[1]. Le Bas, M.J. (1962). The Role of Aluminium in Igneous Clinopyroxenes with Relation to Their Parentage. Am. J. Sci. 260(4): 267-288.
[2]. Le Terrier, J., Maury, R. C., Thonon, P., Girard, D., & Marchal, M. (1982). Clinopyroxene composition as a method of identification of the magmatic affinities of paleo-volcanic series. Earth and Plan. Sci. Lett. 59(1): 139-154.
[3]. Jiang, C., & An, S. (1984). On the chemical characteristics of calcific amphiboles from igneous rocks and their petrogenesis significance. J. Min. Petrol. 3(1): 1-9.
[5]. Coltorti, M., Bonadiman, C., Faccini, B., Grégoire, M., O'Reilly, S.Y., & Powell, W. (2007). Amphiboles from suprasubduction and intraplate lithospheric mantle.
Lithos 99(1-2): 68-84.
doi.org/10.1016/j.lithos.2007.05.009.
[6]. Molina, J.F., Scarrow, J.H., Montero, P.G., & Bea, F. (2009). High-Ti amphibole as a petrogenetic indicator of magma chemistry: Evidence for mildly alkali hybrid melts during evolution of Variscan basic–ultrabasic magmatism of Central Iberia. Cont. Min. Petrol. 158: 69-98. doi 10.1007/s00410-008-0371-4.
[7]. Putirka, K.D. (2016). Amphibole thermometers and barometers for igneous systems and some implications for eruption mechanisms of felsic magmas at arc volcanoes.
Am. Min. 101(4): 841-858.
doi.org/10.2138/am-2016-5506.
[8]. Li, W., Cheng, Y., & Yang, Z. (2019). Geo‐fO2: Integrated software for analysis of magmatic oxygen fugacity. Geochem. Geoph. Geosy. 20. doi.org/10.1029/ 2019GC008273.
[9]. Lisboa, V.A.C., Conceição, H., Rosa, M.L.S., Marques, G.T., Lamarão, C.N., & Lima, A.L. (2020). Amphibole crystallization conditions as record of interaction between ultrapotassic enclaves and monzonitic magmas in the Glória Norte stock, south of Borborema province.
Braz. J. Petrol. 50(2): 1-10.
doi.org/10.1590/2317-4889202020190101.
[10]. Ridolfi, F. (2021). Amp-TB2: An Updated Model for Calcic Amphibole Thermobarometry. Minerals 11: 324. doi.org/10.3390/min11030324.
[11]. Wang, X., Hou, T., Wang, M., Zhang, Ch., Zhang, Zh., Pan, R., Marxer, F., & Zhang, H. (2021). A new clinopyroxene thermobarometer for mafic to intermediate magmatic systems. Euro. J. Min. 33: 621-637. doi.org/10.5194/ejm-33-621-2021.
[12]. Wieser, P. E., Kent, A. J. R., Till, C. B., Donovan, J., Neave, D. A., Blatter, D. L., & Krawczynski, M. J. (2023). Barometers Behaving Badly I: Assessing the Influence of Analytical and Experimental Uncertainty on Clinopyroxene Thermobarometry Calculations at Crustal Conditions.
J. Petrol. 64: 1-27.
doi.org/10.1093/petrology/egac126.
[13]. Sabzehei, M., Houshmandzadeh, A., Berberian, M., Nowgole Sadat, M.A.A., Alavi Tehrani, N., Majidi, B., Nazemzadeh, M., Azizan, H., & Roshan Ravan, J. (1993). Geological map of Haji Abad, Scale 1:250000. Geological Survey of Iran, Tehran.
[14]. Arvin, M., Pan, Y., Dargahi, S., Malekizadeh, A., & Babaei, A. (2007). Petrochemistry of the Siah-Kuh granitoid stock southwest of Kerman, Iran: Implications for initiation of Neotethys subduction. J. Asian Earth Sci. 30: 474-489. doi:10.1016/j.jseaes.2007.01.001.
[15].
Jafari, A., Ao, S., Jamei, S., & Ghasemi, H. (2023). Evolution of the Zagros sector of Neo-Tethys: Tectonic and magmatic events that shaped its rifting, seafloor spreading and subduction history.
Earth Sci. Rev. 241, 104419. doi:
10.1016/j.earscirev.2023.104419.
[16]. Malekizadeh, A. (2000). Geochemistry and petrogenesis of the Siyah Kouh granite batholith. M.Sc. Thesis, Shahid Bahonar University, Kerman, Iran.
[17]. Ghanbarzadeh, N. (2011). Geochemistry, petrology and origin of the intermediate and asidic dykes in the Deh Sard area, SE Baft, Kerman. M.Sc. Thesis, Shahid Bahonar University, Kerman, Iran.
[18]. Alavi, M. (1994). Tectonics of Zagros Orogenic Belt of Iran, New Data and Interpretation. Tectonophysics 229: 211-238. doi.org/10.1016/0040-1951(94)90030-2.
[19]. Shabanian, N., & Neubauer, F. (2024). From Early Jurassic intracontinental subduction to Early-Middle Jurassic slab break-off magmatism during the Cimmerian orogeny in the Sanandaj-Sirjan Zone, Iran.
J. Asian Earth Sci.
267: 106153.
doi.org/10.1016/j.jseaes.2024.106153.
[20] Angiboust, S., Agard, Ph., Glodny, J., Omrani, J., & Oncken, O. (2016). Zagros blueschists: Episodic underplating and. long-lived cooling of a subduction zone. Earth and Plan. Sci. Let. 443: 48-58. http://dx.doi.org/10.1016/j.epsl.2016.03.017.
[21]. Azizi, H., Nouri, F., Stern, R.J., Azizi, M., Lucci, F., Asahara, Y., Zarinkoub, M.H., & Chung, S.L. (2018). New evidence for Jurassic continental rifting in the northern Sanandaj Sirjan Zone, western Iran: the Ghalaylan seamount, southwest Ghorveh.
INTER. GEOL. REV.
doi.org/10.1080/00206814.2018.1535913.
[22]. Barbero, E., Delavari, M., Dolati, A., Saccani, E., Marroni, M., Catanzariti, R., & Pandolfi, L. (2020). The Ganj Complex reinterpreted as a Late Cretaceous volcanic arc: Implications for the geodynamic evolution of the North Makran domain (southeast Iran). J. Asian Earth Sci. 195, 104306. doi.org/10.1016/j. jseaes.2020.104306.
[23]. Barbero, E., Pandolfi, L., Delavari, M., Dolati, A., Saccani, E., Catanzariti, R., Luciani, V., Chiari, M., & Marroni, M. (2021). The western Durkan Complex (Makran Accretionary Prism, SE Iran): a Late Cretaceous tectonically disrupted seamounts chain and its role in controlling deformation style. Geosci. Front. 12 (3), 101106.doi.org/ 10.1016/j.gsf.2020.12.001.
[24]. Gharibnejad, P., Rosenberg, C.L., Agard, P., Kananian, A., & Omrani, J. (2022). Structural and metamorphic evolution of the southern Sanandaj‑Sirjan zone, southern Iran.
J. Earth Sci.
https://doi.org/10.1007/s00531-022-02255-5.
[25]. Saccani, E., Delavari, M., Dolati, A., Pandolfi, L., Barbero, E. Tassinari, R., & Marroni, M. (2022). Geochemistry of basaltic blueschists from the Deyader Metamorphic Complex (Makran Accretionary Prism, SE Iran): New constraints for magma generation in the Makran sector of the Neo-Tethys. J. Asian Earth Sci. 228: 105141. doi.org/10.1016/j.jseaes.2022.105141.
[26].
Agard, P., Omrani, J., Jolivet, L., Whitechurch, H., Vrielynck, B., Spakman, W. Monié, P., Meyer, B. & Wortel, R. (2011). Zagros orogeny: a subduction-dominated process. Geol. Mag. 148(5-6): 692-725.
[27]. Hassanzadeh, J., & Wernicke, B.P. (2016). The Neotethyan Sanandaj-Sirjan zone of Iran as an arc type for passive margin-arc transitions. Tectonics 35(3): 586–621. doi:10.1002/2015TC003926.
[28]. Lechmann, A., Burg, J.P., Ulmer, P., Mohammadi, A., Guillong, M., & Faridi, M. (2018). From Jurassic rifting to Cretaceous subduction in NW Iranian Azerbaijan: geochronological and geochemical signals from granitoids. Cont. Min. Petrol. 173: 102. doi.org/10.1007/s00410-018-1532-8.
[29]. Azizi, H., & Whattam, S.A. (2022). Does Neoproterozoic-Early Paleozoic (570–530 Ma) basement of Iran belong to the Cadomian Orogeny? Precam. Res. 368 (2022) 106474. https://doi.org/10.1016/j.precamres.2021.106474.
[30]. Asadi, S.A.A., Ghasemi, H., Sepidbar, F., Mobasheri, M., Shi, Y., & Palin, R. M. (2023). A polygenetic origin for the Sikhoran ultramafic-mafic complex in South Iran.
Lithos 456-457. 107336.
doi.org/10.1016/j.lithos.2023.107336.
[31]. Mehdipour Ghazi, J. & Moazzen, M. (2015). Geodynamic evolution of the Sanandaj-Sirjan Zone, Zagros Orogen, Iran. Turk. J. Earth Sci. 24: 513-528. doi:10.3906/yer-1404-12.
[32]. Hassanzadeh, J., Stockli, D.F., Horton, B.K., Axen, G.J., Stockli, L.D., Grove, M., Schmitt, A.K. & Walker, J.D. (2008). U-Pb zircon geochronology of late Neoproterozoic- Early Cambrian granitoids in Iran. Implications for paleogeography, magmatism, and exhumation history of Iranian basement. Tectonophysics 451: 71-96.
[33]. Moghadam, H. S., Brocker, M., Griffin, W. L., Li, X. H Chen, R. X., & O’Reilly1 S. Y. (2017). Subduction, high–P metamorphism and collision fingerprints in SW Iran: Constraints from zircon U-Pb and mica Rb–Sr geochronology. Geochem. Geoph. Geosy. 18: 306-332. doi: 10.1002/2016GC006585.
[34]. Ghasemi, H., Juteau, T., Bellon, H., Sabzehei, M., Whitechurch, H., & Ricou, L.E. (2002). The mafic-ultramafic complex of Sikhoran (Central Iran): A polygenetic ophiolite complex
. C. R. Geosci. 334: 431-438.
doi.org/10.1016/S1631-0713(02)01770-4.
[35]. Ghasemi, H., Sabzehei, M., Juteau, T., Bellon, H., & Emami, M.H. (2004). Radiometric age of mafic parts and metamorphic hosts of Sikhoran ultramafic-mafic complex, southeastern Iran. Geosci. 11(51-52): 58-67 (in Persian).
[36]. Ahmadipour, H., Sabzehei, M., Emami, M., Whitechurch, H., & Rastad, E. (2003). Soghan complex as an evidence for paleo spreading center and mantle diapirism in Sanandaj-Sirjan zone (south-east Iran). J. Sci. Islam. Repub. Iran 14: 157-172.
[37]. Baharifar, A., Moinevaziri, H., Bellon, H. & Piqué, A. (2004). The crystalline complexes of Hamadan (Sanandaj – Sirjan zone, western Iran): Meta-sedimentary Mesozoic sequences affected by Late Cretaceous tectono-metamorphic and plutonic events. C. R. Geosci. 336: 1443-1452.
[38]. Fazlnia, A., Schenk, V., Appel, P., & Alizade, A. (2013). Petrology, geochemistry, and geochronology of the Chah-Bazargan gabbroic intrusions in the south Sanandaj-Sirjan zone, Neyriz, Iran. Inter. J. Earth Sci. 102: 1403-1426, doi:10.1007/s00531-013-0884-6.
[39]. Didier, J., & Barbarin, B. (1991). The different types of enclaves in granites-nomenclature. In: J. Didier, & Barbarin, B. (Eds.).
Enclaves and granite petrology: Development in Petrology. Elsevier, Amsterdam: 19-24.
http://pascal-francis.inist.fr/vibad/index.php?action= getRec ordDetail&idt= 6546938.
[40]. Vernon, R. H. (1984). Microgranitoid enclaves in granites - globules of hybrid magma quenched in a plutonic environment. Nature 309: 438-439.
doi.org/10.1038/309438a0.
[41]. Vernon, R.H. (2004). A practical guide to rock microstructures. Cambridge University Press. 594p.
[42]. Morimoto, N., Fabrise, J., Ferguson, A., Ginzburg, I. V., Ross, M., Seifert, F.A., Zussman, J., Akoi, K., & Gottardi, G. (1988). Nomenclature of pyroxenes. Am. Min. 173: 1123-1133.
[43]. Leake, B.E., Woolley, A.R., Arps, C.E., Birch, W.D., Gilbert, M.C., Grice, J.D., Hawthorne, F.C., Kato, A., Kisch, H.J., & Krivovichev, V.G. (1997). Nomenclature of amphiboles; report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on new minerals and mineral names. Min. mag. 61(405): 295-310.
[44]. Yavuz, F., & Döner, Z. (2017). WinAmptb: A Windows program for calcic amphibole thermobarometry. Periodico di Min. 86: 135-167. doi: 10.2451/2017PM710.
[45]. Putirka, K.D. (2008). Thermometers and barometers for volcanic systems. Rev. Min. Geochem. 69(1): 61-120. doi.org/10.2138/rmg.2008.69.3.
[46]. Nimis, P., & Taylor, W. (2000). Single clinopyroxene thermobarometry for garnet peridotites. Part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer. Cont. Min. Petrol. 139: 541-554. doi.org/10.1007/s004100000156.
[47]. Williams, I. S., & Claesson, S. (1987). Isotopic evidence for the Precambrian provenance and Caledonian metamorphism of high grade paragneisses from the Seve Nappes, Scandinavian Caledonides. II: Ion microprobe zircon U-Th-Pb. Cont. Min. Petrol. 97: 205-217.
[48]. Claoue-Long, J. C., Compston, W., Roberts, J., & Fanning, C. M. (1995). Two Carboniferous ages: a comparison of SHRIMP zircon dating with conventional zircon ages and 40Ar/39Ar analysis. In: Berggren, W. A., Kent, D. V., Aubry, M. P., & Hardenbol, J. (Eds.). Geochronology Time Scales and Global Stratigraphic Correlation. SEPM (Society for Sedimentary Geology) Special Publication No. 4: 3-21.
[49]. Black, L. P., Kamo, S. L., Allen, C. M., Aleinikoff, J. A., Davis, D. W., Korsch, J. R., & Foudolis, C. (2003). TEMORA 1: a new zircon standard for Phanerozoic U-Pb geochronology. Chem. Geol. 200: 155-170.
[50]. Nisbet, E. G., & Pearce, J. A. (1977). Clinopyroxene composition in mafic lavas from different tectonic Settings. Cont. Min. Petrol. 63: 149-160.
[51]. Anderson, J.L. (1996). Status of thermobarometry in granitic batholiths, Earth and Env. Sci. Trans. Royal Society of Edinburgh. 87(1-2): 125-138. doi: 10.1017/S0263593300006544.
[52]. Anderson, J.L. 1997. Status of thermobarometry in granitic batholiths. Earth and Env. Sci. Trans. The Royal Society of Edinburgh. 87: 125-138. http://journals.cambridge.org/abstract-S0263593300006544.
[53]. Anderson, J.L., & Smith, D.R. (1995). The effect of temperature and oxygen fugacity on Al-in-hornblende barometry. Am. Min. 80(5-6): 549-559.
[54]. Anderson, J.L., Barth, A.P., Wooden, J.L., Mazdab, F., 2008. Thermometers and thermobarometers in granitic systems
. Rev. Min. Geochem. 69: 121-142.
https://doi.org/10.2138/rmg.2008.69.4.
[55]. Andrews, B.J., Gardner, J.E., & Housh, T.B. (2008). Repeated recharge, assimilation, and hybridization in magmas erupted from El Chichón as recorded by plagioclase and amphibole phenocrysts. J. Volcan. Geoth. Res. 175(4): 415-426.
[56]. Blundy, J.D. & Holland, T.J.B. (1990). Calcic amphibole equilibria and a new amphibole-plagioclase geothermometer. Cont. Min. Petrol. 104: 208-24.
[57]. Ernst, W., & Liu, J. (1998). Experimental phase-equilibrium study of Al-and Ti-contents of calcic amphibole in MORB-A semiquantitative thermobarometer
. Am. Min. 83: 952-969.
doi.org/10.2138/am-1998-9-1004.
[58]. F´em´enias, O., Mercier, J.C.C., Nkono, C., Diot, H., Berza, T., Tatu, M., & Demaiffe, D. (2006). Calcic amphibole growth and compositions in calc-alkaline magmas: Evidence from the Motru dike swarm (southern Carpathians, Romania). Am. Min. 91: 73-81. doi: 10.2138/am.2006.1869.
[59]. Hammarstrom, J.M., & Zen, E.-a. (1986). Aluminum in hornblende: an empirical igneous geobarometer. Am. Min. 71(11-12): 1297-1313.
[60]. Helmy, H., Ahmed, A., El Mahallawi, M., & Ali, S. (2004). Pressure, temperature and oxygen fugacity conditions of calc-alkaline granitoids, Eastern Desert of Egypt, and tectonic implications. J. Afr. Earth Sci. 38(3): 255- 268.
[61]. Johnson, M.C., & Rutherford, M.J. (1989). Experimental calibration of an aluminum-in-hornblende geobarometer with application to Long Valley caldera (California) volcanic rocks. Geology 17(9): 837-841.
[62]. Kretz, R. (1994). Metamorphic Crystallization. John Wiley & Sons. New York. 507p.
[63]. Lindsley, D. H. (1983). Pyroxene thermometry. Am. Min. 68: 477-493.
[64]. Luhr, J.F., Carmichael, I.S. & Varekamp, J.C. (1984). The 1982 eruptions of El Chichón Volcano, Chiapas, Mexico: mineralogy and petrology of the anhydrite bearing pumices
. J. Volcan. Geoth. Res. 23(1-2): 69-108.
10.1016/0377-0273(84)90057-X.
[65]. Ridolfi, F., Renzulli, A., & Puerini, M. (2010). Stability and chemical equilibrium of amphibole in calc-alkaline magmas: An overview, new thermobarometric formulations and application to subduction-related volcanoes. Cont. Min. Petrol. 160(1): 45-66. doi 10.1007/s00410-009-0465-7.
[66.] Ridolfi, F., & Renzulli, A. (2012). Calcic amphiboles in calc-alkaline and alkaline magmas: Thermobarometric and chemometric empirical equations valid up to 1,130° C and 2.2 GPa. Cont. Min. Petrol. 163(5): 877-895. doi 10.1007/s00410-011-0704-6.
[67]. Ridolfi, F., Renzulli, A., Perugini, D., Cesare, B., Braga, R., & Del Moro, S. (2016). Unravelling the complex interaction between mantle and crustal magmas encoded in the lavas of San Vincenzo (Tuscany, Italy). Part II: Geochemical overview and modelling.
Lithos 244: 233-249. doi:
10.1016/j.lithos.2015.09.029.
[68]. Scaillet, B., & Evans, B.W. (1999). The 15 June 1991 eruption of Mount Pinatubo. I. Phase equilibria and pre-eruption P-T-f O2-f H2O conditions of the dacite magma.
J. Petrol. 40(3): 381-411. doi:
10.1093/petroj/40.3.381.
[69]. Schmidt, M.W. (1992). Amphibole composition in tonalite as a function of pressure: An experimental calibration of the Al-in-hornblende barometer. Cont. Min. Petrol. 110: 304-310.
[70]. Schweitzer, E. L., Papike, J. J. & Bence, A. E. (1979). Statistical analysis of clinopyroxenes from deep-sea basalts. Am. Min. 64: 501-513.
[71]. Soesoo, A. (1997). A multivariate statistical analysis of clinopyroxene composition: Empirical coordinates for the crystallisation PT-estimation. Geol. Soci. Swed. (Geologiska Föreningen) 119: 55-60.
[72]. Stein, E., & Dietl, C. (2001). Hornblende thermobarometry of granitoids from the Central Odenwald (Germany) and their implications for the geotectonic development of the Odenwald
. Min. petrol. 72 (1): 207-285.
www.researchgate.net/publication/225775322.
[73]. Sial, A., Ferreira, V., Fallick, A., & Cruz, M.J.M. (1998). Amphibole-rich clots in calc-alkali granitoids in the Borborema province, northeastern Brazil. J. South Am. Earth Sci. 11(5): 457-471.
[74]. Hawthorne, F.C., Oberti, R., Harlow, G.E., Maresch, W.V., Martin, R.F., Schumacher, J.C., & Welch, M.D. (2012). Nomenclature of the amphibole super group. Am. Min. 97(11-12): 2031-2048. doi.org/10.2138/am.2012.4276
[75]. Giret, A., Bonin, B., & Leger, J.M., 1980. Amphibole compositional trends in oversaturated and undersaturated alkaline plutonic ring-complexes. Can. Min. 18, 481/495.
[76]. Hawthorne, F.C., & Oberti, R. (2007). Classification of the Amphiboles. Rev. Min. Geochem. 67: 55-88. doi: 10.2138/rmg.2007.67.2.
[78]. Partin, E., Hewitt, D.A., & Wones, D.R. (1983). Quantification of ferric iron in biotite, Geol. Soci. Am. Abstract with programs 15: 659.
[79]. Wones, D.R., Burns, R.G., & Carrol, B.M. (1971). Stability and properties of synthetic annite. Am. Geophy. Uni. Trans. 52: 369.
[80]. Abbot R.N. Jr., & Clarke, D.B. (1979). Hypothetical liquidus relationships in the subsystem Al2O3-FeO-MgO projected from quartz, alkali feldspar and plagioclase for (H2O) < 1. Can. Min. 17: 549-560.
[81]. Henry, D.J., Guidotti, C.V., & Thomson, J.A. (2005). The Ti-saturation surface for low-to-medium pressure metapelitic biotite: Implications for Geothermometry and Ti-substitution Mechanisms. Am. Min. 90(2-3): 316-328. doi.org/10.2138/am.2005.1498.
[82]. Nachit, H., Razafimahefa, N., Stussi, J.M & Caron, J.P. (1985). Composition chimique des biotites et typologie magmatique des granitoïdes. C. R. Acad. Sci. Paris, Ser. II 301: 813-818.
[83]. Nachit, H., Ibhi, A., Abia, El.-H. & Ohoud, M.B. (2005). Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites. C. R. Geosci. 337(16): 1415-1420. doi.org/10.1016/j.crte.2005.09.002.
[85]. Foster, M.D. (1960). Interpretation of the composition of trioctahedral micas. U.S. Geological Survey Professional Paper, Washington, 49 pp. pubs.usgs.gov/pp/0354b/report.
[86]. Zhao, K., Jiang, S., Yang, S., Daí, B., & Lu, J. (2012). Mineral chemistry, trace elements and Sr-Nd-Hf isotope geochemistry and petrogenesis of Cailing and Furong granites and mafic enclaves from the Qitianling batholith in the Shi-Hang zone, South China.
Gondw. Res. 22: 310-324.
doi.org/10.1016/j.gr.2011.09.010.
[87]. Nimis, P.A. (1995). Clinopyroxene geobarometer for basaltic systems based on crystal-structure modeling. Cont. Min. Petrol. 121: 115-125. doi.org/10.1007/s004100050093.
[88]. Wood, B. J., & Banno, S. (1973). Garnet-Orthopyroxene and orthopyroxene-clinopyroxene relationships in simple and complex systems. Cont. Min. and Petrol. 42: 109-124.
[89]. Wells, P. R. A. (1977). Pyroxene thermometry in simple and complex systems. Cont. Min. Petrol. 62: 129-139.
[90]. Davidson, P. M. (1985). Thermodynamic analysis of quadrilateral pyroxenes. Part 1: Derivation of the ternary nonconvergent site-disorder model. Cont. Min. Petrol. 91: 383-389.
[91]. Davidson, P. M., & Lindsley, D. H. (1985). Thermodynamic analysis of quadrilateral pyroxenes. Part 2: model calibration from experiments and application to geothermometry. Cont. Min. Petrol. 91: 390-404.
[92]. Yavuz, F. (2013). WinPyrox: A Windows program for pyroxene calculation classification and thermobarometry.
Am. Min. 98: 1338-1359.
doi.org/10.2138/am.2013.4292.
[93]. Bertrand, P., & Mercier, J. C. (1985). The mutual solubility of coexisting ortho and clinopyroxene: Toward an absolute geothermometr for natural systems? Earth and Plan. Sci. Lett. 76: 109-122.
[94]. Elkins, L.T., & Grove, T.L. (1990). Ternary feldspar experiments and thermodynamic models. Am. Min. 75:544-559.
[95]. Hollister, L.S., Grissom, G., Peters, E., Stowell, H., & Sisson, V. (1987). Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons. Am. Min. 72(3-4): 231-239.
[96]. Patino Douce, A. (1993). Titanium substitution in biotite: an empirical model with applications to thermometry, O2 and H2O barometries, and consequences for biotite stability.
Chem. Geol. 108(1–4): 133-162.
doi.org/10.1016/0009-2541(93)90321-9.
[97]. Uchida, E., Endo, S. & Makino, M. (2007). Relationship between solidification depth of granitic rocks and formation of hydrothermal ore deposits. Reso. Geol. 57(1): 47-56. doi.org/10.1111/j.1751- 3928.2006.00004.x.
[98]. Avanzinelli, R., Bindi, L., Menchetti, S., & Conticelli, S. (2004). Crystallisation and genesis of peralkaline magmas from Pantelleria Volcano, Italy: an integrated petrological and crystal-chemical study.
Lithos 73: 41-69. doi:
10.1016/j.lithos.2003.10.007.
[99]. Zhu, Y., & Ogasawara, Y. (2004). Clinopyroxene phenocrysts (with green salite cores) in trachybasalts: implications for two magma chambers under the Kokchetav UHP massif, North Kazakhstan.
J. Asian Earth Sci. 22(5): 517-527.
doi.org/10.1016/S1367-9120(03)000919.
[100] .Molina, J.F., Moreno, J.A., Castro, A., Rodríguez, C., & Fershtater, G.B. (2015). Calcic amphibole thermobarometry in metamorphic and igneous rocks: New calibrations based on plagioclase/amphibole Al-Si partitioning and amphibole/liquid Mg partitioning
. Lithos, 232, 286-305.
doi.org/10.1016/j.lithos.2015.06.027.
[101]. Karimpour, M.H., Stern, C.R., Mouradi, M., (2011). "Chemical composition of biotite as a guide to petrogenesis of granitic rocks from Maherabad, Dehnow, Gheshlagh, Khajehmourad and Najmabad, Iran".
Journal of Crystallography and Mineralogy, 18(4), 89-100.
ijcm.ir/article-1-502-en.html.
[102]. Azadbakht, Z., Lentz, D.R., McFarlane, C.R.M., Whalen, J.B., (2020). "Using magmatic biotite chemistry to differentiate barren and mineralized Silurian- Devonian granitoids of New Brunswick, Canada". Contribution to Mineralogy and Petrology, 175. doi.org/10.1007/s00410- 020-01703-2.
[103]. Khosravi, M., Christiansen, E.H., Rajabzadeh, M.A., (2021). "Chemistry of rockforming silicate and sulfide minerals in the granitoids and volcanic rocks of the Zefreh porphyry Cu-Mo deposit, central Iran: implications for crystallization, alteration, and mineralization potential. Ore Geology Review". doi.org/10.1016/j.oregeorev.2021.104150.
[104]. Kumar, A.A., Ashok, Ch., (2023). "Geochemistry and mineral chemistry of the armoor granitoids, eastern dharwar craton: implications for the redox conditions and tectonomagmatic environment". Acta Geochim. doi.org/10.1007/s11631-023-00647-1.
[105]. Villaseca, C., Ruiz-Martı´nez, V.C., Pe´rez-Soba, C., (2017). "Magnetic susceptibility of Variscan granite- types of the Spanish central system and the redox state of magma". Geol Acta, 15, 379-394. doi.org/10.1344/GeologicaActa2017.15.4.8
[106]. Jiang, Y.H., Jiang, S.Y., Ling, H.F., Zhou, X.R., Rui, X.J. and Yang, W.Z., (2002). "Petrology and geochemistry of shoshonitic plutons from the western Kunlun orogenic belt, Xinjiang, northwestern China: implications for granitoid geneses". Lithos, 63(3-4), 165-187. 10.1016/ S0024- 4937(02) 00140-8.
[107]. Williamson, B.J., Herrington, R. J., & Morris, A. (2016). Porphyry copper enrichment linked to excess aluminium in plagioclase. Nature Geosci. 9: 237-241.
[108]. Richards, J.P. (2016). Clues to hidden copper deposits. Nature Geosci. 9: 195-196.
[109]. Zarasvandi, A., Rezaei, M., Raith, J.G., Pourkaseb, H., Asadi, S., Saed, M., & Lentz, D. R. (2018). Metal endowment reflected in chemical composition of silicates and sulfides of mineralized porphyry copper systems, Urumieh-Dokhtar magmatic arc, Iran. Geoch. Cosm. Acta, 223: 36-59.
[110]. Rezaei, M., & Zarasvandi, A. (2022). Combined Feldspar-Destructive Processes and Hypogene Sulfide Mineralization in the Porphyry Copper Systems: Potentials for Geochemical Signals of Ore Discovering. Ir. J. Sci. and Tech. 46: 1413-1424.
[111]. Sepahi, A.A., Nemati, B., Asiabanha, A., Miri, M., & Deniz, K. (2023). Mineral chemistry and petrology of magmatic rocks from NW Takestan (NW Iran). Geopersia 13(1): 123-143 doi: 10.22059/GEOPE.2023.350569.648686.
[112]. Dehghani, G.A., & Makris, J. (1984). The gravity field and crustal structure of Iran. N. Jb. Geol. Palaontol. Agh. 168:215-229.
[113]. Tatar, M., & Nasrabadi, A. (2013). Crustal thickness variations in the Zagros continental collision zone (Iran) from joint inversion of receiver functions and surface wave dispersion. J. Seismo. doi 10.1007/s10950-013-9394-z.
[114]. Motaghi, K., Shabanian, E. & Kalvandi, F. (2017). Underplating along the northern portion of the Zagros suture zone, Iran.
Geophy. J. Inter. 210(1): 375-389.
doi.org/10.1093/gji/ggx168.
[115]. Chaussard, E. & Amelung, F. (2014). Regional controls on magma ascent and storage in volcanic Arcs. Geochem. Geoph. Geosy. 1407-1418.
[116]. Humphreys, MC.S, Blundy, J.D, & Sparks, R.S.J. (2006). Magma evolution and open-system processes at Shiveluch volcano: Insights from phenocryst zoning. J. Petrol. 47: 2303-2334. doi:10.1093/petrology/egl045.