[1]. Yu, X., Feng, Q., Wang, H., & Liu, D. (2025). Surface sulfidization mechanism of difficult to enrich copper oxide in copper smelting slag and its response to recycling performance. Applied Surface Science, 684, 161825.
[2]. Sokolović, J., Stanojlović, R., Andrić, L., Štirbanović, Z., & Ćirić, N. (2019). Flotation studies of copper ore Majdanpek to enhance copper recovery and concentrate grade with different collectors. J. Min. Metall. A Min, 55, 53-65.
[3]. Bozhkov, A. I., Bobkov, V. V., Osolodchenko, T. P., Yurchenko, O. I., Ganin, V. Y., Ivanov, E. G., ... & Ponomarenko, S. V. (2024). The antibacterial activity of the copper for Staphylococcus aureus 124 and Pseudomonas aeruginosa 18 depends on its state: metalized, chelated and ionic. Heliyon, 10(20).
[4]. Potysz, A., van Hullebusch, E. D., Kierczak, J., Grybos, M., Lens, P. N., & Guibaud, G. (2015). Copper metallurgical slags–current knowledge and fate: a review. Critical Reviews in Environmental Science and Technology, 45(22), 2424-2488.
[5]. Khoso, S. A., Gao, Z., Tian, M., Hu, Y., & Sun, W. (2020). The synergistic depression phenomenon of an organic and inorganic reagent on FeS2 in CuS flotation scheme. Journal of Molecular Liquids, 299, 112198.
[6]. Geng, Q., Han, G., & Wen, S. (2024). Flotation of Copper Sulfide Ore Using Ultra-Low Dosage of Combined Collectors. Minerals, 14(10), 1026.
[7]. Zhang, C., Su, Y., He, T., Bu, X., Wan, H., Wang, S., & Xue, J. (2025). The role of copper ions in improving the flotation of chalcopyrite at low temperatures. Minerals Engineering, 220, 109091.
[8]. Lee, K., Archibald, D., McLean, J., & Reuter, M. A. (2009). Flotation of mixed copper oxide and sulphide minerals with xanthate and hydroxamate collectors. Minerals engineering, 22(4), 395-401.
[9]. Srdjan, M. B. (2007). Handbook of Flotation Reagents Chemistry, Theory and Practice: Flotation of Sulfide Ores. Elsevier Science & Technology Books.
[10]. Fuerstenau, M. C., Jameson, G. J., & Yoon, R. H. (Eds.). (2007). Froth flotation: a century of innovation. SME.
[11]. Koleini, S. M. J., Soltani, F., & Abdollahy, M. (2013). Optimization of the reagent types and dosage in selective flotation of Cu-Zn Taknar mine by using D-Optimal method of statistical experiments design. Journal of Mining Engineering, 8(19), 1-11.
[12]. Ghodrati, S., Koleini, S. M. J., Hekmati, M. (2013). Optimization of Reagent Dosages for Copper Flotation in Shahr-E-Babak Copper Complex Using Statistical Design. Journal of Separation Science and Engineering, 4(2),17-27.
[13]. Wills, B. A., & Finch, J. (2015). Wills' mineral processing technology: an introduction to the practical aspects of ore treatment and mineral recovery. Butterworth-heinemann.
[14]. Marion, C., Jordens, A., Li, R., Rudolph, M., & Waters, K. E. (2017). An evaluation of hydroxamate collectors for malachite flotation. Separation and Purification Technology, 183, 258-269.
[15]. Zare Varzeghan, A., Azizi, A., (2017). Investigation on the effect of copper oxide minerals on flotation circuit recovery of the sungun copper complex concentration plant and introducing solutions to increase recovery. School of Mining, Petroleum and Geophysics Engineering, Shahrood University of Technology.
[16]. Barfaei, M., & Parsapour, G. (2022). Effect of pH and reagents on the froth stability in the copper flotation; Case study: Mohammadabad-E-Delijan copper company. Journal of Separation Science and Engineering, 13(2), 1-12.
[17]. Canpolat, G., & Ziyadanoğullari, R. (2023). Recovery of copper from complex copper oxide ore by flotation and leaching methods. Advanced Physical Research, 5(2), 103-116.
[18]. Yu, X., Wang, H., Wang, L., Mao, Y., & Liu, D. (2024). Enhance recovery mechanism of difficult to enrich copper oxide component in copper smelting slag: Sulfidization-xanthate flotation. Chemical Engineering Journal, 502, 157857.
[19]. Sun, J., Dong, L., Zhang, T., Shen, P., & Liu, D. (2024). Efficient recovery of copper from copper smelting slag by gravity separation combined with flotation. Chemical Engineering Journal, 494, 153159.
[20]. Farati, A., Chegini, M., Sobouti, A., & Alimohammadi, S. (2025). Optimization of effective parameters in flotation of fluorite from low-grade ore without frother. Physicochemical Problems of Mineral Processing, 61(2).
[21]. Suyantara, G. P. W., Hirajima, T., Miki, H., & Sasaki, K. (2018). Floatability of molybdenite and chalcopyrite in artificial seawater. Minerals Engineering, 115, 117-130.
[22]. Maleki, H., Noparast, M., Chehreghani, S., Mirmohammadi, M. S., & Rezaei, A. (2023). Optimization of flotation of the Qaleh Zari mine oxidized copper ore sample by the sequential sulfidation approach using the response surface method technique. Rudarsko-geološko-naftni zbornik, 38(1), 59-68.
[23]. Lotter, N. O., & Bradshaw, D. J. (2010). The formulation and use of mixed collectors in sulphide flotation. Minerals engineering, 23(11-13), 945-951.
[24]. Zhang, W. (2016). The effects of frothers and particles on the characteristics of pulp and froth properties in flotation—A critical review. Journal of Minerals and Materials Characterization and Engineering, 4(4), 251-269.
[25]. Bayragh, A. S., Zakeri, M., & Bahri, Z. (2022). Estimation of copper grade from the flotation froth using image analysis and machine vision. Amirkabir Journal of Civil Engineering, 54(3), 869-884.
[26]. Finch, J. A., Nesset, J. E., & Acuña, C. (2008). Role of frother on bubble production and behaviour in flotation. Minerals Engineering, 21(12-14), 949-957.
[27]. Taheri, B., Abdollahy, M., Tonkaboni, S. Z. S., Javadian, S., & Yarahmadi, M. (2014). Dual effects of sodium sulfide on the flotation behavior of chalcopyrite: I. Effect of pulp potential. International Journal of Minerals, Metallurgy, and Materials, 21, 415-422.