[1]. Sinh, P., Yadav, A.K., Pal, Mishra, V. (2020). Water Pollutants: Origin and Status. Sensors in Water Pollutants Monitoring: Role of Material: 5–20.
[2]. Manisalidis, I., Stavropoulou, E., Stavropoulos, A., Bezirtzoglou, E. (2020). Environmental and Health Impacts of Air Pollution: A Review. Front Public Health, volume 8.
[3]. Alimohammadi, V., Sedighi, M., Jabbari, E. (2017). Optimization of sulfate removal from wastewater using magnetic multi-walled carbon nanotubes by response surface methodology. Water Sci Technol, 76:(10) 2593–2602.
[4]. Kitadai, N., Nishiuchi, K., Tanaka, M. (2018). A comprehensive predictive model for sulfate adsorption on oxide minerals. Geochimica et Cosmochimica Acta, 238(1): 150-168.
[5]. Halajnia, A., Oustan, S., Najafi, N., Lakzian, A.R. A. (2013). Adsorption–desorption characteristics of nitrate, phosphate and sulfate on Mg–Al layered double hydroxide. Applied Clay Science, 80(1): 305-312.
[6]. Baldwin, D. S., and Mitchell, A. (2012). Impact of sulfate pollution on anaerobic biogeochemical cycles in a wetland sediment. Water research, 46(4): 965-974.
[7]. Silva, A. M., Lima, R., Leão, V. (2012). Mine water treatment with limestone for sulfate removal. Journal of hazardous materials, 221(1): 45-55.
[8]. Liang, F., Xiao, Y., Zhao, F. (2013). Effect of pH on sulfate removal from wastewater using a bioelectrochemical system. Chemical engineering journal, 218(1): 147-153.
[9]. Lee, H. J., Oh, S. J., moon, S. H. (2003). Recovery of ammonium sulfate from fermentation waste by electrodialysis, Water Research, 37(5): 1091-1099.
[10]. Galiana-Aleixandre, M. V., Iborra-Clar, A., Bes-Pifi, A., Mendoza-Roca, J. A., Cuartas-Uribe, B., IborraClar, M. I. (2005). Nanofiltration for sulfate removal and water reuse of the pickling and tanning processes in a tannery, Desalination, 179(1-3): 307-313.
[11]. Bodalo, A., Gomez, J. L., Gomez, E., Leon, G., Tejera, M. (2004). Reduction of sulphate content in aqueous solutions by reverse osmosis using cellulose acetate membranes, Desalination, 162(10): 55-60.
[12]. He, J., Jie, Y., Zhang, J., Yu, Y., Zhang, G. (2013). Synthesis and characterization of red mud and rice husk ash-based geopolymer composites, Cement & Concrete Composites, 37: 108-118.
[13]. Liu, Y., Naidu, R., Ming, H. (2011). Red mud as an amendment for pollutants in solid and liquid phases, Geoderma, 163(1-2): 1-12. https://doi.org/10.1016/j.geoderma.2011.04.002.
[14]. Zhao, Y., Yue, Q., Li, Q., Xu, X., Yang, Z., Wang, X., Gao, B., Yu, H. (2012). Characterization of red mud granular adsorbent (RMGA) and its performance on phosphate removal from aqueous solution, Chemical Engineering Journal, 193: 161-168.
[15]. Ye, J., Cong, X., Zhang, P., Zeng, G., Hoffmann, E., Wu, Y., Zhang, H., Fang, W. (2016). Operational parameter impact and back propagation artificial neural network modeling for phosphate adsorption onto acid-activated neutralized red mud, Journal of Molecular Liquids, 216(2): 35-41.
[16]. Sutar, H., Mishra, S.Ch., Sahoo, S., and Chakraverty, A. P. (2014). Progress of Red Mud Utilization: An Overview. American Chemical Science Journal, 4(3): 255–279.
[17]. Burke, I.T., Peacock, C.L., Lockwood, C.L., Stewart, D.I., Mortimer, R.J.G., Ward, M.B., Renforth, P., Gruiz, K., Mayes, W.M. (2013). Behavior of Aluminum, Arsenic, and Vanadium during the Neutralization of Red Mud Leachate by HCl, Gypsum, or Seawater, Environmental Science Technology, 47(12): 6527–6535.
[18]. Palmer, S. J., Nothling, M., Bakon, K. H., Frost, R. L. (2010). Thermally activated seawater neutralized red mud used for the removal of arsenate, vanadate and molybdate from aqueous solutions, Journal of Colloid and Interface Science, 342(1): 147–154.
[19]. Schwarz, S., Schwarz, D., Ohmann, W., Neuber, S. (2018). Adsorption and desorption studies on reusing chitosan as an efficient adsorbent. Proceedings of the 3rd World Congress on Civil. Structural and Environmental Engineering, 8 – 10.
[20].
Martins,
Y. J. C., Almeida,
A. C. M., Viegas, B. M.,
Nascimento,
R. A., Ribeiro, N. F. (2020). Use of red mud from amazon region as an adsorbent for the removal of methylene blue: process optimization, isotherm and kinetic studies.
International Journal of Environmental Science and Technology, 17: 4133–4148.
[21]. Rahimi, Sh., & Irannajad, M. (2024). Sulfate Removal from Acid Mine Drainage with Chitosan-Modified Red Mud Using Analytical Methods: Isotherm, Kinetic, and Thermodynamic Studies. Journal of Environmental Engineering, 150(10): 04024041-5.
[22]. Irannajad, M., & Rahimi, Sh. (2024). Density Functional Theory Study of Adsorption Mechanism of Sulfate Contaminant on Red Mud Surfaces, Environmental engineering science, 32(5): 240416. http://dx.doi.org/10.1089/ees.2024.0077.
[23]. Rahimi, Sh., & Irannajad, M. (2024). The molecular simulation of sulfate adsorption on hematite and other red mud clusters: Kinetic and thermodynamic modelling study. Environmental engineering research, 30(3): 240418. http://dx.doi.org/10.1061/JOEEDU.EEENG-7304.
[24]. Irannajad, M., & Rahimi, Sh. (2024). Sulfate Adsorption Process from Acid Mine Drainage by Seawater and Acid‑Activated Neutralized Red Mud. Chemistry Africa, 45: 1-10.
[25]. Zia, Y., Mohammadnejad, S., Abdollahy, M. (2019). Gold passivation by sulfur species: A molecular picture, Minerals Engineering, 134(6): 215-221.
[26]. Wang, R. B., & Hellman, A. (2018). Initial water adsorption on hematite (α-Fe2O3) (0001): A DFT + U study. The journal of chemical physics, 148: 094705-1. https://doi.org/10.1063/1.5020358.
[27]. Li, D., Ding, Y., Li, L., Chang, Z., Rao, Z., Lu, L. (2015). Removal of hexavalent chromium by using red mud activated with cetyl trimethylammonium bromide. Environmental technology, 36(9-12): 1084-1090. https://doi.org/10.1080/09593330.2014.975286.
[28]. Deihimi, N., Irannajad, M., Rezai, B. (2019). Removal of ferricyanide ions from aqueous solutions using modified red mud with cetyl trimethylammonium bromide. Environmental earth sciences. 78(6): 187-205. https://doi.org/10.1007/s12665-019-8173-8.
[29]. Deihimi, N., Irannajad, M., Rezai, B. (2018). Equilibrium and kinetic studies of ferricyanide adsorption from aqueous solution by activated red mud, Journal of Environmental Management. 227(1): 277–285.
[30]. Sadeghalvad, B., Khorshidi, N., Azadmehr, A., Sillanpa, M. (2011). Sorption, mechanism, and behavior of sulfate on various adsorbents: A critical review. Chemosphere, 263, 128064.
[31]. Deihimi, N., Irannajad, M., Rezai, B. (2018). Characterization studies of red mud modification processes as adsorbent for enhancing ferricyanide removal, Journal of Environmental Management, 206(1): 266-275.
[32]. Moldoveanu, G.A., Papangelakis, V.G. (2012). Recovery of rare earth elements adsorbed on clay minerals: I. Desorption mechanism. Hydrometallurgy, 117(1): 71 – 7.