[1]. Barnewold, L., & Lottermoser, B. G. (2020). Identification of digital technologies and digitalisation trends in the mining industry. International journal of mining science and technology, 30(6), 747-757.
[2]. McCoy, J. T., & Auret, L. (2019). Machine learning applications in minerals processing: A review. Minerals Engineering, 132, 95-109.
[3]. Ali, D., & Frimpong, S. (2020). Artificial intelligence, machine learning and process automation: Existing knowledge frontier and way forward for mining sector. Artificial Intelligence Review, 53(8), 6025-6042.
[4]. Chen, L., Xie, Y., Wang, Y., Ge, S., & Wang, F. Y. (2024). Sustainable mining in the era of artificial intelligence. IEEE/CAA Journal of Automatica Sinica, 11(1), 1-4.
[5]. Hasan, W. K., Al-Fawa’reh, M., Madelatparvar, M., & Fakhralmobasheri, N. (2025). The future of the mining industry with artificial intelligence. In Artificial Intelligence in Future Mining (pp. 383-407). Academic Press.
[6]. Elbendari, A. M., & Ibrahim, S. S. (2025). Optimizing key parameters for grinding energy efficiency and modeling of particle size distribution in a stirred ball mill. Scientific Reports, 15(1), 3374.
[7]. Zhironkina, O., & Zhironkin, S. (2023). Technological and intellectual transition to mining 4.0: A review. Energies, 16(3), 1427.
[8]. Ouanan, H. (2019, December). Image processing and machine learning applications in mining industry: Mine 4.0. In 2019 International Conference on Intelligent Systems and Advanced Computing Sciences (ISACS) (pp. 1-5). IEEE.
[9]. Aziz, A., Schelén, O., & Bodin, U. (2020). A study on industrial IoT for the mining industry: Synthesized architecture and open research directions. IoT, 1(2), 529-550.
[10]. Ji, C., & Sun, W. (2022). A review on data-driven process monitoring methods: Characterization and mining of industrial data. Processes, 10(2), 335.
[11]. Okuyelu, O., & Adaji, O. (2024). AI-driven real-time quality monitoring and process optimization for enhanced manufacturing performance. J. Adv. Math. Comput. Sci, 39(4), 81-89.
[12]. Igogo, T., Awuah-Offei, K., Newman, A., Lowder, T., & Engel-Cox, J. (2021). Integrating renewable energy into mining operations: Opportunities, challenges, and enabling approaches. Applied Energy, 300, 117375.
[13]. Malkin, S., & Guo, C. (2008). Grinding technology: theory and application of machining with abrasives. Industrial Press Inc.
[14]. Loudari, C., Cherkaoui, M., El Harraki, I., Bennani, R., El Adnani, M., Abdelwahed, E. L., ... & Baina, K. (2025). Improving energy efficiency in the mining industry: an LSTM-ANN predictive model for sieve refusal in grinding mills. International Journal of Mining and Geo-Engineering, 59(1), 83-89.
[15]. Bouchard, J., LeBlanc, G., Levesque, M., Radziszewski, P., & Georges-Filteau, D. (2019). Breaking down energy consumption in industrial grinding mills. CIM Journal, 10(4), 157-164.
[16]. Mitra, K., & Gopinath, R. (2004). Multiobjective optimization of an industrial grinding operation using elitist nondominated sorting genetic algorithm. Chemical Engineering Science, 59(2), 385-396.
[17]. Farzanegan, A., & Vahidipour, S. M. (2009). Optimization of comminution circuit simulations based on genetic algorithms search method. Minerals Engineering, 22(7-8), 719-726.
[18]. Sibalija, T. (2018). Application of simulated annealing in process optimization: a review. Simulated Annealing: Introduction, Applications and Theory, 1-14.
[19]. Yusup, N., Zain, A. M., & Hashim, S. Z. M. (2012). Overview of PSO for optimizing process parameters of machining. Procedia Engineering, 29, 914-923.
[20]. Kim, G., Park, S., Choi, J. G., Yang, S. M., Park, H. W., & Lim, S. (2024). Developing a data-driven system for grinding process parameter optimization using machine learning and metaheuristic algorithms. CIRP Journal of Manufacturing Science and Technology, 51, 20-35.
[21]. Franco-Sepulveda, G., Del Rio-Cuervo, J. C., & Pachón-Hernández, M. A. (2019). State of the art about metaheuristics and artificial neural networks applied to open pit mining. Resources Policy, 60, 125-133.
[22]. Hossain, S. J., & Liao, T. W. (2017). Cutting parameter optimization for end milling operation using advanced metaheuristic algorithms. International Journal of Advanced Robotics and Automation, 2(2), 1-12.
[23]. Azadi, N., Mirzaei-Nasirabad, H., & Mousavi, A. (2023). Evaluating the efficiency of the genetic algorithm in designing the ultimate pit limit of open-pit mines. International Journal of Mining and Geo-Engineering, 57(1), 55-58.
[24]. Chen, Z., Li, X., Zhu, Z., Zhao, Z., Wang, L., Jiang, S., & Rong, Y. (2020). The optimization of accuracy and efficiency for multistage precision grinding process with an improved particle swarm optimization algorithm. International Journal of Advanced Robotic Systems, 17(1), 1729881419893508.
[25]. Babu, K. (2016). Comparison of PSO, AGA, SA and memetic algorithms for surface grinding optimization. Applied Mechanics and Materials, 852, 241-247.
[26]. Wills, B. A., & Finch, J. A. (2016). Chapter 7—grinding mills. Wills’ Mineral Processing Technology, 8, 147-179.
[27]. Jeswiet, J., & Szekeres, A. (2016). Energy consumption in mining comminution. Procedia CIRP, 48, 140-145.
[28]. Hall, M. A. (1999). Correlation-based feature selection for machine learning (Doctoral dissertation, The University of Waikato).
[29]. Naidu, G., Zuva, T., & Sibanda, E. M. (2023, April). A review of evaluation metrics in machine learning algorithms. In Computer science on-line conference (pp. 15-25). Cham: Springer International Publishing.
[30]. Mirjalili, S. (2019). Evolutionary algorithms and neural networks. Studies in computational intelligence, 780(1), 43-53.
[31]. De Myttenaere, A., Golden, B., Le Grand, B., & Rossi, F. (2016). Mean absolute percentage error for regression models. Neurocomputing, 192, 38-48.
[32]. Kumar, M., Husain, D. M., Upreti, N., & Gupta, D. (2010). Genetic algorithm: Review and application. Available at SSRN 3529843.
[33]. Lambora, A., Gupta, K., & Chopra, K. (2019, February). Genetic algorithm-A literature review. In 2019 international conference on machine learning, big data, cloud and parallel computing (COMITCon) (pp. 380-384). IEEE.
[34]. Mathew, T. V. (2012). Genetic algorithm. Report submitted at IIT Bombay, 53, 18-19.
[35]. Katoch, S., Chauhan, S. S., & Kumar, V. (2021). A review on genetic algorithm: past, present, and future. Multimedia tools and applications, 80, 8091-8126.
[36]. Papazoglou, G., & Biskas, P. (2023). Review and comparison of genetic algorithm and particle swarm optimization in the optimal power flow problem. Energies, 16(3), 1152.