[1]. Schubert, H. (1999). On the turbulence-controlled microprocesses in flotation machines. International journal of mineral processing, 56(1-4), 257-276.
[2]. Darabi, H., S.J. Koleini, D. Deglon, B. Rezai, and M. Abdollahy. (2019). Investigation of bubble-particle interactions in a mechanical flotation cell, part 1: Collision frequencies and efficiencies. Minerals Engineering, 134, 54-64.
[3]. Darabi, H., S.J. Koleini, D. Deglon, B. Rezai, and M. Abdollahy. (2020). Investigation of bubble-particle attachment, detachment and collection efficiencies in a mechanical flotation cell. Powder Technology, 375, 109-123.
[4]. Darabi, H., S.M.J. Koleini, B. Rezai, and M. Abdollahy. (2017). The Investigation of Critical Impeller Speed in a Laboratory Mechanical Flotation Cell. Nashrieh Shimi va Mohandesi Shimi Iran, 36(3), 211-223.
[5]. Darabi, H., S.M.J. Koleini, F. Soltani, M. Abdollahy, and M. Ghadiri. (2020). Investigation of cell geometry effect on the turbulence characteristics and flotation performance using particle image velocimetry technique. Powder Technology, 376, 458-467.
[6]. Shen, Z. and Z. Shen. (2021). Dynamic Characteristics and Evaluation of Flotation Machines. Principles and Technologies of Flotation Machines, 59-83.
[7]. Darabi, H., F. Soltani, and D. Deglon. (2024). Enhancing flotation kinetics: Investigating hydrodynamic impact for improved predictive modeling. Minerals Engineering, 215, 108832.
[8]. Harris, C. (1974). Impeller speed, air, and power requirements in flotation machine scale-up. International Journal of Mineral Processing, 1(1), 51-64.
[9]. Harris, C. and R. Mensah-Biney. (1977). Aeration characteristics of laboratory flotation machine impellers. International Journal of Mineral Processing, 4(1), 51-67.
[10]. Paglianti, A. (2002). Simple model to evaluate loading/flooding transition in aerated vessels stirred by Rushton disc turbines. The Canadian Journal of Chemical Engineering, 80(4), 1-5.
[11]. Lins Barros, P., F. Ein-Mozaffari, and A. Lohi. (2022). Gas dispersion in non-Newtonian fluids with mechanically agitated systems: A review. Processes, 10(2), 275.
[12]. Nienow, A. Effect of scale and geometry on flooding, recirculation and power in gassed stirred vessels. in 2nd Euro, Conf. Mixing, Cambridge, England. 1977.
[13]. Yawalkar, A.A., A.B. Heesink, G.F. Versteeg, and V.G. Pangarkar. (2002). Gas—liquid mass transfer coefficient in stirred tank reactors. The Canadian Journal of Chemical Engineering, 80(5), 840-848.
[14]. Schubert, H. and C. Bischofberger. (1998). On the microprocesses air dispersion and particle-bubble attachment in flotation machines as well as consequences for the scale-up of macroprocesses. International journal of mineral processing, 52(4), 245-259.
[15]. Arbiter, N., C. Harris, and R. Yap. (1969). Hydrodynamics of flotation cells. SME Transactions, 244, 134-148.
[16]. Van der Westhuizen, A. and D. Deglon. (2007). Evaluation of solids suspension in a pilot-scale mechanical flotation cell: The critical impeller speed. Minerals Engineering, 20(3), 233-240.
[17]. Van der Westhuizen, A. and D. Deglon. (2008). Solids suspension in a pilot-scale mechanical flotation cell: A critical impeller speed correlation. Minerals Engineering, 21(8), 621-629.
[18]. Zwietering, T.N. (1958). Suspending of solid particles in liquid by agitators. Chemical engineering science, 8(3-4), 244-253.
[19]. Ndlovu, B., M. Becker, E. Forbes, D. Deglon, and J.-P. Franzidis. (2011). The influence of phyllosilicate mineralogy on the rheology of mineral slurries. Minerals engineering, 24(12), 1314-1322.
[20]. Ndlovu, B., E. Forbes, M. Becker, D. Deglon, J. Franzidis, and J. Laskowski. (2011). The effects of chrysotile mineralogical properties on the rheology of chrysotile suspensions. Minerals Engineering, 24(9), 1004-1009.
[21]. Ralston, J., The influence of particle size and contact angle in flotation, in Developments in mineral processing. 1992, Elsevier. p. 203-224.
[22]. Jameson, G., S. Nam, and M.M. Young. (1977). Physical factors affecting recovery rates in flotation. Miner. Sci. Eng.;(South Africa), 9(3).
[23]. Gui, X., G. Cheng, J. Liu, Y. Cao, S. Li, and Q. He. (2013). Effects of energy consumption on the separation performance of fine coal flotation. Fuel Processing Technology, 115, 192-200.
[24]. Lima, O.A.d., D.A. Deglon, and L.d.S. Leal Filho. (2009). A comparison of the critical impeller speed for solids suspension in a bench-scale and a pilot-scale mechanical flotation cell. Minerals Engineering, 22(13), 1147-1153.