[1]. Ojanen, S., Lundström, M., Santasalo-Aarnio, A., & Serna-Guerrero, R. (2018). Challenging the concept of electrochemical discharge using salt solutions for lithium-ion batteries recycling. Waste management, 76, 242-249.
[3]. Gao, W., Song, J., Cao, H., Lin, X., Zhang, X., Zheng, X., . . . Sun, Z. (2018). Selective recovery of valuable metals from spent lithium-ion batteries–process development and kinetics evaluation. Journal of Cleaner Production, 178, 833-845.
[4]. Georgi-Maschler, T., Friedrich, B., Weyhe, R., Heegn, H., & Rutz, M. (2012). Development of a recycling process for Li-ion batteries. Journal of power sources, 207, 173-182.
[5]. Zhang, J., Zhang, L., Sun, F., & Wang, Z. (2018). An overview on thermal safety issues of lithium-ion batteries for electric vehicle application. Ieee Access, 6, 23848-23863.
[6]. Wu, L., Zhang, F.-S., Zhang, Z.-Y., & Zhang, C.-C. (2023). Corrosion behavior and corrosion inhibition performance of spent lithium-ion battery during discharge. Separation and Purification Technology, 306, 122640.
[7]. Zhang, G., He, Y., Wang, H., Feng, Y., Xie, W., & Zhu, X. (2019). Application of mechanical crushing combined with pyrolysis-enhanced flotation technology to recover graphite and LiCoO2 from spent lithium-ion batteries. Journal of Cleaner Production, 231, 1418-1427.
[8]. Doughty, D. H., & Roth, E. P. (2012). A general discussion of Li ion battery safety. The Electrochemical Society Interface, 21(2), 37.
[9]. Makuza, B., Tian, Q., Guo, X., Chattopadhyay, K., & Yu, D. (2021). Pyrometallurgical options for recycling spent lithium-ion batteries: A comprehensive review. Journal of power sources, 491, 229622.
[10]. Karagiannopoulos, L., & Solsvik, T. (2019). Tesla boom lifts Norway’s electric car sales to record market share. Reuters Technology News, 1.
[11]. Fujita, T., Chen, H., Wang, K.-t., He, C.-l., Wang, Y.-b., Dodbiba, G., & Wei, Y.-z. (2021). Reduction, reuse and recycle of spent Li-ion batteries for automobiles: A review. International Journal of Minerals, Metallurgy and Materials, 28(2), 179-192.
[12]. Qiao, D., Wang, G., Gao, T., Wen, B., & Dai, T. (2021). Potential impact of the end-of-life batteries recycling of electric vehicles on lithium demand in China: 2010–2050. Science of the Total Environment, 764, 142835.
[13]. Sattar, R., Ilyas, S., Bhatti, H. N., & Ghaffar, A. (2019). Resource recovery of critically-rare metals by hydrometallurgical recycling of spent lithium ion batteries. Separation and Purification Technology, 209, 725-733.
[14]. Ohzuku, T., & Makimura, Y. (2001). Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries. Chemistry letters, 30(7), 642-643.
[15]. Noh, H.-J., Youn, S., Yoon, C. S., & Sun, Y.-K. (2013). Comparison of the structural and electrochemical properties of layered Li [NixCoyMnz] O2 (x= 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. Journal of power sources, 233, 121-130.
[16]. Liu, Z., Yu, Q., Zhao, Y., He, R., Xu, M., Feng, S., Mai, L. (2019). Silicon oxides: a promising family of anode materials for lithium-ion batteries. Chemical Society Reviews, 48(1), 285-309.
[17]. Belharouak, I., Koenig Jr, G. M., & Amine, K. (2011). Electrochemistry and safety of Li4Ti5O12 and graphite anodes paired with LiMn2O4 for hybrid electric vehicle Li-ion battery applications. Journal of power sources, 196(23), 10344-10350.
[18]. Choi, S., Cho, Y. G., Kim, J., Choi, N. S., Song, H. K., Wang, G., & Park, S. (2017). Mesoporous Germanium Anode Materials for Lithium‐Ion Battery with Exceptional Cycling Stability in Wide Temperature Range. Small, 13(13), 1603045.
[19]. Liu, J., Kopold, P., van Aken, P. A., Maier, J., & Yu, Y. (2015). Energy storage materials from nature through nanotechnology: a sustainable route from reed plants to a silicon anode for lithium‐ion batteries. Angewandte Chemie, 127(33), 9768-9772.
[20]. Wang, Q., Jiang, L., Yu, Y., & Sun, J. (2019). Progress of enhancing the safety of lithium ion battery from the electrolyte aspect. Nano Energy, 55, 93-114.
[21]. Yao, L. P., Zeng, Q., Qi, T., & Li, J. (2020). An environmentally friendly discharge technology to pretreat spent lithium-ion batteries. Journal of Cleaner Production, 245, 118820.
[22]. Zeng, X., Li, J., & Singh, N. (2014). Recycling of spent lithium-ion battery: a critical review. Critical Reviews in Environmental Science and Technology, 44(10), 1129-1165.
[23]. Torabian, M. M., Jafari, M., & Bazargan, A. (2022). Discharge of lithium-ion batteries in salt solutions for safer storage, transport, and resource recovery. Waste Management & Research, 40(4), 402-409.