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 The purpose of this research work is to predict blast induced ground vibration in 
surface mine by using classical and machine learning algorithms. For the purpose of 
minimizing blast-induced ground vibration to acceptable levels, the level of vibration 
must be predicted. Blast-induced ground vibration is defined peak particle velocity 
(ppv) in the ground. All data used to estimation were obtained by observing real 
blasting operations. After the measuring of the peak particle velocity, models of the 
prediction were created using independent site parameters. Most of the data is used to 
train the model, while remaining part is used for testing. The models were created 
using independent blasting parameters proportionally. Thus, more parameters are 
included in the models without complicating the models. A thorough validation 
process was conducted utilizing a diverse set of nine error criteria. Artificial 
intelligence models have been found to outperform traditional methods in predicting 
ground vibration. The mean absolute error values were found to be 1.42, 1.54, and 
1.78 for ANFIS, GPR, and SVM, respectively.  A similar situation is observed for 
other error criteria as well. ANFIS appears to be the most effective model for 
predicting ground vibration. 
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1. Introduction 

In an open mine, optimum rock fragmentation 
should be achieved with minimum cost. Bench 
blasting is the main method for rock excavation. 
Performance of blasting operation may be 
discussed considering different factors. Engineers 
try to obtain a suitable particle size distribution.  
Size distribution affects all the downstream 
processes. Movement and shape of the muckpile 
also influence overall productivity. Machines 
cannot load a tight muckpile easily. Large muckpile 
means a large clen-up area. Excavators and dozers 
work excessively. On the other hand, a too high 
muckpile may create danger for the excavators. In 
addition, back break and side break should also be 
considered. Blasting should be performed without 
disturbing surrounding rock. Some special blasting 

techniques may be applied to reduce back break 
such as smooth blasting and pre-splitting [1, 2]. 

Blasting has also many environmental adverse 
effects including ground vibration, flyrock, air 
blast and dust. Blast-induced environmental effects 
should be reduced as much as possible to perform 
a sustainable excavation operation. Especially, 
blast-induced ground vibration is a significant 
concern. Vibration waves may reach far distances. 
If ground vibration is higher than an acceptable 
level, it can cause damage to surrounding 
infrastructure. Some precautions may be 
considered, such as reduction of explosive charge 
per hole or increase of delay between blastholes.  

Several site variables are effective in blast 
induced environmental effects. These variables can 
be categorized into two group as controllable and 
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uncontrollable parameters. The controllable 
parameters (blast design parameters) are spacing, 
burden, bench height, stemming, sub-drilling, 
spacing between holes, and drillhole diameter. 
These parameters can be adjusted by engineers 
considering site conditions. Uncontrollable 
parameters are mechanical and physical properties 
of rock and rock mass structure. Prediction of 
ground vibrations provides great advantages for 
site engineers. Classical scaled distance-based 
equations have been widely used in blasting 
literature [3]. Kahriman [4] used square root scaled 
distance approach to predict peak particle velocity 
(ppv) in a limestone quarry. Ataei [5] applied 
conventional predictors to forecast ground 
vibrations during Karoun 3 power plant and dam 
excavations. Yılmaz [6] and Hudaverdi and 
Akyildiz [7] compared most widely used ground 
vibration predictor equations. In last decade, 
machine learning algorithms have also been 
practiced for ground vibration estimation. 
Mohammadi et al. [8] used the adaptive neuro 
fuzzy inference system (ANFIS) technique to 
predict particle velocity for ANFO and emulsion-
type explosives. Kamali and Ataei [9, 10] and 
Armaghani et al. [11] also applied feed forward-
back propagation neural networks and ANFIS 
method.  Akyıldız and Hudaverdi [12] used the 
ANFIS algorithms to estimate blast-induced 
ground vibrations considering stiffness ratio. 
Hasanipanah et al. [13] and Dindarloo [14] 
practiced support vector machines (SVM). Some 
researchers applied gene expression programming 
(GEP) and genetic algorithms to create robust 
predictive models [15, 16, 17]. 

In recent years, some new algorithms have 
become popular. Mohammadi et al. [18] tested a 
combination of the imperialist competitive 
algorithm (ICA) and k-means algorithm to cluster 
the measured data. Komadja et al [19] applied 
multivariate adaptive regression splines (MARS) 
in addition to classification and regression tree 
(CART) and SVM. Nguyen et al. [20] investigated 
efficiency of self-organizing neural networks 
(SONIA) using different metaheuristic algorithms. 
Chandrahas et al. [21] applied XG boost algorithm 
to predict both rock fragmentation and ground 
vibration. According to blast literature, blast design 
parameters are generally most dominant 
parameters in creating prediction models. 

In this study, ANFIS, SVM and gaussian 
process regression (GPR) techniques were used to 
predict blast-induced vibrations. Generally, method 
selection is performed randomly. However, in this 
research, there was a specific consideration during 

method selection process.  Each selected method 
relies on a different concept. ANFIS is a neural 
network rooted Takagi-Sugeno fuzzy system, 
integrating both artificial neural networks and 
fuzzy logic concepts. It seeks to establish fuzzy IF-
THEN rules using a single output value. ANFIS 
employs a hybrid learning technique that integrates 
the least squares method with backpropagation 
gradient descent techniques [22]. SVM is a 
supervised machine learning strategy derived from 
statistical learning theory [23]. SVM utilize a 
kernel function-based nonlinear mapping to project 
an input space into a multidimensional space. Then, 
it identifies a nonlinear relationship between inputs 
and outputs within this space [24]. Gaussian 
process regression is a type of Bayesian non-
parametrical technique that effectively manages 
data uncertainties in a systematic way. GPR is a 
stochastic process [25].  

In addition, the blast design parameters were 
also not chosen randomly. Stiffness ratio (Bench 
height/Burden, H/B), spacing/burden ratio (S/B) 
and scaled distance (SD) were selected as input 
parameters. Stiffness ratio (H/B) expresses the ratio 
of bench height to burden and varies between 1 and 
4. It directly affects vibration intensity and 
fragmentation efficiency. According to Konya and 
Walter [2], if H/B is lower than 2, ground vibration 
levels increases and problems such as backbreak, 
hard toe and course fragmentation may occur. On 
the other hand, if H/B ratio is around 3, the ground 
vibration levels decrease and successful 
fragmentation is achieved [2]. The S/B ratio is 
referred as energy coverage in the literature. 
Olofsson [26] indicates that S/B ratio highly 
influences fragment size. If the S/B ratio is greater 
than 1.25, fine-grained fragmentation can be 
obtained.  If S/B is less than 1.25, coarse-grained 
fragmentation is obtained and energy may be lost 
as ground vibration. The last input parameter 
selected is the scaled distance. SD represents the 
proportion of the vibration measurement distance 
(D) to maximum charge weight per delay (W). 
Scaled distance concept is a fundamental parameter 
especially for predictive equations [26].  

The developed machine learning models were 
evaluated against the traditional predictive 
formulas derived from regression analysis. Model 
comparison, which is usually made according to 
one or two error criteria in the literature, was 
performed using eight different error criteria in this 
study. ANFIS model was found to be superior to 
other models considering some specific error 
criteria. SVM and GPR models also provided 
satisfactory results. In general, machine learning 



Agan & Hudaverdi Journal of Mining & Environment, Published online 

 

methods have predicted ground vibration much 
more successfully than classical prediction 
techniques. 

In the following pages, firstly, the field 
measurements are initially detailed. The third 
section covers traditional prediction formulas. The 
equations based on scaled distance and the multiple 
regression equation are presented. The following 
section discusses development of machine learning 
models. ANFIS, GPR and SVM models were 
explained in detail. Section six discusses the model 
testing stage. The regression equations were 
compared to machine learning models using 

different accuracy measures. The last part evaluates 
general findings of the research.  

2. Field Measurements 

All the site data were collected at Akdaglar 
sandstone quarry in Northern Istanbul, 
Kemerburgaz region. There are five neighboring 
quarries in the region. The satellite image of the 
mine site is shown in Figure 1 [27]. The quarries 
are very close to human settlements. There are 
hospitals, factories and highways in the close 
proximity of quarries.  

 

 
Figure 1. Satellite image of the mining site and surrounding settlements 

The blasted rock material is processed by 
crushing and screening plants with a capacity of 
1100 tons/h to produce the aggregate required for 
asphalt and concrete plants. The production 
capacity is 6 million tons per year. The mine is 
situated in the Trakya region (west of the 
Bosporus), and the primary geological formation 
found there is the Lower Carboniferous Trakya 
formation. The Trakya formation predominantly 
comprises siltstone, shale, and sandstone 
metamorphisms. There are limestone layers of 
various thicknesses in the lower parts and 
conglomerate lenses in its middle and upper parts 
[28]. The thickness of sandstone layers varies 
between 50 cm and 100 cm. Andesite and diabase 
intrusions are also observed in some regions. 

ANFO is used as the main explosive in the 
studied quarry and it is charged into 89 mm 

drillholes. The drilling pattern is staggered and the 
initiation was carried out using non-electric 
detonators. A total of 95 vibration measurement 
data were taken to build vibration forecasting 
models. The average spacing distance in the quarry, 
with a standard deviation of 0.38 m, is 2.74 m. The 
average burden, with a standard deviation of 0.37 
m, is 2.30 m. Mean bench height is 7.56 m. The 
distance between blast locations and observation 
points was quantified with two different handheld 
GPS devices. Vibration data were recorded by 
Instantel Micromate blast seismographs. The 
seismograph is capable of measuring particle 
velocities between 0.127 and 254 mm/s. The 
statistical data of the site measurements are shown 
in the Table 1. 
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Table 1. Descriptive statistics for the blast design parameters and vibration measurement 
Parameters Min Max Range Average Std Deviation 

S (m) 2.13 5.00 2.87 2.74 0.378 
B (m) 1.49 4.00 2.51 2.30 0.371 
T (m) 1.80 6.00 4.20 2.85 0.907 
H (m) 3.50 14.00 10.5 7.56 2.025 
S/B (m) 0.75 1.66 0.91 1.019 0.162 
H/B (m) 1.31 5.88 4.58 3.34 0.993 
D (m) 27 400 373 137.18 72.162 
W (kg) 14.92 279.81 264.89 68.73 48.509 
SD (m/kg0.5) 1.85 35.12 33.26 17.51 6.886 
ppv (mm/s) 1.72 32.79 31.07 7.17 5.647 
S: Spacing, B: Burden, T: Stemming, H: Bench of height, W: Instantaneous explosive charge, D: Vibration monitoring 
distance, SD: Scaled distance, ppv: Measured peak particle velocity, Monitored blast no (n): 95. 

 
3. Classical Predictor Equations for Ground 
Vibration 
3.1 Scaled distance-based equations 

The pioneering effort to develop a ground 
vibration model was carried out by the U.S Bureau 
of Mines (USBM) and Crandell. According to 
USBM model, magnitude of particle velocity is 
mainly affected by two factors; the maximum 
instantaneous charge per delay and the interval 
between blasting site and vibration measuring point 
[29]. The scaled distance is calculated by using the 
ratio of the distance to the charge weight. Today, 
USBM model is one of the most referred scaled 
distance approaches [30]: 

ܦܵ =
ܦ

√ܹ
  (1) 

The regression analysis of the scaled distance 
and peak particle velocity (ppv) values results in 
the forecasting equation provided below: 

ݒ݌݌ = )ܭ
ܦ

√ܹ
) (2) 

The coefficients of the equation, K and β, are 
named as field constants. These constants are 
determined by geological and technological 
characteristics of blast site. Within this research, 69 
blast data was used for regression analysis and 
USBM equation is formed as: 

ݒ݌݌ =  ଵ.଴ଽହ (3)ି(ܹ√/ܦ) 117.4

Several researchers have proposed scaled-
distance-based equations to predict ground 
vibrations [31]. The Langefors-Kihlström, 

Ambraseys-Hendron and Indian Standards 
equations are also scaled-distance-based power-
form equations. Similar to USBM equation, a 
correlation graph was created between SD and ppv 
to form Langefors-Kihlström scaled distance 
equation [32]. Ambraseys-Hendron equation uses 
cube root scaled distance [33]. Indian Standard 
approach uses two-thirds root scaled distance [34]. 
Unlike the alternative approaches, the CMRI 
equation maintains a linear format [35]. Formerly, 
Mohamadnejad et al. [36] also employed these five 
different empirical methods to predict ppv values 
and determined the site constants. All the 
calculated predictive equations are presented in 
Table 2. The coefficient of determination (R2) and 
the calculated Mean Absolute Error (MAE) values 
were also presented.  USBM and Ambraseys-
Hendron models perform better than the other three 
models. Their R2 an MAE values are similar. The 
USBM equation is one of the most widely used and 
trusted equation. It is also most frequently cited 
attenuation equations (37, 38, 39). For this reason, 
USBM equation was selected as sample scaled 
distance-based predictor equation. In the upcoming 
pages, USBM equation is compared to machine 
learning models. 
3.2 Multiple regression analysis (MRA) 

Within the scope of the research, alongside the 
scaled distance equations, a multiple regression 
equation has been developed for ppv estimation 
[40]. The independent variables of the model are 
S/B, H/B and SD.  Peak particle velocity is the 
dependent (target) variable. The resulting equation 
is given below: 

 

ppv = (−4.993) х  ܵ/B + (0.235) х H/B  (−0.605) х  SD + 22.685 (4) 

 
Table 3 shows the regression model overview 

and the analysis of variance (ANOVA). The 
regression part of the sum of squares gives 

information about the explained amount of change 
in the model and the dependent variable. The 
residual part gives information about the 
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unexplained amount of change in the model. The 
mean square is obtained by the ratio of the sum of 
squares value to the degrees of freedom (df) and 
expresses the fluctuation in the change. The ratio of 

the calculated mean squares gives the F value. If 
the significance is less than 0.05, it can be said that 
there is a difference between the input and output 
parameters [41]. 

Table 2. Scaled distance-based predictor equations and calculated constants 

 Scaled distance equation Calculated constants R2 MAE K β 

USBM ݒ݌݌ = )ܭ
ܦ

√ܹ
) 117.4 -1.095 0.68 2.02 

Langefors-Kihlström ݒ݌݌ = ඨ)ܭ
ܹ

ଶܦ ଷ⁄ ) 43.09 1.2988 0.60 2.41 

Ambraseys-Hendron ݒ݌݌ =  )ܭ
ܦ

ܹଵ/ଷ)ି 270.86 -1.122 0.70 2.00 

Indian Standard ݒ݌݌ =  )ܭ
ܹଶ/ଷ

ܦ
) 43.09 0.9741 0.60 2.36 

CMRI ݒ݌݌ = ݊ + )ܭ
√ܹ

ܦ
) 59.45 - 0.46 2.32 

Table 3. The statistics of multiple regression model 
Analysis R R2 Adjusted R2 Estimated Standard Error 

1 0.716 0.513 0.490 3.99826 

Independent variables: S/B, H/B, SD 
Analysis  SS (df) Avg. Square F Sig. 

1 Regression 1093.741 3 364.580 22.806 0.000 

 Residual 1039.094 65 15.986   
Total 2132.835 68    

Dependent Variable: ppv 
Independent Variables: S/B, H/B, SD 

 
Sixty-nine shot data (training) were used to 

establish the predictive regression model. The 
remaining 26 blasts were separated as test data. 
These 69 blasts data will also be used to develop 
machine learning models. Using similar input 
parameters such as S/B, H/B, and SD, machine 
learning models were also developed. Figure 2 
shows scatter plots of the input parameters and the 
peak particle velocity. The statistical values give 
descriptive numbers to show distribution of data. 
Scatter plots show the range and scattering of the 
data. For example, if S/B parameter is examined, it 
is seen that S/B value are concentrated between 1.0 
and 1.3. 

4. Machine Learning Prediction Models 

The machine learning techniques are a form of 
artificial intelligence that uses specific algorithms 
for data analysis and development of forecasting 
models. In this study, ANFIS, SVM and GPR 
techniques were used to create prediction models. 
The developed models were compared to USBM 
and multiple regression equations. The input 
parameters of the machine learning models are S/B, 

H/B and SD. The target of the study was to 
establish the most efficient models with optimum 
number of variables. It was avoided to create 
complex and difficult to use models. In the next 
pages, each model was described by using its own 
influential parameters. 

4.1. Adaptive network based fuzzy inference 
system (ANFIS)  
4.1.1. Fundamentals of ANFIS 

The ANFIS method has some advantage such as 
capability of solving nonlinear problems, ease of 
use and fast computation ANFIS is a neural 
network rooted in the Takagi-Sugeno fuzzy system, 
integrating both artificial neural networks and 
fuzzy logic concepts. It was first developed by Jang 
[22]. Membership functions play a key role in 
Sugeno type fuzzy inference systems (FIS). It 
intends to specify fuzzy IF-THEN rules derived 
from a single output value. It combines the least 
squares method with backpropagation gradient 
descent techniques. FIS also applies a hybrid 
learning algorithm [42]. 
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Figure 2. Scatter and histogram graphs of the model development data 

ANFIS creates if-then rules using input and 
output information pairs. Model can define all 
possible rules and regulations. Also, researchers 
may modify considering data structure [43]. There 
are three types of fuzzy reasoning mechanisms: 
Type-1, Type-2, and Type-3. In Type-1 fuzzy 
inference systems, the overall output is the 
weighted average of the crisp outputs of each rule 
based on their firing strengths. The output 
membership functions must be monotonic [44]. In 
Type-2 fuzzy inference, the combined fuzzy result 
is derived by applying the max operation to each 
rule’s output, which is computed as the minimum 
of the firing strength and the corresponding output 
membership function. The final crisp output is 
determined using methods such as the centroid of 
area or the mean of maxima [45]. In Type-3 fuzzy 
inference, each rule follows the Takagi–Sugeno 
structure, where the output is expressed as a linear 
function of the input variables plus a constant. The 
final result is computed as the weighted average of 
the outputs from all activated rules [46]. Unlike the 
other types, Type-3 utilizes a linear combination of 
input variables along with a constant term. 
Therefore, it is highly appropriate for regression 
modeling. The model created in this study is made 
based on Type-3 ANFIS structure. The 
corresponding ANFIS framework is illustrated in 
Figure 3. Two fuzzy if-then rules can be described 
as follow: 
• Rule 1: If x is A1 and y is B1, then f1 = p1x + q1y + r1 

• Rule 2: If x is A2 and y is B2 then f2 = p1x + q1y + r2 

Where are: 
A1, A2, B1 and B2 - defined variables for inputs 

x and y inputs, 
p1, q1, r1, p2, q2 and r2 - output function 

parameters [22]. 
During model development the input data is 

proceed through a series of layers. ANFIS 
equivalent architecture consists of six layers as 
seen in Figure 3. Static nodes are shown by circles 
and dynamic nodes are shown by squares [47]. The 
output depends on the parameters associated with 
the nodes. To decrease a predefined error criterion, 
the training rule determines how particular 
parameters should be modified [22]. 
 

 
Figure 3. The fundamental structure of ANFIS and 

layers [48] 
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According to Jang [22], ANFIS consists of 6 
layers and is defined as: 

In Figure 3, layer 0 is the input layer. 
Transmitted to the subsequent layers is the input 
signal received from each node. Layer 1 is the 
fuzzification layer. Layer 2 is the multiplication 
layer. Each node increases the incoming data. 
Known as the firing strength is the output of the 
multiplication layer. Layer 3 is the normalization 
layer.  To obtain an output, each rule's firing 
strength is divided by the total firing strength of all 
rules. Layer 4 is the defuzzification layer. The last 
operation is summation in Layer 5. To generate a 
comprehensive result, the sum of all incoming 
signals is computed [12]. 

4.1.2. Creating the ANFIS model 

Before model development, data set is separated 
as training and test data. Although there are some 
different practices, in machine learning 
applications, generally 70-75% of data is separated 
as training data set. The remaining data (25-30%) 
are used as test data. Hudaverdi and Akyildiz [49] 
created a vibration prediction model using neural 
networks. They assigned 70% of the dataset for 
training. This ratio is also the default data splitting 
ratios of MATLAB software. Collazos‑Escobaret 
al. [50] applied different machine learning 
techniques to control the storage conditions of 
dried products. 75% of data were used for model 
training and 25% for validation. In this study, 
several ratios were tested through trial-and-error 
process and 73% of the total data (69 sample) were 
separated for training data set. The training data 
consists of three input parameters and one output 

parameter. Figure 4 presents the general structure 
of the ANFIS model. Following the input layer, 
four consecutive layers are included. These layers 
consist of the input membership function, the rule, 
the output membership function, and the output 
layers. The number of rules is dependent on the 
quantity of input membership functions [51]. 

 
Figure 4. The suggested ANFIS structure for ppv 

prediction 

Before starting the training process, the hybrid 
optimization method was chosen. The error 
tolerance is zero and the epoch number is 130. 
After identifying of the train and test data, the type 
and number of membership functions are selected 
for each input in the ANFIS interface. Based on 
trial-and-error process, number of membership 
functions was determined. Two membership 
functions were used for each input parameter. 
Totally, eight different membership functions were 
tested. Sigmoidal (fully symmetrical) membership 
function provided the lowest error value. Table 4 
shows the error values of different membership 
functions during model development.  

Table 4. Error values of membership functions 
Membership function types Matlab code Error value 

Bell-shaped Function gbellmf 2.93418 
Trapezoidal Function trapmf 3.12354 
Triangular Function trimf 3.39081 
Gaussian Function (symmetric) gaussmf 2.9796 
Gaussian Function gauss2mf 3.10953 
Pi Function pimf 3.67426 
Sigmoidal Function (symmetric) dsigmf 1.86605 
Sigmoidal Function psigmf 1.86617 

 
The sigmoidal membership function graphs are 

presented in Figure 5 for each input parameters. 
The model, which was created with S/B, H/B and 

SD inputs includes two linguistic variables, low 
and high. The type of output membership function 
is constant.  
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(a) (b) 

 
(c) 

Figure 5 The assigned membership functions for a) S/B, b) H/B, and c) SD 

Training performance of the ANFIS model is 
presented in Figure 6. In the Figure, the actual data 
is represented by the blue circles. The predicted 
values (output) by the model are shown by the red 
stars. The ANFIS model is quite successful. The 
highest prediction errors were observed For Blasts 
10, 35, 58, and 61. The best estimations were 
achieved for the cases 2, 3, 12, 20, 32, 36, 40, 42, 
51, 53 and 65. 

In Figure 7, the rule diagram shows the input 
values and the calculated corresponding outputs, 
graphically. The first three columns represent the 
input parameters, and the last column is the output 
parameter, i.e., peak particle velocity. Each column 
marks a different rule and the figure shows all the 

8 rules [52]. Additionally, the limit values of each 
input can be seen in this diagram. The rule diagram 
shows mechanism of ANFIS process. In the figure, 
a specific sample indicated by blue vertical lines 
was presented to show how the ANFIS model 
works. As the blue bars are moved left and right, 
the input values change and therefore the output 
results also change. S/B, H/B, and SD values are 
1.21, 3.59, and 18.5, respectively, in Figure 7. The 
peak particle velocity (ppv) value corresponding to 
these values was determined as 4.28 mm/s. 

Table 5 shows if-then rules for the ANFIS 
model. The rules in Table 5 corresponds to each 
row in Figure 7. 

 

 
 

Figure 6. Actual and estimated values in the ANFIS 
training phase 

Figure 7. Rule scheme of the ANFIS model 
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Table 5. Fuzzy if–then rules for the proposed fuzzy model 
Rule No If-then rules 

1 If (S/B is in1mf1) and (H/B is in2mf1) and (SD is in3mf1) then (output is out1mf1) 
2 If (S/B is in1mf1) and (H/B is in2mf1) and (SD is in3mf2) then (output is out1mf2) 
3 If (S/B is in1mf1) and (H/B is in2mf2) and (SD is in3mf1) then (output is out1mf3) 
4 If (S/B is in1mf1) and (H/B is in2mf2) and (SD is in3mf2) then (output is out1mf4) 
5 If (S/B is in1mf2) and (H/B is in2mf1) and (SD is in3mf1) then (output is out1mf5) 
6 If (S/B is in1mf2) and (H/B is in2mf1) and (SD is in3mf2) then (output is out1mf6) 
7 If (S/B is in1mf2) and (H/B is in2mf2) and (SD is in3mf1) then (output is out1mf7) 
8 If (S/B is in1mf2) and (H/B is in2mf2) and (SD is in3mf2) then (output is out1mf8) 

 
4.2. Support vector machines 
4.2.1. A brief introduction to SVM 

Support vector machine is a supervised learning 
technique grounded in statistical learning theory. 
For classification and regression analysis, it is a 
very efficient technique [23]. SVM uses a kernel 
function-based nonlinear mapping to convert an 
input space into a multidimensional space. It aims 
to discover a nonlinear relationship between inputs 
and outputs. SVM attempts to minimize the range 
between expected and observed values by 
assigning a hyperplane by reducing the 
coefficients, in order to provide a more efficient 
prediction in a regression analysis [53]. In most 
classification cases SVM investigates the largest 
separation between two classes. The larger the gap 

between data sets, the better the efficiency of the 
SVM will be [54]. 

4.2.2 Creating SVM model 

In the first stage, same data was used for 
training. Cross-validation was applied to prevent 
over-fitting. Cross-validation methodology splits 
the data into multiple groups to prevent overfitting 
and machine memorization [51]. Accuracy 
estimation is made for each divided fold. The 
training data can be divided into at least 2 and at 
most 50 clusters. In this research, all possibilities 
were examined by trial-and-error method to verify 
the data. Accordingly, the better results were 
obtained with 5 clusters in the cross-validation 
process. The common workflow of the SVM 
regression models is given in Figure 8. 

 

 
Figure 8. Common workflow for regression models 

After the selection of cross-validation 
methodology, the model training was started and 
the most efficient model (SVM Quadratic) was 
determined considering root mean square error 
(RMSE) values. The correlation coefficient was 
examined to determine capability of the developed 
SVM model. Figure 9 shows performance of the 
SVM model. Horizontal axis represents the 
measured ppv values and vertical axis represents 
predictions by machine learning model. The 
histogram graphs in Figure 9 illustrate the 
distribution of the predicted values corresponding 
actual ppv values. The measured vibration data 
concentrated at low ppv levels. There are few ppv 
data above 20 mm/s. Correspondingly, the 
predicted ppv values also concentrate between 2–
10 mm/s. The coefficient of determination was 
calculated as 0.77. The results show that prediction 
performance for training is satisfactory and the 
machine works without memorization.  The 

calculated the mean absolute error (MAE) was 1.75 
for the estimated values. 
 

 
Figure 9. SVM training phase performance 
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4.3 Gaussian process regression (GPR) 
4.3.1. Fundamentals of GPR 

Gaussian process regression is non-parametric 
kernel-based probabilistic model and can be used 
for nonlinear regression analysis and data 
classification. GPR is a Bayesian non-parametric 
approach that systematically deals with 

uncertainties in data [55]. A gaussian process is 
also characterized as a stochastic process that 
depends on a group of random variables [25]. 

The gaussian process is parameterized with an 
average function m(x) and a covariance function 
(Kernel) k (x, x′) evaluated at points f(x), x and x′. 
The function is defined as: 

 

m(x) = E(f(x)) (11) 

Cov(f(x), f(x′)) = k (x, x′; θ) = E((f(x) – m(x)) f(x′) – m(x′))) (12) 

 
Where, θ denotes the set of hyperparameters. 

 

f(x) ~ GS(m(x), k(x,x′)) (13) 

where GS symbolizes the gaussian process. The 
function f(x) follows a gaussian distribution with a 
specified average and covariance function [25]. 

The covariance (kernel) function is a significant 
component in gaussian process regression. 
Similarity between data is very important in 
supervised learning. This similarity examination 
directly affects the prediction ability of models. In 
this study, peak particle velocity (ppv) estimation 
was performed using the "Exponential Covariance 
Function": 
Exponential covariance 

݇൫ ௜ܺ, ௝ܺ ǀ ߠ൯ = ௙ߪ
ଶ exp ൤−

ݎ
௟ߪ

൨ (14) 

Where are: 

ݎ  = ට൫ ௜ܺ − ௝ܺ൯்
( ௜ܺ − ௝ܺ) - euclidian distance 

between Xi and Xj, 
 ,௟ - the characteristic length scaleߪ
  .௙ - the signal standard deviationߪ

The hyperparameters of covariance functions 
௟ߪ)ߠ ,  ௙) can be calculated by gradient basedߪ
algorithms using the equations given above. 

4.3.2. Development of GPR model 

During creation of gaussian process regression 
model, the structure of data is very important. 
Existence of very similar values or extreme values 
in dataset are the main factors that reduce 
performance of GPR models. Also, the test data 
should range between the smallest and largest 
values of the training data. Otherwise, the 
prediction model will be formed incorrectly. The 
common workflow of regression models given in 
the SVM section is also valid for Gaussian process 
regression.  

Cross validation is applied to prevent over 
fitting. In the cross-validation method, the data is 
randomly divided into subgroups. One of the 
groups is used as the test set, while the others are 
used as the training set. Different scenarios were 
tried to group the data. The best results were 
obtained by dividing the data into 50 subgroups 
(folds) [56]. 

After selecting the validation method, the 
learning process starts and the best performing 
GPR model is determined. RMSE values are 
examined to evaluate the model’s efficiency. 
Exponential covariance function provided the 
lowest error value. The root mean square error of 
the final model is around 1.86. Figure 10 shows 
model performance during the training stage. The 
prediction performance can be examined case by 
case for each blast.  

 
Figure 10. The forecasting efficiency of the GPR 

model in the training stage 

5. Validation and Evaluation of Models 

Various error metrics can be used to evaluate the 
performance of the models. Ghasemi et al. [57] 
evaluated the performance of their fuzzy model 
using the R², variant for account (VAF), RMSE and 
mean absolute percentage error (MAPE) criteria. 
Srivastava et al. [53] used the R² metric to 
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demonstrate the performance of their support 
vector regression and random forest regression 
models. In addition to these criteria, this study also 
employed mean-based error metrics such as mean 
absolute error (MAE), mean absolute scaled error 
(MASE), and root mean square scaled error 
(RMSSE). Furthermore, symmetric mean absolute 

percentage error (sMAPE) and the Nash–Sutcliffe 
Efficiency coefficient (NSE) were also considered 
in the evaluation. For each model, the number of 
blasts with a prediction error less than 2 mm/s was 
also determined. The formulas of all error metrics 
are presented in Table 6. 

Table 6. Error measures for the model validation. 
Error Type Formula 

Mean absolute error  ܧܣܯ =  
1
݊

 ෍|݉௜ − |௜݌ 
௡

௜ୀଵ

 

Root mean square error ܴܧܵܯ =  ඩ
1
݊ ෍(݉௜ ௜)ଶ݌ −

௡

௜ୀଵ

 

Mean absolute scaled error ܧܵܣܯ =  
1
݊ ෍

|݉௜ − |௜݌
1

݊ − 1 ∑ |݉௜ − ݉௜ିଵ|௡
௜ୀଶ

௡

௜ୀଵ

 

Root mean squared scale error ܴܧܵܵܯ =  ඩ
1
݊

 ෍ ቌ
|݉௜ − |௜݌

1
݊ − 1 ∑ |݉௜ − ௜ିଵ|௡݌

௜ୀଶ

ቍ

ଶ௡

௜ୀଵ

 

Mean absolute percent error ܧܲܣܯ =  
100

݊  ෍
|݉௜ − |௜݌

݉௜

௡

௜ୀଵ

 

Symmetric mean absolute percent error ܧܲܣܯݏ =  
200

݊  ෍
|݉௜ − |௜݌
݉௜ + ௜݌ 

௡

௜ୀଵ

 

Variance account for ܸܨܣ =  ቆ1 −  
௜݉) ݎܽݒ − (௜݌

௜݉ݎܽݒ
ቇ ∗ 100 

Nash-Sutchliffe efficiency ܰܵܧ = 1 −  
∑ (݉௜ − ௜)ଶ௡݌ 

௜
∑ (݉௜ − ݉௜)ଶ௡

௜
 

mi = measured particle velocity (mm/s); pi = predicted particle velocity (mm/s); n = case number 
 

Table 7 shows comparison of the created 
models according to the introduced error criteria. 
MAE is 1.42 for ANFIS model. The calculated 
MAE values are 1.82 and 1.46 for SVM and GPR 
models, respectively (Table 6). RMSSE values are 
under 0.50 for ANFIS and GPR models. The lowest 
MAPE values were obtained by ANFIS and GPR 
models. SVM model has the third lowest MAE 
value. The RMSE and RMSSE values calculated 
for the SVM model are 2.57 and 0.51, respectively.  

Twenty-one blasts were predicted with an error 
of lower than 2 mm/s by GPR. The multiple 
regression equation estimated only 13 cases with 
an error of less than 2 mm/s. In general, Machine 
learning models have lower error values than 
scaled-distance-based USBM equation and 
multiple regression equation. The most successful 
results were obtained for ANFIS model. 

Table 7. Calculated error values for the vibration prediction models 
 MAE RMSE MASE RMSSE MAPE sMAPE VAF NSE < 2 mm/s 

ANFIS 1.42 1.84 0.28 0.37 22.30 19.70 90.18 0.89 20 
SVM 1.82 2.57 0.36 0.51 30.03 24.44 79.27 0.79 18 
GPR 1.46 2.29 0.29 0.45 23.29 20.29 83.90 0.84 21 

USBM 2.03 2.97 0.41 0.59 23.33 23.21 74.88 0.72 17 
MRA 2.32 2.94 0.46 0.59 38.09 151.16 74.08 0.73 13 
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The correlation graphs of the models are given 
in Figure 11. The R2 is 0.9 for ANFIS model. The 
correlation graph of GPR model also indicates high 
prediction performance. The lowest R2 value was 
obtained by multiple regression equation (Figure 
11). It should be noted that the correlation between 

the estimated and measured values for all models is 
quite high. R2 value of 0.65 corresponds to 80% 
correlation. The correlation between the observed 
and estimated values was also analyzed for the 
USBM equation. The calculated R2 value for 
USBM equation is around 0.75.  

 

  
(a) (b) 

  
(c) (d) 

Figure 11. Correlation charts of the prediction models 

Figure 12 illustrates a radar graph. The 
numerical ranges of the error metrics are different. 
Only the error metrics with similar value ranges 
were selected to make a radar graph. By that way, 
a specific radar graph was created. Figure 12 shows 
radar graph of the mean error metrics. A small 
tetragon means low prediction error. USBM 
equation has the largest tetragon shape. All 
machine learning tetragons are inside USBM 
tetragon. That indicates superiority of the machine 
learning models. Relatively the most successful 
model is ANFIS. GPR is the second most efficient 
model.  

 
Figure 12. A radar graph based on mean error 

criteria 
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6. Conclusions 

In this study, blast-induced ground vibration 
was estimated using a database obtained from a 
quarry in Istanbul Kemerburgaz Region. Since 
quarries are close to settlements, environmental 
impacts become more important. Vibration data 
were measured by blast seismographs and 
handheld GPS devices were used for distance 
measurements. In the first step, scaled distance 
equations were created for ground vibration 
estimation. Six scaled-distance-based equations 
were examined considering the coefficient of 
determinations. the USBM equation was chosen to 
compare with the machine learning models. 

In the second stage, a multiple regression 
equation and three different machine learning 
methods (ANFIS, SVM, GPR) were developed. 
Stiffness ratio, energy coverage and scaled distance 
were used as input parameters. A rigorous model 
validation was achieved. In general, the machine 
learning techniques are found to be more effective 
than traditional regression models. ML methods 
predicted 18-21 cases with an error less than 2 
mm/s. The VAF values obtained for the ML models 
are over 79%. The ANFIS model provided the best 
results for 8 out of 9 error criteria. The GPR model 
has the second lowest error values. There is a 
strong relationship between the observed and 
estimated ppv values. The coefficient of 
determination (R2) is higher than 0.90 for ANFIS 
model. The R² values for the GPR and SVM 
models are 0.84 and 0.79, respectively. 

In this research, it was concluded that some 
specific parameters are important for success of the 
ML models. In the ANFIS modeling technique, 
influential factors are the type of input and output 
membership functions, the number of rules, and the 
number of subgroups for input parameters. 
Selection of the appropriate covariance (Kernel) 
function, cross-validation method and clustering 
number play an important role in the success of 
GPR model. The verification method and the 
number of subgroups (clustering) directly affect the 
performance of SVM. The main difference 
between GPR and SVM models are their prediction 
methodology during model training phase.  

Blasting operation is a complex process and 
affected by several parameters. It has been proven 
that machine learning methods can be used 
successfully to predict particle velocity. Machine 
learning methods are flexible and adaptive 
techniques. In the future, it is possible to renew the 
models by using different databases and different 
input parameters. Machine learning and artificial 

intelligence will help to forecast blast vibrations 
more accurately.  
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 يهاتمیبا استفاده از الگور  یاز انفجار در معادن سطح  یناش  نیارتعاش زم  ینیبشیپ  ق،یتحق  نیهدف از ا
ارتعاش زم  ینیو ماش  کی کلاس  يریادگی به حداقل رساندن  از انفجار به سطوح قابل    یناش  ن یاست. به منظور 

  ف یتعر نی ) در زمppvاوج ذرات ( ت از انفجار، سرع  یناش ن یشود. ارتعاش زم ینیبش یپ د یقبول، سطح ارتعاش با
تمام دادهشودی م استفاده برا  يها.  واقع   اتیبا مشاهده عمل  نیتخم  يمورد  آمده  یانفجار  از  به دست  اند. پس 

اوج ذرات، مدل   يریگاندازه استفاده از پارامترها  ینیبش ی پ  يهاسرعت  ب  جادیا  تیمستقل سا  يبا   شتر یشدند. 
ها . مدل شودی استفاده م شیآزما  يمانده برا  یکه بخش باق  یدر حال شوند،ی م  دهآموزش مدل استفا يها براداده

  ده یچیبدون پ  يشتریب  يپارامترها ن،یشدند. بنابرا جادیمستقل انفجار ا  يبه طور متناسب با استفاده از پارامترها
متنوع از نه   يامجموعهکامل با استفاده از    یاعتبارسنج  ندیفرآ  کیاند.  ها گنجانده شده ها در مدل کردن مدل 

 ي هااز روش   نیارتعاش زم  ینیبش یدر پ  یهوش مصنوع   يهاخطا انجام شد. مشخص شده است که مدل   اریمع
  1.54، 1.42 بیبه ترت  SVMو  ANFIS  ،GPR  يمطلق برا يخطا  ریمقاد نیانگی. م کنندی بهتر عمل م  یسنت

  ن یمؤثرتر ANFIS رسدی . به نظر مشودی م اهدهمش زی خطا ن يارهایمع ریسا يبرا یمشابه تیبود. وضع  1.78و 
  . باشد. نی ارتعاش زم ینیبش یپ يمدل برا

    کلمات کلیدي 

بر شبکه   یمبتن  ياستنتاج فاز  ستمیس
  (ANFIS)  یقی تطب

  انفجار 
  (GPR)  یگاوس  ندیفرآ ونیرگرس

  ن یزم  ارتعاش
  )SVM( بانی بردار پشت ن یماش

  

  
 
 
 


