. L., Carcedo, F. J. A., & de Ramiro, Y. V. (1995). Drilling änd blasting of rocks. USA CRS Press, 41, 35947.
[2]. Konya, C. J., & Walter, E. J. (1990). Surface blast design. (No Title).
[3]. Mansouri, H., & EBRAHIMI, F. M. (2015). Blast vibration modeling using linear superposition method.
[4]. Kahriman, A. (2004). Analysis of parameters of ground vibration produced from bench blasting at a limestone quarry. Soil Dynamics and Earthquake Engineering, 24(11), 887-892.
[5]. Ataei, M. (2010). Evaluation of blast induced ground vibrations from underground excavation at Karoun 3 area. Mining Technology, 119(1), 7-13.
[6]. Yilmaz, O. (2016). The comparison of most widely used ground vibration predictor equations and suggestions for the new attenuation formulas. Environmental earth sciences, 75(3), 269.
[7]. Hudaverdi, T., & Akyildiz, O. (2019). Evaluation of capability of blast-induced ground vibration predictors considering measurement distance and different error measures. Environmental Earth Sciences, 78(14), 421.
[8]. Soltani-Mohammadi, S., Amnieh, H. B., & Bahadori, M. (2011). Predicting ground vibration caused by blasting operations in Sarcheshmeh copper mine considering the charge type by Adaptive Neuro-Fuzzy Inference System (ANFIS). Archives of Mining Sciences, 56(4), 701-710.
[9]. Kamali, M., & Ataei, M. (2010). Prediction of blast induced ground vibrations in Karoun III power plant and dam: a neural network. Journal of the Southern African Institute of Mining and Metallurgy, 110(8), 481-490.
[10]. Kamali, M., & Ataei, M. (2011). Prediction of blast induced vibrations in the structures of Karoun III power plant and dam. Journal of Vibration and Control, 17(4), 541-548.
[11]. Armaghani, D. J., Momeni, E., Abad, S. V. A. N. K., & Khandelwal, M. (2015). Feasibility of ANFIS model for prediction of ground vibrations resulting from quarry blasting. Environmental earth sciences, 74, 2845-2860.
[12]. Akyildiz, O., & Hudaverdi, T. (2020). ANFIS modelling for blast fragmentation and blast-induced vibrations considering stiffness ratio. Arabian Journal of Geosciences, 13(21), 1162.
[13]. Hasanipanah, M., Monjezi, M., Shahnazar, A., Armaghani, D. J., & Farazmand, A. (2015). Feasibility of indirect determination of blast induced ground vibration based on support vector machine. Measurement, 75, 289-297.
[14]. Dindarloo, S. R. (2015). Peak particle velocity prediction using support vector machines: a surface blasting case study. Journal of the Southern African Institute of Mining and Metallurgy, 115(7), 637-643.
[15]. Monjezi, M., Baghestani, M., Shirani Faradonbeh, R., Pourghasemi Saghand, M., & Jahed Armaghani, D. (2016). Modification and prediction of blast-induced ground vibrations based on both empirical and computational techniques. Engineering with Computers, 32, 717-728.
[16]. Faradonbeh, R. S., & Monjezi, M. (2017). Prediction and minimization of blast-induced ground vibration using two robust meta-heuristic algorithms. Engineering with Computers, 33, 835-851.
[17]. Ataei, M., & Sereshki, F. (2017). Improved prediction of blast-induced vibrations in limestone mines using Genetic Algorithm. Journal of Mining and Environment, 8(2), 291-304.
[18]. Mohammadi, D., Mikaeil, R., & Abdollahei Sharif, J. (2020). Investigating and ranking blasting patterns to reduce ground vibration using soft computing approaches and MCDM technique. Journal of Mining and Environment, 11(3), 881-897.
[19]. Komadja, G. C., Rana, A., Glodji, L. A., Anye, V., Jadaun, G., Onwualu, P. A., & Sawmliana, C. (2022). Assessing ground vibration caused by rock blasting in surface mines using machine-learning approaches: A comparison of CART, SVR and MARS. Sustainability, 14(17), 11060.
[20]. Nguyen, H., Bui, X. N., & Topal, E. (2023). Enhancing predictions of blast-induced ground vibration in open-pit mines: Comparing swarm-based optimization algorithms to optimize self-organizing neural networks. International Journal of Coal Geology, 275, 104294.
[21]. Chandrahas, N. S., Choudhary, B. S., Teja, M. V., Venkataramayya, M. S., & Prasad, N. K. (2022). XG boost algorithm to simultaneous prediction of rock fragmentation and induced ground vibration using unique blast data. Applied Sciences, 12(10), 5269.
[22]. Jang, J. S. (1993). ANFIS: adaptive-network-based fuzzy inference system. IEEE transactions on systems, man, and cybernetics, 23(3), 665-685.
[23]. Vapnik, V. (1998). Statistical learning theory. John Wiley & Sons google schola, 2, 831-842.
[24]. Schiilkop, P. B., Burgest, C., & Vapnik, V. (1995, August). Extracting support data for a given task. In Proceedings, First International Conference on Knowledge Discovery & Data Mining. AAAI Press, Menlo Park, CA (pp. 252-257).
[25]. Williams, C. K., & Rasmussen, C. E. (2006). Gaussian processes for machine learning (Vol. 2, No. 3, p. 4). Cambridge, MA: MIT press.
[26]. Olofsson, S. O. (1990). Applied explosives technology for construction and mining. (No Title).
[27]. Hudaverdi, T., & Akyildiz, O. (2021). An alternative approach to predict human response to blast induced ground vibration. Earthquake engineering and engineering vibration, 20, 257-273.
[28]. Özgül, N. (2012). Stratigraphy and some structural features of the İstanbul Paleozoic. Turkish Journal of Earth Sciences, 21(6), 817-866.
[29]. Basu, D., & Sen, M. (2005, July). Blast induced ground vibration norms—a critical review. In National Seminar on Policies, Statutes & Legislation in Mines (pp. 112-113).
[30]. Duvall, W. I., & Petkof, B. (1959). Spherical propagation of explosion-generated strain pulses in rock (No. 5481-5485). US Department of the Interior, Bureau of Mines.
[31]. Dao, H., Pham, T. L., & Hung, N. P. (2021). Study on an online vibration measurement system for seismic waves caused by blasting for mining in Vietnam. Journal of Mining and Environment, 12(2), 313-325.
[32]. Langefors, U., & Kihlström, B. (1963). The modern technique of rock blasting. (No Title).
[33]. Stagg, K. G., & Zienkiewicz, O. C. (1968). Rock mechanics in engineering practice. (No Title).
[34]. Standard, I. (1973). Criteria for Safety and Design of Structures Subjected to Underground Blast, ISI. IS-6922.
[35]. Roy, P. P. (1993). Putting ground vibration predictions into practice. Colliery Guardian;(United Kingdom), 241(2).
[36]. Mohamadnejad, M., Gholami, R., & Ataei, M. (2012). Comparison of intelligence science techniques and empirical methods for prediction of blasting vibrations. Tunnelling and Underground Space Technology, 28, 238-244.
[37]. Ataei, M., & Kamali, M. (2013). Prediction of blast-induced vibration by adaptive neuro-fuzzy inference system in Karoun 3 power plant and dam. Journal of Vibration and Control, 19(12), 1906-1914.
[38]. Agrawal, H., & Mishra, A. K. (2019). Modified scaled distance regression analysis approach for prediction of blast-induced ground vibration in multi-hole blasting. Journal of Rock Mechanics and Geotechnical Engineering, 11(1), 202-207.
[39]. Khan, M. F. H., Hossain, M. J., Ahmed, M. T., Monir, M. U., Rahman, M. A., Sweety, T. S., ... & Shovon, S. M. (2025). Ground vibration effect evaluation due to blasting operations. Heliyon, 11(2).
[40]. IBM Corporation. (2016). IBM SPSS Statistics Base 24. Armonk, NY: IBM Corporation.
[41]. Kalaycı, Ş. (2010). SPSS uygulamalı çok değişkenli istatistik teknikleri (Vol. 5, p. 359). Ankara, Turkey: Asil Yayın Dağıtım.
[42]. OLIVER. NELLES. (2020). NONLINEAR SYSTEM IDENTIFICATION: From Classical Approaches to Neural Networks, Fuzzy Systems,... and Gaussian Processes. SPRINGER NATURE.
[43]. Özkan, İ., Ciniviz, M., & Candan, F. (2015). Estimating Engine Performance and Emission Values Using ANFIS/ANFIS Kullanılarak Motor Performans ve Emisyon Değerleri Tahmini. International Journal of Automotive Engineering and Technologies, 4(1), 63-67.
[44]. Tsukamoto, Y. (1979). An approach to fuzzy reasoning method. Advances in fuzzy set theory and applications.
[45]. Lee, C. C. (1990). Fuzzy logic in control systems: fuzzy logic controller. I. IEEE Transactions on systems, man, and cybernetics, 20(2), 404-418.
[46]. Takagi, T., & Sugeno, M. (1983). Derivation of fuzzy control rules from human operator's control actions. IFAC proceedings volumes, 16(13), 55-60.
[47]. Yılmaz, M., Çomaklı, Ö., & Haşıloğlu, A. S. (2002). Kanallarda zamana bağlı zorlanmış ısı taşınımının bulanık-sinir ağı (neuro-fuzzy) ile tahmini. GAP IV. Mühendislik Kongresi Bildiriler Kitabı, 06-08.
[48]. Şişman, Y., & Arzu, A. (2003). A temporal neuro-fuzzy approach for time series analysis (Doctoral dissertation, Middle East Technical University, Department of Computer Engineering). Ankara, Türkiye
[49]. Hudaverdi, T., & Akyildiz, O. (2021). Prediction and evaluation of blast-induced ground vibrations for structural damage and human response. Arabian Journal of Geosciences, 14(5), 378.
[50]. Collazos-Escobar, G. A., Gutiérrez-Guzmán, N., Váquiro, H. A., García-Pérez, J. V., & Cárcel, J. A. (2025). Analysis of Machine Learning Algorithms for the Computer Simulation of Moisture Sorption Isotherms of Coffee Beans. Food and Bioprocess Technology, 1-12.
[51]. Works, M. (2017). Statistics and machine learning Toolbox user’s guide. Matwork Inc.
[52]. Hudaverdi, T. (2022). Prediction of flyrock throw distance in quarries by variable selection procedures and ANFIS modelling technique. Environmental Earth Sciences, 81(10), 281.
[53]. Srivastava, A., Choudhary, B. S., & Sharma, M. (2021). A comparative study of machine learning methods for prediction of blast-induced ground vibration. Journal of Mining and Environment, 12(3), 667-677.
[54]. Molavi Nojumi, M., Huang, Y., Hashemian, L., & Bayat, A. (2022). Application of machine learning for temperature prediction in a test road in Alberta. International Journal of Pavement Research and Technology, 15(2), 303-319.
[55]. Arthur, C. K., Temeng, V. A., & Ziggah, Y. Y. (2020). Novel approach to predicting blast-induced ground vibration using Gaussian process regression. Engineering with Computers, 36(1), 29-42.
[57]. Ghasemi, E., Ataei, M., & Hashemolhosseini, H. (2013). Development of a fuzzy model for predicting ground vibration caused by rock blasting in surface mining. Journal of Vibration and Control, 19(5), 755-770.