Document Type : Original Research Paper

Authors

1 LMAID Laboratory, National School of Mines of Rabat (ENSMR), Rabat, Morocco

2 Digitalization and Microelectronic Smart Devices Department, MAScIR, Rabat, Morocco

3 LISI Laboratory, Cadi Ayyad University (UCA), Marrakech, Morocco

4 Reminex Research Center, MANAGEM Group, Marrakech, Morocco

5 Embedded Systems and Artificial Intelligence Department, MAScIR, Rabat, Morocco

6 Al-Qualsadi Research and Development Team, ENSIAS, Mohammed V University, Rabat, Morocco

10.22044/jme.2025.15869.3095

Abstract

Energy efficiency and product quality control are critical concerns in grinding mill operations, particularly within the innovative context of Mine 4.0. This study introduces a novel Genetic Algorithm (GA)-based optimization framework specifically developed to address these challenges. Given the mining industry’s significant energy consumption, especially in grinding processes, the proposed approach optimizes key parameters such as feed composition, water flow rates, and power consumption levels, while maintaining sieve refusal near the target threshold of 20%. Using real operational data from a Moroccan plant, the GA achieved a Mean Absolute Error (MAE) of 0.47, outperforming Simulated Annealing (SA) and Particle Swarm Optimization (PSO), which yielded MAEs of 1.14 and 0.74, respectively. The GA also demonstrated superior convergence stability and robustness, as evidenced by lower variability in predicted power consumption. These results validate the effectiveness of the GA framework in navigating nonlinear, high-dimensional parameter spaces and improving energy efficiency while ensuring product quality consistency. Ultimately, this research confirms the potential of metaheuristic optimization in enhancing grinding mill efficiency and supports the broader shift towards intelligent and sustainable mining operations under the Mine 4.0 paradigm.

Keywords

Main Subjects

[1]. Barnewold, L., & Lottermoser, B. G. (2020). Identification of digital technologies and digitalisation trends in the mining industry. International journal of mining science and technology, 30(6), 747-757.
[2]. McCoy, J. T., & Auret, L. (2019). Machine learning applications in minerals processing: A review. Minerals Engineering, 132, 95-109.
[3]. Ali, D., & Frimpong, S. (2020). Artificial intelligence, machine learning and process automation: Existing knowledge frontier and way forward for mining sector. Artificial Intelligence Review, 53(8), 6025-6042.
[4]. Chen, L., Xie, Y., Wang, Y., Ge, S., & Wang, F. Y. (2024). Sustainable mining in the era of artificial intelligence. IEEE/CAA Journal of Automatica Sinica, 11(1), 1-4.
[5]. Hasan, W. K., Al-Fawa’reh, M., Madelatparvar, M., & Fakhralmobasheri, N. (2025). The future of the mining industry with artificial intelligence. In Artificial Intelligence in Future Mining (pp. 383-407). Academic Press.
[6]. Elbendari, A. M., & Ibrahim, S. S. (2025). Optimizing key parameters for grinding energy efficiency and modeling of particle size distribution in a stirred ball mill. Scientific Reports, 15(1), 3374.
[7]. Zhironkina, O., & Zhironkin, S. (2023). Technological and intellectual transition to mining 4.0: A review. Energies, 16(3), 1427.
[8]. Ouanan, H. (2019, December). Image processing and machine learning applications in mining industry: Mine 4.0. In 2019 International Conference on Intelligent Systems and Advanced Computing Sciences (ISACS) (pp. 1-5). IEEE.
[9]. Aziz, A., Schelén, O., & Bodin, U. (2020). A study on industrial IoT for the mining industry: Synthesized architecture and open research directions. IoT, 1(2), 529-550.
[10]. Ji, C., & Sun, W. (2022). A review on data-driven process monitoring methods: Characterization and mining of industrial data. Processes, 10(2), 335.
[11]. Okuyelu, O., & Adaji, O. (2024). AI-driven real-time quality monitoring and process optimization for enhanced manufacturing performance. J. Adv. Math. Comput. Sci, 39(4), 81-89.
[12]. Igogo, T., Awuah-Offei, K., Newman, A., Lowder, T., & Engel-Cox, J. (2021). Integrating renewable energy into mining operations: Opportunities, challenges, and enabling approaches. Applied Energy, 300, 117375.
[13]. Malkin, S., & Guo, C. (2008). Grinding technology: theory and application of machining with abrasives. Industrial Press Inc.
[14]. Loudari, C., Cherkaoui, M., El Harraki, I., Bennani, R., El Adnani, M., Abdelwahed, E. L., ... & Baina, K. (2025). Improving energy efficiency in the mining industry: an LSTM-ANN predictive model for sieve refusal in grinding mills. International Journal of Mining and Geo-Engineering, 59(1), 83-89.
[15]. Bouchard, J., LeBlanc, G., Levesque, M., Radziszewski, P., & Georges-Filteau, D. (2019). Breaking down energy consumption in industrial grinding mills. CIM Journal, 10(4), 157-164.
[16]. Mitra, K., & Gopinath, R. (2004). Multiobjective optimization of an industrial grinding operation using elitist nondominated sorting genetic algorithm. Chemical Engineering Science, 59(2), 385-396.
[17]. Farzanegan, A., & Vahidipour, S. M. (2009). Optimization of comminution circuit simulations based on genetic algorithms search method. Minerals Engineering, 22(7-8), 719-726.
[18]. Sibalija, T. (2018). Application of simulated annealing in process optimization: a review. Simulated Annealing: Introduction, Applications and Theory, 1-14.
[19]. Yusup, N., Zain, A. M., & Hashim, S. Z. M. (2012). Overview of PSO for optimizing process parameters of machining. Procedia Engineering, 29, 914-923.
[20]. Kim, G., Park, S., Choi, J. G., Yang, S. M., Park, H. W., & Lim, S. (2024). Developing a data-driven system for grinding process parameter optimization using machine learning and metaheuristic algorithms. CIRP Journal of Manufacturing Science and Technology, 51, 20-35.
[21]. Franco-Sepulveda, G., Del Rio-Cuervo, J. C., & Pachón-Hernández, M. A. (2019). State of the art about metaheuristics and artificial neural networks applied to open pit mining. Resources Policy, 60, 125-133.
[22]. Hossain, S. J., & Liao, T. W. (2017). Cutting parameter optimization for end milling operation using advanced metaheuristic algorithms. International Journal of Advanced Robotics and Automation, 2(2), 1-12.
[23]. Azadi, N., Mirzaei-Nasirabad, H., & Mousavi, A. (2023). Evaluating the efficiency of the genetic algorithm in designing the ultimate pit limit of open-pit mines. International Journal of Mining and Geo-Engineering, 57(1), 55-58.
[24]. Chen, Z., Li, X., Zhu, Z., Zhao, Z., Wang, L., Jiang, S., & Rong, Y. (2020). The optimization of accuracy and efficiency for multistage precision grinding process with an improved particle swarm optimization algorithm. International Journal of Advanced Robotic Systems, 17(1), 1729881419893508.
[25]. Babu, K. (2016). Comparison of PSO, AGA, SA and memetic algorithms for surface grinding optimization. Applied Mechanics and Materials, 852, 241-247.
[26]. Wills, B. A., & Finch, J. A. (2016). Chapter 7—grinding mills. Wills’ Mineral Processing Technology, 8, 147-179.
[27]. Jeswiet, J., & Szekeres, A. (2016). Energy consumption in mining comminution. Procedia CIRP, 48, 140-145.
[28]. Hall, M. A. (1999). Correlation-based feature selection for machine learning (Doctoral dissertation, The University of Waikato).
[29]. Naidu, G., Zuva, T., & Sibanda, E. M. (2023, April). A review of evaluation metrics in machine learning algorithms. In Computer science on-line conference (pp. 15-25). Cham: Springer International Publishing.
[30]. Mirjalili, S. (2019). Evolutionary algorithms and neural networks. Studies in computational intelligence, 780(1), 43-53.
[31]. De Myttenaere, A., Golden, B., Le Grand, B., & Rossi, F. (2016). Mean absolute percentage error for regression models. Neurocomputing, 192, 38-48.
[32]. Kumar, M., Husain, D. M., Upreti, N., & Gupta, D. (2010). Genetic algorithm: Review and application. Available at SSRN 3529843.
[33]. Lambora, A., Gupta, K., & Chopra, K. (2019, February). Genetic algorithm-A literature review. In 2019 international conference on machine learning, big data, cloud and parallel computing (COMITCon) (pp. 380-384). IEEE.
[34]. Mathew, T. V. (2012). Genetic algorithm. Report submitted at IIT Bombay, 53, 18-19.
[35]. Katoch, S., Chauhan, S. S., & Kumar, V. (2021). A review on genetic algorithm: past, present, and future. Multimedia tools and applications, 80, 8091-8126.
[36]. Papazoglou, G., & Biskas, P. (2023). Review and comparison of genetic algorithm and particle swarm optimization in the optimal power flow problem. Energies, 16(3), 1152.