Document Type : Original Research Paper

Authors

1 Department of Mining and Metallurgical Engineering, Yazd University, Yazd, Iran

2 Yazd University

10.22044/jme.2025.16077.3103

Abstract

Designing and planning in open-pit mining encompass a series of processes that commence with the preparation of a block model. Subsequently, upon designing the final scope, it culminates with the timing and sequencing of mining blocks, with the aim to maximize the pit's value within specific technical and operational constraints. Mathematical programming methods have proven suitable for optimizing mine production scheduling. Previous studies have addressed various aspects, including the timing of deployment and periodic relocation of in-pit crushers. Nevertheless, significant challenges remain in integrating the in-pit crusher problem with production planning. This paper introduces a new mixed-integer linear programming model for long-term open-pit mine production planning, incorporating constrained pit deepening to enforce predominantly lateral progression throughout the planning horizon. To achieve this, the number of active benches in each time period was reduced, thereby decreasing the need for equipment movement between working benches. Furthermore, with the horizontal progression of the pit, more workspace became available for deploying in-pit crushers, reducing equipment movement costs between benches and overall transportation costs, ultimately lowering the mine's operational expenses. Finally, the proposed model was implemented at the Miduk copper mine. The results demonstrated that the proposed model successfully achieved the expected objectives, resulting in a 52.45% improvement in reducing the number of active benches and regarding execution time reduction, the model showed a 53.32% improvement.

Keywords

Main Subjects