[1]. Avinash Paul, V. M. S. R. M. A. P. & A. K. S. (2024). Support design in underground coal mines using modified rock mass classification system (RMRdyn) for enhanced safety– an approach from stable and failed roof cases. Environmental Earth Science, pp. 83–103.
[2]. Sazid, M., & Kumar, R. (2010). Designing Cut Out Distance for Continuous Miners Operation using Numerical Modelling and Rock Mechanics Instrumentation. Available: https://www.researchgate.net/publication/257924402
[3]. Mandal, P. K., Das, A. J., Kumar, N., Bhattacharjee, R., Tewari, S., & Kushwaha, A. (2018). Assessment of roof convergence during driving roadways in underground coal mines by continuous miner. International Journal of Rock Mechanics and Mining Sciences, 108, 169–178.
[4]. Cristopher Mark. (n.d.). Application of coal mine roof rating (CMRR) to extended cuts. In National Institute for Occupational Safety and Health. Pittsburgh, National Institute for Occupational Safety and Health.
[5]. Sonu, & Jaiswal, A. (2024). Time-Dependent Stability Assessment of Coal Mine’s Gallery Using New Geotechnical Classification. Journal of The Institution of Engineers (India): Series D.
[6]. Majdi, A. R. M. (2013). Application of artificial neural networks for predicting the height of destressed zone above the mined panel in longwall coal mining. In 47th US Rock Mechanics / Geomechanics Symposium (pp. 23–26). San Francisco, CA, USA.
[7]. Rezaei, Mohammad. (2018). Development of an intelligent model to estimate the height of caving–fracturing zone over the longwall gobs. Neural Computing and Applications, 30(7), 2145–2158.
[8]. Rezaei, Mohammad, Farouq Hossaini, M., Majdi, A., & Najmoddini, I. (2017). Determination of the height of destressed zone above the mined panel: An ANN model, 1–7.
[9]. Rezaei, Mohammad, Habibi, H., & Asadizadeh, M. (2024). Determination of the stress concentration factor adjacent an extracted underground coal panel using the CART and MARS algorithms. Earth Science Informatics.
[10]. Rezaei, M. (2018). Long-term stability analysis of goaf area in longwall mining using minimum potential energy theory. Journal of Mining & Environment, 9(1), 169–182.
[11]. Ray, A. K. (2009). Influence of cutting sequence and time effects on cutters and roof falls in underground coal mine-numerical approach roof falls in underground coal mine-numerical approach. Retrieved from https://researchrepository.wvu.edu/etd
[12]. Gadepaka, Prudhvi Raju, Sonu, & Jaiswal, A. (2025). A Comprehensive Study Using Field Observations and Numerical Simulation Techniques to Design a Mechanised Depillaring Panel. Mining, Metallurgy and Exploration.
[13]. Sonu, P. R. G. A. J. (2024). Estimation of Hoek-Brown Strength Parameters from Time-Dependent Geotechnical Classification as Coal Roof Index (CRI) using Critical Plastic Strain Technique. Pre-Print “Research Square.”
[14]. Gadepaka, Prudhvi Raju, & Jaiswal, A. (2023). A novel approach for the assessment of caving behaviour in a bord and pillar depillaring panel by using continuum modelling. International Journal of Rock Mechanics and Mining Sciences, 170.
[15]. Paul, A., Murthy, V. M. S. R., Prakash, A., Singh, A. K., & Porathur, J. L. (2023). Modelling of Fragile Coal Mine Roof and Estimation of Rock Loads—Some Empirical and Numerical Methods. Mining, Metallurgy and Exploration, 40(5), 1879–1897.
[16]. Murmu, S., & Budi, G. (2022). Analysis of failure associated with longwall face during the main weighting period using a numerical modelling approach. Mining Technology: Transactions of the Institutions of Mining and Metallurgy, 131(4), 210–227.
[17]. Kumar, S., Kumar Sinha, R., & Jawed, M. (2023). Numerical simulation of depillaring panel at higher depth- Jamadoba mine case study. Ain Shams Engineering Journal, 14(4).
[18]. P. R. Sheorey, M. N. D. ~, S. K. B. and B. S. (1986). Pillar strength approaches based on a new failure criterion for coal seams. International Journal of Mining and Geological Engineering, 4, 273–290.
[19]. Murali Mohan, G., Sheorey, P. R., & Kushwaha, A. (2001). Numerical estimation of pillar strength in coal mines. International Journal of Rock Mechanics and Mining Sciences, 38(8), 1185–1192.
[20]. Loui, J. P., Jhanwar, J. C., & Sheorey, P. R. (2007). Assessment of roadway support adequacy in some Indian manganese mines using theoretical in situ stress estimates. International Journal of Rock Mechanics and Mining Sciences, 44(1), 148–155.
[21]. Singh, A. K., Singh, R., Maiti, J., Kumar, R., & Mandal, P. K. (2011). Assessment of mining induced stress development over coal pillars during depillaring. International Journal of Rock Mechanics and Mining Sciences, 48(5), 805–818.
[22]. Das, A. J., Mandal, P. K., Bhattacharjee, R., Tiwari, S., Kushwaha, A., & Roy, L. B. (2017). Evaluation of stability of underground workings for exploitation of an inclined coal seam by the ubiquitous joint model. International Journal of Rock Mechanics and Mining Sciences, 93, 101–114.
[23]. Paul, A., Singh, A. P., John, L. P., Singh, A. K., & Khandelwal, M. (2012). Validation of RMR-based support design using roof bolts by numerical modeling for underground coal mine of Monnet Ispat, Raigarh, India- a case study. Arabian Journal of Geosciences, 5(6), 1435–1448.
[24]. Ghosh, C. N., & Ghose, A. K. (1992). Estimation of critical convergence and rock load in coal mine roadways-an approach based on rock mass rating. Geotechnical and Geological Engineering, 10, 185–202.
[25]. Mohan, G. M., Sheorey, P. R., & Kushwaha, A. (2001). Numerical estimation of pillar strength in coal mines. International Journal of Rock Mechanics & Mining Sciences (Vol. 38).
[26]. Kumar, S., Sinha, R. K., Jawed, M., & Murmu, S. (2023). Assessment of coal pillar strength under the influence of sand stowing in deep coal mines. Geotechnical and Geological Engineering.
[27]. Jaiswal, A., & Shrivastva, B. K. (2009). Numerical simulation of coal pillar strength. International Journal of Rock Mechanics and Mining Sciences, 46(4), 779–788.
[28]. Gadepaka, P.R., Sonu, & Jaiswal, A. (2024). Assessment of the strength deterioration of a coal pillar using a strain-softening time-dependent constitutive model. Mechanics of Time-Dependent Materials.
[29]. Hoek, E., & Brown, E. T. (1980). Empirical strength criterion for rock masses. Journal of the Geotechnical Engineering Division, ASCE, 106(GT9, Proc. Paper, 15715), 1013–1035.
[30]. Zhang, S., Rodriguez-Dono, A., Song, F., & Zhou, Z. (2025). Time-dependent tunnel deformations: Insights from in-situ tests and numerical analyses. Tunnelling and Underground Space Technology, 157.
[31]. Khoshmagham, A., Hosseini, N., Shirinabadi, R., Bangian Tabrizi, A. H., Gholinejad, M., & Kianoush, P. (2024). Unraveling time-dependent roof stability dynamics in Iran’s coal mines through laboratory-based rock displacement testing. Scientific Reports, 14(1).
[32]. Satheesh, P. V., Lohar, G. K., & Kumar, A. (2024). Analyzing Creep Behavior of Storage Caverns in Weak Rocks. Geotechnical and Geological Engineering, 42(6), 4609–4626.
[33]. Liu, J., Feng, Q., Wang, Y., Zhang, D., Wei, J., & Kanungo, D. P. (2018). Experimental study on unconfined compressive strength of organic polymer reinforced sand. International Journal of Polymer Science, 2018.
[34]. Goyal, P., Chan, A. T., & Jaiswal, N. (2006). Statistical models for the prediction of respirable suspended particulate matter in urban cities. Atmospheric Environment, 40(11), 2068–2077. https://doi.org/10.1016/J.ATMOSENV.2005.11.041
[35]. Cardinal, R. N., & A. M. R. F. (2006). ANOVA for the Behavioral Sciences Researcher (1st ed.). Psychology Press. Lawrence Erlbaum Associates, Inc.