[1]. Laskowski, J. S. (1993). Frothers and flotation froth. Mineral Procesing and Extractive Metallurgy Review, 12(1), 61-89.
[2]. Bulatovic, S. M. (2007). Handbook of flotation reagents: chemistry, theory and practice: Volume 1: flotation of sulfide ores. Elsevier.
[3]. Finch, J. A., Nesset, J. E., & Acuña, C. (2008). Role of frother on bubble production and behaviour in flotation. Minerals Engineering, 21(12-14), 949-957.
[4]. Somasundaran, P., & Wang, D. (2006). Solution chemistry: minerals and reagents (Vol. 17). Elsevier.
[5].Edwards, D. A., Shapiro, M., Brenner, H., & Shapira, M. (1991). Dispersion of inert solutes in spatially periodic, two-dimensional model porous media. Transport in Porous Media, 6(4), 337-358.
[6]. Wang, D. (2016). Flotation reagents: applied surface chemistry on minerals flotation and energy resources beneficiation. Springer Singapore.
[7]. Tan, Y. H., & Finch, J. A. (2016). Frother structure–property relationship: Effect of alkyl chain length in alcohols and polyglycol ethers on bubble rise velocity. Minerals Engineering, 95, 14-20.
[8]. Xue, Y., & Li, T. (2024). The Significance of Flotation Frothers Chemical Structure and Fundamental Properties: A Review. Open Journal of Applied Sciences, 14(8), 2124-2132.
[9]. Bhattacharya, S., & Dey, S. (2008). Evaluation of frother performance in coal flotation: A critical review of existing methodologies. Mineral Processing & Extractive Metallurgy Review, 29(4), 275-298.
[10]. Cho, Y. S., & Laskowski, J. S. (2002). Effect of flotation frothers on bubble size and foam stability. International Journal of Mineral Processing, 64(2-3), 69-80.
[11]. Khoshdast, H., & Sam, A. (2011). Flotation frothers: review of their classifications, properties and preparation. The Open Mineral Processing Journal, 4(1), 25-44.
[12]. Gupta, C. K. (2017). Extractive metallurgy of molybdenum. Routledge.
[13]. Leonov, S. B., Belkova, O. N., Kleimenova, N. V., Kukharev, B. F., Stankevich, V. K., Klimenko, G. R., ... & Kukhareva, V. A. (1999). Flotation activity of amino alcohols and their derivatives. Journal of Mining Science, 35(4), 434-438.
[14]. Pearse, M. J. (2005). An overview of the use of chemical reagents in mineral processing. Minerals engineering, 18(2), 139-149.
[15]. Rao, S. R. (2013). Surface chemistry of froth flotation: Volume 1: Fundamentals. Springer Science & Business Media.
[16]. Dudenkov, S. V., & Galikov, A. A. (1969). Theory and practice of application of flotation reagents. Nedra: Moscow, Russia.
[17]. Amidon, G. L., Yalkowsky, S. H., & Leung, S. (1974). Solubility of nonelectrolytes in polar solvents II: Solubility of aliphatic alcohols in water. Journal of pharmaceutical sciences, 63(12), 1858-1866.
[18]. CM, P., Nakahara, H., Shibata, O., Moroi, Y., CV, N., & Chaudhary, D. (2012). Surface potential of MIBC at air/water interface: A molecular dynamics study. e-Journal of Surface Science and Nanotechnology, 10, 437-440.
[19]. Dukhin, S. S., Kretzschmar, G., & Miller, R. (1995). Dynamics of adsorption at liquid interfaces: theory, experiment, application (Vol. 1). Elsevier.
[20].Laskowski, J. S. (2004). Testing flotation frothers. Fizykochemiczne Problemy Mineralurgii/Physicochemical Problems of Mineral Processing, 38, 13-22.
[21]. Crozier, R. D. (1992). Flotation: theory, reagents and ore testing.
[22]. Gupta, A. K., Banerjee, P. K., & Mishra, A. (2009). Influence of chemical parameters on selectivity and recovery of fine coal through flotation. International Journal of Mineral Processing, 92(1-2), 1-6.
[23]. Leja, J., & Leja, J. (1982). Flotation Froths and Foams. Surface Chemistry of Froth Flotation, 549-610.
[24]. Pan, G., Gao, Z., Zhu, H., Yin, J., Shi, Q., & Zhang, Y. (2025). Effect of non‐ionic frothers on bubble characteristics in flotation: a review. Journal of Chemical Technology & Biotechnology, 100(3), 493-507.
[25]. Griffin, W. C. (1949). Classification of surface-active agents by" HLB". J. Soc. Cosmet. Chem., 1, 311-325.
[26]. Tanaka, K., & Igarashi, A. (2016). Determination of nonionic surfactants. In Handbook Of Detergents, Part C (pp. 167-232). CRC Press.
[27]. Wang, J., Nguyen, A. V., & Farrokhpay, S. (2016). A critical review of the growth, drainage and collapse of foams. Advances in colloid and interface science, 228, 55-70.
[28]. Davies, J. T. (1957). A quantitative kinetic theory of emulsion type, I. Physical chemistry of the emulsifying agent. In Gas/Liquid and Liquid/Liquid Interface. Proceedings of the International Congress of Surface Activity (Vol. 1, pp. 426-438). Citeseer.
[29]. Davies, J. T., & Haydon, F. (1959). Proc. 2nd Int. Congr. Surface Activity.
[30]. Mittal, K. L., & Shah, D. O. (Eds.). (2013). Surfactants in Solution: Volume 11 (Vol. 11). Springer Science & Business Media.
[31]. Proverbio, Z. E., Bardavid, S. M., Arancibia, E. L., & Schulz, P. C. (2003). Hydrophile–lipophile balance and solubility parameter of cationic surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 214(1-3), 167-171.
[32]. Wu, J., Xu, Y., Dabros, T., & Hamza, H. (2004). Development of a method for measurement of relative solubility of nonionic surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 232(2-3), 229-237.
[33]. Alsafasfeh, A., Alagha, L., & Al-Hanaktah, A. (2024). The effect of methyl isobutyl carbinol “MIBC” on the froth stability and flotation performance of low-grade phosphate ore. Mining, Metallurgy & Exploration, 41(1), 353-361.
[34]. Triffett, B. B., & Cilliers, J. J. (2004). Measuring froth stability. International Patent Application Number: PCT/AU2004/000331.
[35]. Farrokhpay, S. (2011). The significance of froth stability in mineral flotation—A review. Advances in colloid and interface science, 166(1-2), 1-7.
[36]. Elmahdy, A. M., & Finch, J. A. (2013). Effect of frother blends on hydrodynamic properties. International Journal of Mineral Processing, 123, 60-63.
[37]. Moyo, P., Gomez, C. O., & Finch, J. A. (2007). Characterizing frothers using water carrying rate. Canadian Metallurgical Quarterly, 46(3), 215-220.
[38]. Neethling, S. J., Lee, H. T., & Cilliers, J. J. (2003). Simple relationships for predicting the recovery of liquid from flowing foams and froths. Minerals Engineering, 16(11), 1123-1130.39. Stevenson, P., C. Stevanov, and G. Jameson, Liquid overflow from a column of rising aqueous froth. Minerals engineering, 2003. 16(11): p. 1045-1053.
[40]. Zhang, W., Nesset, J. E., & Finch, J. A. (2010). Water recovery and bubble surface area flux in flotation. Canadian Metallurgical Quarterly, 49(4), 353-362.
[41]. Zhang, N., Chen, X., & Peng, Y. (2020). Effects of froth properties on dewatering of flotation products–A critical review. Minerals Engineering, 155, 106477.
[42]. Zheng, X., Johnson, N. W., & Franzidis, J. P. (2006). Modelling of entrainment in industrial flotation cells: Water recovery and degree of entrainment. Minerals Engineering, 19(11), 1191-1203.
[43]. Pawliszak, P., Bradshaw-Hajek, B. H., Skinner, W., Beattie, D. A., & Krasowska, M. (2024). Frothers in flotation: A review of performance and function in the context of chemical classification. Minerals Engineering, 207, 108567..
[44]. Zhao, L., & Zhang, Q. (2024). A significant review of froth stability in mineral flotation. Chemical Engineering Science, 120738.
[45]. Khoshdast, H., Hassanzadeh, A., Kowalczuk, P. B., & Farrokhpay, S. (2023). Characterization techniques of flotation frothers-a review. Mineral Processing and Extractive Metallurgy Review, 44(2), 77-101.
[46]. Zhang, W., Nesset, J. E., Rao, R., & Finch, J. A. (2012). Characterizing frothers through critical coalescence concentration (CCC) 95-hydrophile-lipophile balance (HLB) relationship. Minerals, 2(3), 208-227.
[47]. Chipfunhu, D., Bournival, G., Dickie, S., & Ata, S. (2019). Performance characterisation of new frothers for sulphide mineral flotation. Minerals Engineering, 131, 272-279.
[48]. Dey, S., Pani, S., & Singh, R. (2014). Study of interactions of frother blends and its effect on coal flotation. Powder Technology, 260, 78-83.
[49]. Gupta, A. K., Banerjee, P. K., Mishra, A., & Satish, P. (2007). Effect of alcohol and polyglycol ether frothers on foam stability, bubble size and coal flotation. International Journal of Mineral Processing, 82(3), 126-137.
[50]. Klimpel, R. and S. Isherwood, Some industrial implications of changing frother chemical structure. International journal of mineral processing, 1991. 33(1-4): p. 369-381.
[51]. Kowalczuk, P. B., & Drzymala, J. (2017). Selectivity and power of frothers in copper ore flotation. Physicochem. Probl. Miner. Process, 53(1), 515-523.
[52]. Kracht, W., Orozco, Y., & Acuña, C. (2016). Effect of surfactant type on the entrainment factor and selectivity of flotation at laboratory scale. Minerals Engineering, 92, 216-220.
[53]. Liu, D., & Somasundaran, P. (1994). Role of collector and frother, and of hydrophobicity/oleophilicity of pyrite on the separation of pyrite from coal by flotation. International journal of mineral processing, 41(3-4), 227-238.
[54]. Moreno, Y. S., Bournival, G., & Ata, S. (2022). Classification of flotation frothers–A statistical approach. Chemical Engineering Science, 248, 117252.
[55]. Drzymala, J., & Kowalczuk, P. B. (2018). Classification of flotation frothers. Minerals, 8(2), 53.
[56]. Gomez, C. O., Finch, J. A., & Muñoz-Cartes, D. (2011, November). An approach to characterise frother roles in flotation. In Proceedings of the 8th International Mineral Processing Seminar Procemin, Santiago, Chile (Vol. 30, pp. 223-231).
[57]. Laskowski, J. S., Tlhone, T., Williams, P., & Ding, K. (2003). Fundamental properties of the polyoxypropylene alkyl ether flotation frothers. International Journal of Mineral Processing, 72(1-4), 289-299.
[58]. Miller, J. D., & Ye, Y. (1989). Froth characteristics in air-sparged hydrocyclone flotation. Mineral Procesing and Extractive Metallurgy Review, 5(1-4), 307-327.
[59]. Moreno, Y. S., Bournival, G., & Ata, S. (2021). Foam stability of flotation frothers under dynamic and static conditions. Separation and Purification Technology, 274, 117822.
[60]. Barbian, N., Ventura-Medina, E., & Cilliers, J. J. (2003). Dynamic froth stability in froth flotation. Minerals Engineering, 16(11), 1111-1116.
[61]. Bikerman, J. E. (1973). General. Foam Films. In Foams (pp. 1-32). Berlin, Heidelberg: Springer Berlin Heidelberg.
[62]. Bikerman, J. J. (2013). Foams (Vol. 10). Springer Science & Business Media.