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This research endeavor concentrates on minerals exploration within the context of
a hydrothermal polymetallic vein deposit environment. Stream sediment sampling
was executed to acquire geochemical signatures pertinent to mineralization zones.
The mineralization nature is classified as epithermal, predominantly involving
polymetallic sulfides. The geochemical analyses yielded multi-element concentration
maps, facilitating the identification of anomalies and the establishment of zoning.
Although recent developments underscore the efficacy of machine learning, notably
deep learning techniques, in the detection of geochemical anomalies, the majority of
preceding studies were predicated on univariate statistical methodologies. To address
this constraint, a multivariate approach was implemented, incorporating spatial
characteristics such as shape, overlap, and zoning within anomalies and halos.
Considering the limited availability of validated mineralized samples, unsupervised
and semi-supervised methodologies—most notably Generative Adversarial Networks
(GANs)—were employed. GANs were trained using multi-element geochemical
maps, applying transfer learning to mitigate the challenges posed by restricted deposit
data, thereby facilitating the delineation of prospective exploration zones.
Quantitative analyses have indicated that the approach utilizing GANs attained an
accuracy exceeding 92% alongside a minimal cross-entropy loss of approximately
0.07, thereby surpassing conventional methodologies in detecting of weak anomalies.
The model effectively corroborated previously recognized anomalies while
simultaneously detecting new prospective mineralization areas, thereby augmenting
exploration opportunities. This investigation illustrates that GANs enable a more
thorough utilization of geochemical datasets, integrating a wide range of variables
and intricate spatial characteristics. Although GANs demonstrate superior proficiency
in modeling weak anomalies, conventional techniques continue to be effective for
more pronounced anomalies. The integration of both methodologies may enhance the
efficiency of mineral exploration endeavors. In summary, the results emphasize the
promise of GANs and sophisticated machine learning frameworks in enhancing
anomaly detection and expanding mineral exploration within hydrothermal
polymetallic systems.

1. Introduction

Mineral prospectivity mapping and detecting
anomalies are fundamental objectives within the
realm of regional geochemical exploration.
Anomaly detection pertains to the recognition of
data points that significantly diverge from the

E Corresponding author: ardehez@aut.ac.ir (A. Hezarkhani)

greater part of samples [1]. This methodology is of
paramount importance as it mitigates both risk and
financial expenditures associated with exploration
endeavors. Consequently, anomaly detection has
evolved into a crucial component within various
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decision-making frameworks. In recent decades, a
diverse array of methodologies has been developed
for the identification of geochemical anomalies,
encompassing statistical ~ techniques [2],
geostatistical methods [3-5], integrating principal
component analysis and U-statistics [6], and fractal
modeling approaches [6-9]. However, the
emergence of machine learning (ML) and deep
learning techniques has precipitated substantial
enhancements in modeling applications within the
Earth sciences [10-15]. These advancements
indicate that ML-based methodologies for mineral
prospectivity mapping utilizing geochemical data
are more adept at revealing statistical correlations
between observed geochemical patterns and
mineralization trends compared to conventional
non-ML  approaches.  Furthermore,  these
methodologies equip geoscientists to execute
comprehensive multivariate geochemical analyses
within a big data framework, thus facilitating the
identification of geochemical anomalies [16-20].
It is vital to employ methods that can
characterize mineral deposits and detect
geochemical anomalies, as well as assess the
reliability of geochemical data. These methods
must have the ability to overcome survival bias to
avoid incorrect evaluation. In this regard, several
methods can be mentioned in previous studies.
Exploration Information System (EIS), which was
introduced in 2019 and published in Ore Geology
Reviews, serves as an integrated analytical
platform that synthesizes diverse datasets relevant
to mineral exploration, including geological,
geophysical, and geochemical information [21]. Its
primary function is to enhance targeting accuracy
for mineral deposits by providing a holistic
assessment  framework,  thus  supporting
exploration strategies with higher confidence
levels. The utilization of EIS allows for better
integration of exploration data, leading to
improved  decision-making and  resource
prioritization in prospectivity analysis.
Complementing this, the Confidence Index
functions as a quantitative measure of the
reliability and certainty associated  with
geochemical anomalies detected in exploration
data [22]. This index employs probabilistic
approaches, such as Bayesian inference, to evaluate
the likelihood that identified anomalies are
indicative of mineralization rather than false
positives or data noise. By providing a statistical
measure of data confidence, this tool helps mitigate
uncertainties inherent in exploration datasets and
facilitates a more robust ranking of targets. The
combination of EIS and the Confidence Index
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within a comprehensive exploration workflow
addresses key challenges related to data uncertainty
and bias. This approach aligns with the overarching
goal of employing advanced methods to improve
the accuracy and reliability of mineral exploration
outcomes. Additionally, such tools are instrumental
in overcoming issues like survivorship bias, which
can lead to overly optimistic assessments of
exploration results. Their application ensures that
resource estimates and exploration decisions are
based on more realistic and statistically sound
foundations. Furthermore, methods to address bias
in exploration data, such as survivorship bias, are
critical to avoid overly optimistic resource
assessments. Overcoming survival bias leads to
improve accuracy in targeting mineral deposits
[23]. Recognizing and mitigating these biases
ensures that exploration strategies are based on
more realistic evaluations of mineral potential.
Machine learning methods, given their capabilities,
are well-suited to meet the aforementioned
requirements. They can effectively analyze
geochemical data, identify anomalies, and assess
uncertainties, while also addressing biases such as
survivorship bias. These approaches enhance the
accuracy of exploration predictions and provide
more reliable assessments of mineral deposit
potential.

Recent empirical studies have elucidated that
machine learning (ML) methodologies
significantly enhance the amalgamation of multi-
faceted geochemical datasets, thereby facilitating
the proficient identification and extraction of
geochemical anomalies that are concomitant with
mineralization, which may have eluded detection
by conventional non-ML approaches [24-28]. This
observation suggests that numerous hydrothermal
mineral deposits coexist with surrounding halos
that exhibit anomalous elemental concentrations
pertinent to mineralization—designated  as
pathfinders—stemming from the dispersion within
stream sediments. Consequently, it is crucial to
analyze the alterations in the spatial attributes of
multivariate geochemical anomalies and their
correlation with mineralization to pinpoint new
regions for prospective mineral exploration and to
explore additional mineral resources. Both
machine learning and deep learning frameworks
permit the formulation of sophisticated models or
algorithms proficient in detecting anomalies
associated with mineralization, a task that
conventional (non-ML) methodologies frequently
fail to achieve. This accentuates the potential of
ML and deep learning techniques to augment the
efficacy of geochemistry-oriented mineral
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exploration. As the magnitude and intricacy of data
managed by these methodologies increase,
advanced learning algorithms have been proposed
to address such complex datasets for anomaly
detection. These encompass convolutional neural
networks (CNN) [19], recurrent neural networks
(RNN) [29], autoencoders (AE) [30], and
generative adversarial networks (GANs) [31].
Generative models have surfaced as prominent
instruments for anomaly detection due to their
proficiency in fitting data distributions.
Importantly, the variable autoencoder (VAE) [30]
and GAN, along with their diverse adaptations, are
frequently employed. VAE aims to minimize the
lower bound of the logarithmic likelihood of the
data, whereas GAN seeks to establish a balance
between the generator and discriminator [32].
Empirical findings suggest that GAN surpasses
VAE in yielding superior-quality and higher-
resolution outputs [33]. As a result, GAN has
garnered substantial attention since its inception,
exhibiting an extraordinary capacity to generate
realistic image samples. By exclusively training on
a dataset composed of standard exemplars and
acquiring latent-space feature representations, it
can identify anomalous samples that do not
reconstruct accurately. The generative capabilities
of GAN mitigate challenges associated with
limited anomalous sampling [34]. Moreover, GAN
is particularly well-suited for anomaly detection
tasks that involve intricate datasets and can
proficiently represent the distribution of high-
dimensional data. Thus, most contemporary GAN-
based frameworks and concepts are well-equipped
for anomaly identification.

This research addresses a critical gap in the
existing literature by integrating advanced machine
learning approaches, in particular generative
adversarial networks, into the framework of
anomaly detection in mineral exploration. This is a
critical area where conventional techniques often
struggle to produce satisfactory results. While
previous studies focused mainly on univariate and
simple multivariate analyses, this research takes
advantage of the benefits of deep learning to
explore complex, high-dimensional geochemical
data sets, which provide a more nuanced
understanding of mineralization trends and
geochemical anomalies. The importance of closing
this gap is underlined by the increasing complexity
and volume of available geochemical data, together
with the demand for improved exploration
techniques that reduce risk and optimize resource
extraction. The aim of the study is not only to
advance the identification of mineral deposits but
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also to provide a methodological framework that
can be adapted to different geological
environments and ultimately shape future
exploration strategies. This study proposes a new
approach that combines GANs with the analysis of
geochemical data to improve the detection of small
anomalies and to increase the overall efficiency of
mineral prospectivity mapping.

2. The study area

Iran is divided into several areas according to its
mineral and geological resources [35-40]. In this
section, the Flysch Basin in eastern Iran is
considered to be one of the geological states of
origin [35]. The eastern boundary of this area is
found at Iran's eastern edge, western Pakistan, and
the Sistan block (Harirud fault), while the western
boundary is marked by the Nehbandan fault, and to
the south, it is bordered by the Makoran zone and
the Bashagard fault. The Janja region is situated in
the Flysch basin in eastern Iran, 30 km northwest
of Sefidabeh. The position of this area and the ways
to access it are illustrated in Figure 1. The study
focuses on a hydrothermal polymetallic vein
deposit, primarily consisting of polymetallic
sulfides associated with epithermal mineralization.
The selection of elements—Ag, Zn, Cu, Pb, and
Au—is driven by their significance as pathfinder
elements and indicators of mineralization
processes in such deposits. Silver (Ag), zinc (Zn),
copper (Cu), and lead (Pb) are commonly
associated with polymetallic sulfide
mineralization, often co-occurring with gold (Au),
which is a valuable target for exploration. These
elements serve as geochemical proxies, enhancing
the detection of mineralization zones and providing
essential information for prospective exploration.

A L~ k Nehbandan l

-
Tehran
Study Are o Madeh Kariz
Village
Sefidabeh
illage

Zahedan<,

Figure 1. The location of the study area

As mentioned, the geological formations of
Janja consist primarily of sedimentary units (Figure
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2). The basin consists of extensive beds of flysch
facies, which contain shale, sandstone, and
limestone, with ophiolite-bearing strata attached to
the oceanic crust. The most ancient sedimentary
formations in the region are composed of rocks
with Cretaceous intrusive units. Sedimentary units
in the area were affected by magma activity,
including infiltration and outflow [41]. In the study
area, a series of porphyry dykes, likely of diorite to
granodiorite ~ composition,  intersects  the
sedimentary formations of the Flysch facies.
Evidence of gold and copper mineralization is
visible in these units, probably stemming from
these dikes.

The bedrock of the Janja Mountains is mainly
slate, accompanied by sandstone beds. In the
higher regions, tough rocks exhibiting a hornfels

passco 248200 248600 206200 206400
ry ry ry ry
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appearance are seen, which consist of shales and
siltstones  that have  undergone  minor
metamorphism and considerable alteration. The
cause of this transformation and change is the
intrusion of various diorite dykes within them. The
general orientation of sedimentary and
metamorphic rocks is primarily northwest-
southeast, although this order is broken by dike
intrusion. In general, the Flysch sequence was
disrupted by several dykes showing an eastern and
northeast-southwestern orientation, characterized
by porphyry diorite hornblende composition.
Radiometric data indicate that its age ranges from
the middle to late Miocene epoch [42]. These
intrusive rocks have created dark, weathered
hornfels and metamorphic halos in the surrounding
rock that are visible.
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Figure 2. Geological map of the study area

3. Materials and Methods

The data used in this study were obtained as part
of the Janja initiative for geological exploration. In
total, 154 stream sediment geochemical samples
were collected in a network covering 144 km?2
(Figure 3). The density of the sampling network for
the geochemical samples is estimated at
approximately 1.3 samples per square kilometer.

All samples were analyzed for 48 elements
using the ICP-AES method. It should be noted that
the technique of preparation of the fire assay was
used for the gold analysis. The results of the
statistical analysis of the stream sediments
geochemical data from the Janja area are presented
in Table 1.

Table 1. Statistical analysis of geochemical data from the Janja area

Element Concentration
Min Max Median Mean Standard deviation
Au (ppm) 0.003 0.04 0.0038 0.0045 0.0037
Ag (ppm) 0.12 0.42 0.27 0.25 0.07
Cu (ppm) 19 103 26 26.64 6.9
Pb (ppm) 9 544 19 24.88 439
Zn (ppm) 46 538 68 72.63 39.84
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The geochemical data obtained were used to
create maps of the distribution of the elements. This
study then uses GANS to identify potential areas for
gold exploration using multi-element geochemical
maps, combining different spatial features, and
using transfer learning to address the gap in known
deposits. Figure 4 summarizes the research
methodology.

3.1. GAN networks

A Generative Adversarial Network (GAN)
consists of two parts: a generator (G) and a
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discriminator (D) [43] (Figure 5). The generator
input is random noise that follows a specific
distribution. The generator learns the distribution
of the real data from the latent space and generates
new examples. The discriminator is a classical
classification system structure that tries to classify
examples as real (from the domain) or fake
(generated). The two models are trained together in
a zero-sum game. That is, they are adversarial until
the discriminator can distinguish whether the
example is a generated or real example, which
indicates that the generator model can produce
acceptable examples.
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Figure 3. Geochemical sampling network of the study area
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Figure 5. Architecture of deep generative adversarial networks [43]

GAN:Ss is a generative algorithm that has its roots
in deep learning paradigms. GANs exhibit
remarkable capabilities. In image synthesis
applications, the generator uses random noise (z) as
its input to produce visual outputs, denoted by
G(z). The discriminator's function is to assess
whether an image is genuine or fake [43]. During
the training phase of GANSs, the goal is to ensure
that the images produced by the generator network
G closely resemble real images, thereby
confounding the discriminator network D.
Conversely, the discriminator aims to accurately
discriminate between the artificial outputs of the
generator and authentic images [43]. For the GAN
framework, its value function V(G,D) is as follows
(equation 1 to 3):

Leeat(D)= Epiaa[logD(y)] O

Lute(G.D)= Eiolog(1-D(G(2)] 2

minmax\y (D), G) =Lyea(D)+Liuke(G,D) 3)
Where are:

y — the real image,

G — the trained generation network that can be used
to generate “fake” images.

3.2. Transfer learning

Effective deployment of generative adversarial
networks (GANS) as an unsupervised deep learning
framework requires a significant amount of
training data [28]. However, exploration at an early
stage is usually in regions with only a limited
number of known deposits or mineral occurrences.
These few examples often serve as the labeled
training data needed to model geochemical
anomaly detection and mineral prediction, which
significantly hampers the convergence and
accuracy of neural network training. To address the
issues resulting from the absence of sample labels,
the study will implement transfer learning.

Transfer learning is a machine learning
approach that utilizes pre-trained models for
distinct but related tasks. It aims to reduce the
manual effort required in sample annotation by
migrating models from a source domain—where
labeled data exists—to a target domain that lacks
extensive labeled datasets [44]. Moreover, research
indicates that transfer learning can bridge
discrepancies in input data across different models
and effectively mitigate overfitting issues [45]. The
rapid advancements in neural network
architectures have spurred considerable research
interest in transfer learning [46-48].

In this study, we use Google Inception-v3
convolutional neural network template for the
training process. Unlike the conventional GAN
structure, characterized by a generative network
and a discriminative network [43], the Inception-
v3 model has several generative and discriminative
layers. These additional layers increase the model's
ability to extract the image features more
efficiently and allow for the accurate identification
of the geochemical anomaly. The Inception-v3
architecture contains approximately 25 million
parameters and can perform fast image
classification on standard computers without the
need for a GPU. The structure of the Inception-v3
template is shown in Figure 6.

This methodology uses pre-trained models
derived from large data sets originally developed
based on large training sets, which require
significant time and computing resources. Given
the uncertain characteristics of the study area, we
implement a transfer learning strategy in
combination with the pre-trained Inception-v3
model to enhance network convergence for
foresight modeling applications. This transfer
learning approach is specifically utilized to explore
geochemical anomaly detection. Although we
maintain the fundamental structure of the
Inception-v3 model, modifications are made by
substituting its dropout, fully connected, and
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softmax layers with entirely new components. This
innovative modification is a new strategy for
detecting geochemical anomalies. By
incorporating modified softmax layers and
utilizing the cross-entropy loss function, we retrain
the model by evaluating the error between the

Spectrogram
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outputs of the softmax layer and the corresponding
class labels of the samples. This retraining process
yields an improved model capable of effectively
identifying geochemical anomalies, thereby
mitigating the challenges posed by the limited
number of known sediments and occurrences.

el
i

[ convolutiontayer [N Poollayer [ Filter concatenation [N Uinear layer [II Softmax layer
Figure 6. Inception-v3 model's architecture [49]

In our approach, the inputs to the Inception-v3 model consist of maps representing the spatial distribution
of geochemical elements. The subsequent phase of modeling involves the replacement of the dropout, fully
connected, and softmax layers in the pre-trained Inception-v3 model with completely new layers designed for
our specific task. Following this modification, we retrain the model by calculating the discrepancies between
the output of the softmax layer and the provided sample class labels; weight parameters are adjusted
accordingly using a cross-entropy loss function. This comprehensive process ultimately leads to a more
accurate training model. The overall workflow of this simultaneous neural network modeling using the
Inception-v3 architecture is illustrated in Figure 7.
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Transfer Learning
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Earthstar
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Indri

Figure 7. The main GAN neural network process flow of the modeling undertaken during this study

properties, scale, and spatial connections among
the samples in a specific dataset. In this study,
ordinary kriging was applied to interpolate the data
related to the five elements analyzed from the
samples gathered in the research area, resulting in
the development of the spatial distribution maps
presented in Figure 8.

4. Results and analysis
4.1. Data Preparation

Ordinary kriging functions are the most
effective unbiased linear estimator for interpolating
spatially variable data [50, 51]. This method
utilizes variograms to assess the geometric
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Figure 8. The maps illustrate the spatial distribution of the five elements examined in this study, with gold
expressed in ppb and the other elements represented in ppm

4.2. Model Training and Evaluation

This study is distinguished by its innovative use
of a Generative Adversarial Network (GAN)
combined with transfer learning techniques,
effectively tackling the issue of limited data

availability. This integration significantly improves
the detection of geochemical anomalies. To assess
the predictive accuracy of the GAN neural network
and the transfer learning model utilized in this
research, we aimed to investigate whether



Ebdali et al.

enhancing the model with additional geochemical
spatial distribution maps would lead to better
predictive outcomes. Consequently, we analyzed
four distinct subgroups of spatial distribution maps,
which included one element (Au), three elements
(Au, Ag, Cu), four elements (Au, Ag, Cu, Pb), and
five elements (Au, Ag, Cu, Pb, Zn). Each of these
elements is directly linked to mineralization in the
study area or acts as a pathfinder indicative of
various mineralization zones.

The  spatial  distribution maps  were
systematically subdivided into 264 uniform grid
cell images, each covering an approximate area of
0.22 km?. These grid images served as the basis for
selecting data to create training datasets for model
development. Within the datasets, positive samples
represent highly prospective areas, while negative
samples denote regions of lower prospectivity. The
classification into positive and negative samples
was based on the spatial location of identified ore
deposits or occurrences. Specifically, if a cell was
located within or near a known deposit boundary, it

(c) | 34510008 | <y (b)

3449000 | | NN (a)

34460000 : \ I ) (d)

3443000 =
245000 246000 247000 248000 249000 250000 251000
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was classified as a positive sample, indicating a
high prospectivity area. In the resulting images,
these areas were visually indicated by red and
orange shading. Conversely, cells characterized by
low gold concentrations, which do not serve as
reliable indicators of mineralization, were
designated as negative samples and depicted in
blue and purple shades within the images (Figure
9). This classification generated a dataset
consisting of a total of 14,859 positive grid cells
and 158,726 negative grid cells, forming the
foundation for training and validating the model
throughout this research. For data preparation, we
randomly selected 80% of the positive sample data,
alongside the entirety of the negative sample data
from each subgroup, to serve as the training
dataset. The remaining data within each subgroup
was then allocated for validation purposes. Table 2
summarizes the distribution of datasets, training
data, and validation data for each subgroup,
providing a comprehensive overview of the data
utilized in this analysis.

(c)

(b)

Figure 9. Map showing the distribution of gold in part of the study area, positive examples include (a, b) and
negative (c, d)

Table 2. The numbers of data sets, training data, and verification data of each subgroup

Subgroups data set training data verification data
One-elements 173585 170613 2972
Three-elements 173585 170613 2972
Four-elements 173585 170613 2972
Five-elements 173585 170613 2972

To improve the efficacy of models operating
with limited training datasets and to expedite the
convergence of neural networks, transfer learning
was employed. After preparing the datasets,
training data for each subgroup were generated by
combining the GAN neural network with the pre-

trained Inception-v3 model. These datasets were
instrumental in training the model and
subsequently assessing its accuracy. Throughout
the training process, accuracy metrics were
meticulously documented to evaluate the model's
performance, with particular attention paid to
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variations in accuracy as a measure of model
quality. Following the training phase, a validation
set was introduced to assess the model's predictive
capabilities and to quantify its prediction accuracy.
To enhance the model's performance, various
hyperparameters were evaluated during the
training process. The first hyperparameter,
layers_count, specifies the number of additional
dense layers included in the model, with
considerations for values of 1, 2, and 3. Moreover,
the dropout rate hyperparameter was established
to reduce overfitting, with evaluations for values of
0.3, 05, and 0.7 The learning rate
hyperparameter, which affects the speed at which
the model adjusts its parameters, was set to 0.0001,
0.001, and 0.01 during training. Furthermore, the
optimizer_type hyperparameter was defined to
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determine the optimizer selection, with options
such as 'adam' and 'sgd' (Stochastic Gradient
Descent). The activation_function hyperparameter,
which relates to the type of activation function used
in the Dense layers, included choices like 'relu’,
'tanh', 'sigmoid’, 'leaky relu', and 'elu’. Lastly, the
batch size hyperparameter, which indicates the
number of samples processed in each training
iteration, was assessed using values of 16, 32, and
64. These hyperparameters were incorporated as
inputs into the create model function, which was
responsible for constructing the appropriate model
architecture. ~ K-Fold  cross-validation  was
employed to determine the most -effective
combination of hyperparameters, as outlined in
Table 3.

Table 3. The tuning of model hyperparameters

GAN Model Hyperparameters

Search Range

Optimal Value After TuninL

Layers_count 11,2,3}

1

Dropout rate {0.3,0.5,0.7} 0.5
Leaming rate {0.0001,0.001,0.01} 0.0001
Optimizer_type {adam,sgd} adam
Activation function {relu, tanh, sigmoid, leaky relu, elu, softmax} softmax
Batch size {16,32,64} 32

The model's training procedure consisted of
2000 iterations with a learning rate set at 0.0001.
Throughout this process, both the training accuracy
and the variations in cross-entropy loss were
assessed. Training accuracy indicates the
proportion of images accurately classified by the
model using the designated training dataset.
Conversely, the cross-entropy loss function
measures the difference between the actual
probability distribution and the predicted
probability output. A decrease in cross-entropy
values signifies a closer match between these
distributions, indicating enhanced output accuracy.
As the training iterations advanced, the model
exhibited a significant learning effect, culminating
in an accuracy of 94%. Initially, the cross-entropy
loss experienced a substantial decline with each
iteration, reflecting a reduction in the gap between
actual and expected outputs, which aided in the
convergence of the network. Over time, as the
number of iterations increased, the cross-entropy
loss values kept diminishing, ultimately dropping
below 0.7. This benchmark indicates that the actual
outputs closely align with the expected outputs,
suggesting that the network has reached an optimal
state, thereby demonstrating the model's efficacy
and predictive power.

Furthermore, this research explored the impact
of dataset selection on the training model and the

10

accuracy of its predictions. To examine this factor,
the modeling process was replicated ten times for
each subset, with random selections for the training
sets, and the prediction accuracy was computed for
each instance. Figure 10a depicts the prediction
accuracy for each model, indicating that most
achieved accuracies exceed 70%, with several
models surpassing 90%. This finding implies that
the neural network model utilized in this study
effectively predicts the locations of unknown
mineralization areas based on the available
geochemical data, despite the choice of a dataset
having a minimal effect on the training process of
the model.

To further quantify the performance, the
average prediction accuracy for each subgroup was
calculated using Equation (4), based on the
prediction accuracies obtained from the ten
models. The average prediction accuracy for each
subgroup is depicted in Figure 10b, providing a
comprehensive  overview of the model's
consistency across different dataset selections.

2%0 pre_aclc(')(model_n) (4)

Mean_acc=

Where are:
pre_acc — the prediction accuracy of model n for
ne(1,10),
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Mean_acc — the mean prediction accuracy for a
subgroup.

The model trained with the one-element
subgroup exhibited the lowest average prediction
accuracy, whereas the model utilizing the three-
element subgroup achieved the highest average
prediction accuracy (Figure 10b). This discrepancy
suggests that incorporating additional elements in
the geochemical data from the study area enhances
the predictive capabilities of the neural network
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model employed in this research. However, it is
important to note that adding more elements does
not uniformly guarantee improved performance.
The model's success can be compromised by data
scatter and low correlation coefficients among the
target elements and the other variables. This
phenomenon was also observed in the models
trained with four and five elements, which did not
consistently yield better predictive accuracy
despite the increased complexity of the input data.

[ N N e - I s RNl
wm O W O wn O wn O
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Figure. 10. (a) A graph illustrating the prediction accuracy of all models generated in this study. (b) A graph
depicting the average prediction accuracy across the four subgroups analyzed in this research

4.3. Prospectivity modeling and mapping

The enhanced predictive accuracy
demonstrated by the neural network model, which
incorporates three elements, suggests that the final
model was developed using a robust dataset that
includes all positive and negative samples
(n=173,585). This comprehensive training enables
the model to accurately identify promising areas
for upcoming gold exploration. Figure 11 depicts
the model's training accuracy alongside the
variations in cross-entropy loss throughout the
training duration. The results indicate that repeated
training significantly improves the accuracy of the
training dataset, achieving values that surpass 90%.
This achievement underscores the model's high
precision and its capability to fulfill the
predetermined standards for recognition rates.
Furthermore, the initial cross-entropy loss showed
a marked decline during the training process,
indicating a narrowing of the disparity between
actual and expected outputs, which is a sign of
network convergence. Importantly, by the 500th
training iteration, the cross-entropy loss stabilized
at around 0.6. This point of convergence implies
that the actual outputs are in close agreement with
the expected outputs, confirming that the network
has attained an optimal condition. Collectively,
these results reinforce the assertion that the
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developed model is both effective and appropriate
for identifying potential areas for gold exploration.
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Figure 11. Graph depicting the changes in accuracy
and cross-entropy loss for the training model
throughout the iterative enhancement of the GAN
neural network and the transfer learning-based
model utilized in this study

Figure 12 presents the potential regions
identified by the final model. This map indicates
that the Inception-v3 deep learning framework, in
conjunction with the transfer learning techniques
utilized in this research, successfully recognized
the majority of known mineral deposits and
occurrences within the region. The outcomes
derived from the neural network modeling
demonstrate a more thorough identification of
established mineralization zones compared to the
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reliance on spatial distribution maps for individual
elements such as gold, silver, copper, lead, and
zinc. Solely depending on spatial distribution maps
for a single element frequently fails to accurately
identify geochemical anomalies. Specifically,
regions with known deposits may not display clear
positive geochemical anomalies when evaluated
through single-element maps. The results imply
that the integration of a broader range of
geochemical data enhances predictive capabilities,
facilitating the development of more precise
models for mineral prospectivity mapping utilizing
the GAN neural network. Furthermore, the
modeling process has underscored several regions
for prospective gold exploration, particularly Areas
II and VII, while Areas I, III, IV, V, and VI are

Legend
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[CNegative sample
[ Delineated target
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associated with polymetallic mineralization. By
incorporating multiple elements, the GAN neural
network 1is more adept at revealing hidden
anomalous information, thus improving the
reliability of its predictions. The identification of
these high-prospectivity regions by the neural
network model signifies that it has recognized
important features related to the spatial distribution
of the target elements, including aspects such as the
shape, overlap, and zoning of multivariate
geochemical anomalies and halos linked to
mineralization in the area. These findings suggest
that neural network modeling is a valuable method
for identifying highly prospective regions, which
should be prioritized for future gold exploration.
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Figure 12. The predictive findings for the entire study area indicate both high and low prospectivity regions,
thereby identifying potential targets for future exploration efforts

5. Discussion

This research highlights the effectiveness of
combining Generative Adversarial Networks
(GANs) with transfer learning strategies for
geochemical anomaly detection and mineral
exploration. The findings indicate that the GAN-
based methodology not only improves the
detection of geochemical anomalies but also
significantly surpasses conventional methods in
identifying  subtle and complex spatial
relationships  among  various  geochemical
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variables. A key strength of the GAN approach is
its capacity to learn complex data distributions
through adversarial training, which allows the
model to recognize intricate patterns and subtle
anomalies that may be missed by standard
techniques. Conventional methods, often based on
univariate analyses or basic statistical approaches,
may fail to adequately capture the interactions
among multiple geochemical variables. In contrast,
GANs are particularly effective in handling
multivariate datasets, providing a thorough
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understanding ~ of  geochemical  patterns.
Additionally, the GAN framework is inherently
flexible, making it well-suited for modeling a
variety of data environments. This flexibility is
particularly advantageous in situations where
indicators of mineralization are not clearly defined,
enabling the identification of weak anomalies that
conventional methods might overlook. Moreover,
the integration of transfer learning enhances
learning efficiency, especially in the context of
sparse datasets, thereby significantly improving the
model's accuracy.

While GANs offer notable benefits,
conventional anomaly detection techniques retain
significant advantages, particularly in recognizing
distinct and prominent geochemical anomalies.
These established methods are often grounded in
solid statistical principles that effectively measure
substantial data discrepancies. In cases where
strong anomalies are present, conventional
techniques may surpass GANSs in performance, as
they are tailored to identify major geochemical
changes. Furthermore, conventional approaches
typically reduce the complexity of geochemical
data, which can lead to an oversimplification of
intricate variable interactions. Although this
simplification can enhance clarity, it risks
overlooking important subtle characteristics
inherent in mineralization patterns. Consequently,
relying exclusively on conventional methods in
certain contexts may result in missed exploration
opportunities.

Journal of Mining & Environment, Published online

The findings presented in Table 4 of this
research illustrate a comparative evaluation of
various anomaly detection methodologies,
revealing the unique benefits of the Generative
Adversarial Network (GAN) approach. The data
indicate that while conventional statistical
techniques are proficient in detecting prominent,
clearly defined anomalies, the GAN model excels
in identifying subtle anomalies and revealing
intricate,  multivariate  relationships. = The
experimental outcomes emphasize that the GAN
approach achieved an accuracy rate exceeding
90%, showcasing its superior ability to detect
geochemical anomalies in comparison to the
performance metrics of conventional methods
outlined in Table 4. This reinforces the idea that
GANs significantly enhance the mapping of
prospectivity, especially in underexplored areas
where conventional techniques may be inadequate.

In conclusion, although conventional methods
may perform well in certain situations, the
combination of Generative Adversarial Networks
(GANs) and transfer learning signifies a
transformative advancement in the identification of
geochemical anomalies. The results of this research
strongly support the integration of sophisticated
machine learning methodologies, particularly
GANSs, into mineral exploration frameworks. By
utilizing complex, multidimensional geochemical
data, this novel strategy enhances the accuracy of
anomaly detection and aids in uncovering potential
exploration sites that were previously hidden by
standard analytical techniques.

Table 4. Comparative Performance of Anomaly Detection Methods in Geochemical Analysis

Method Accuracy (%) Anomaly type Reference
Disjunctive Kriging (DK) 63.4% Metallic Anomalies [52]
Random Forest (RF) 95 Metallic Anomalies [53]
Restricted Boltzmann Machine (RBM) 91.9 Metallic Anomalies [53]
Knowledge and Data-driven Methods 76 Metallic Anomalies [54]
Support Vector Machine (SVM) 94.8 Lithological Mapping [55]
Multi-Layer Perceptron (MLP) 94.8 Lithological Mapping [55]
Concentration-Number Fractal (C-N) 72 Metallic Anomalies [56]
Prediction-Area Fractal (P-A) 75 Metallic Anomalies [56]
Fuzzy Ordered Weighted Averaging (FOWA) 77 Metallic Anomalies [57]
Decision Trees (DTs) 91.7 Metallic Anomalies [58]
Support Vector Machine (SVM) 82% Metallic Anomalies [58]
Analytic hierarchy process (AHP) 62.5 Metallic Anomalies [59]
Fuzzy Logic 54.17 Metallic Anomalies [59]
K-Nearest Neighbor (KNN) 85 Metallic Anomalies [60]

Ultimately, to assess the effectiveness of the
GAN-based model in detecting geochemical
anomalies, a thorough comparison was performed
between the model's forecasts and extensive field
data obtained from established mineralization sites.
The precision of the model's forecasts was
evaluated using specific geochemical metrics, such
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as element concentrations and spatial distributions,
which were validated by actual exploratory results.
This meticulous validation process revealed a
strong alignment between the model outputs and
field data, highlighting the model's predictive
accuracy. Furthermore, by successfully identifying
promising regions for mineral exploration, the
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GAN methodology  offers considerable
implications for reducing costs in exploratory
activities. It can lower expenses by facilitating
focused exploration initiatives, thus optimizing
resource distribution and mitigating the risks linked
to conventional exploration techniques. This
advancement not only improves the economic
feasibility of mineral exploration projects but also
lays a solid foundation for future research in the
realm of geochemical anomaly detection.

5. Conclusions

This research introduces a thorough
methodology  that  successfully  combines
Generative Adversarial Networks (GANs) with
transfer learning approaches to examine
geochemical data obtained from stream sediments.
The model has shown an accuracy rate surpassing
92% in identifying geochemical anomalies, with
prediction accuracies consistently exceeding 90%
across different configurations, while maintaining
a cross-entropy loss below 0.7.

The conducted analysis indicates that the three-
element model significantly outperforms single-
element subgroup datasets, highlighting a marked
enhancement in predictive accuracy through the
integration of multivariate geochemical data. This
approach has demonstrated effectiveness in
accurately pinpointing areas linked to known
mineral deposits and mineralization occurrences,
thereby showcasing its ability to capture the spatial
attributes and  zoning  characteristics  of
geochemical halos. From a practical standpoint, the
incorporation of a wider array of geochemical
variables into the training dataset not only
improves the identification of geochemical
anomalies but also aids in the creation of refined
predictive models for mineral exploration. The
findings of this study imply that leveraging
extensive geochemical datasets can substantially
lower exploration costs by enhancing the targeting
efficiency of potential sites.

Furthermore, the model has identified several
promising areas for elemental investigation within
the Janja region, underscoring its practical
relevance to real-world exploration scenarios.
These results collectively affirm the transformative
capabilities of advanced machine learning
techniques, particularly the use of Generative
Adversarial Networks (GANs) and transfer
learning, in revolutionizing mineral exploration.
Such methodologies enhance informed decision-
making and strategic resource distribution within
the industry. Looking ahead, future research should
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focus on broadening the dataset by integrating a
diverse range of geochemical variables across
various geological settings. Moreover,
investigating the collaboration of additional
machine learning methods alongside GANs may
further enhance predictive models, thus refining
exploration strategies within the mineral sector.
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