[1]. Siami-Irdemoosa, E., & Dindarloo, S. (2015). Prediction of fuel consumption of mining dump trucks: A neural networks approach. Applied Energy, 151, 77–84.
[2]. Gibson, J. (2015). Going green with mobile mining equipment. Mining Engineering, 67(10), 43–48.
[3]. Brundtland, G. (1987). Our common future: Report for the World Commission on Environment and Development. United Nations.
[4]. Moran, C., Lodhia, S., Kunz, N., & Huisingh, D. (2014). Sustainability in mining, minerals and energy: New processes, pathways and human interactions for a cautiously optimistic future. Journal of Cleaner Production, 84, 1–15.
[5]. Ahn, K., Rakha, H., Trani, A., & Van Aerde, M. (2002). Estimating vehicle fuel consumption and emissions based on instantaneous speed and acceleration levels. Journal of Transportation Engineering, 128(2), 182–190.
[6]. Rahimi-Ajdadi, F., & Abbaspour-Gilandeh, Y. (2011). Artificial neural network and stepwise multiple range regression methods for prediction of tractor fuel consumption. Measurement, 44(10), 2104–2111.
[7]. Kara Togun, N., & Baysec, S. (2010). Prediction of torque and specific fuel consumption of a gasoline engine by using artificial neural networks. Applied Energy, 87(11), 3490–3501.
[8]. He, K., Huo, H., Zhang, Q., He, D., An, F., Wang, M., & Walsh, M. (2005). Oil consumption and CO₂ emissions in China’s road transport: Current status, future trends, and policy implications. Energy Policy, 33(12), 1499–1507.
[9]. Yap, W., & Karri, V. (2011). ANN virtual sensors for emissions prediction and control. Applied Energy, 88(12), 4857–4869.
[10]. Mohamed Ismail, H., Ng, H., Queck, C. W., & Gan, S. (2012). Artificial neural networks modelling of engine-out responses for a light-duty diesel engine fuelled with biodiesel blends. Applied Energy, 92, 769–777.
[11]. Yousefi Nejad Attari, M., Farrashzadeh Miandoab, T., Ejlali, B., & Torkayesh, A. (2021). Fuel consumption in mining industry using partial least squares structural equation modeling approach. International Journal of Energy Sector Management, 15.
[12]. Alamdari, S., Hossein Basiri, M., Mousavi, A., & Soofastaei, A. (2022). Application of machine learning techniques to predict haul truck fuel consumption in open-pit mines. Journal of Mining and Environment, 13.
[13]. Hellström, E., Ivarsson, M., Åslund, J., & Nielsen, L. (2009). Look-ahead control for heavy trucks to minimize trip time and fuel consumption. Control Engineering Practice, 17, 163–174.
[14]. Nguyen, T., & Wilson, B. (2010). Fuel consumption estimation for kerbside municipal solid waste (MSW) collection activities. Waste Management and Research, 28(4), 289–297.
[15]. Delgado, O., Clark, N., & Thompson, G. (2012). Heavy duty truck fuel consumption prediction based on driving cycle properties. International Journal of Sustainable Transportation, 6(5), 297–313.
[16]. Lutsey, N., Brodrick, C., & Lipman, T. (2007). Analysis of potential fuel consumption and emissions reductions from fuel cell auxiliary power units (APUs) in long-haul trucks. Energy, 32(2), 314–327.
[17]. Zamboni, G., Malfettani, S., André, M., Carraro, C., Marelli, S., & Capobianco, M. (2013). Assessment of heavy-duty vehicle activities, fuel consumption and exhaust emissions in port areas. Applied Energy, 111, 888–898.
[18]. Silva, C., Farias, T., Frey, H., & Rouphail, N. (2006). Evaluation of numerical models for simulation of real-world hot-stabilized fuel consumption and emissions of gasoline light-duty vehicles. Transportation Research Part D: Transport and Environment, 11(5), 377–385.
[19]. Silva, C., Gonçalves, G., Farias, T., & Mendes-Lopes, J. (2006). A tank-to-wheel analysis tool for energy and emissions studies in road vehicles. Science of the Total Environment, 367, 441–447.
[20]. Ribau, J., Silva, C., & Sousa, J. (2014). Efficiency, cost and life cycle CO₂ optimization of fuel cell hybrid and plug-in hybrid urban buses. Applied Energy, 129, 320–335.
[21]. Bao, R., Feng, Q., Lei, C. (2025) Influencing Factors Analysis and Prediction of Gas Emission in Mining Face. Sustainability 17:578.
[22]. Premchender, M., Pooja, K., Rajitha, K., Prathyusha, K., & Vaishnavi, M. (2023). Fuel Net: Artificial intelligence tool for fuel consumption prediction in heavy vehicles. Turkish Journal of Computer and Mathematical Education (TURCOMAT), 14.
[23]. Golbasi, O., & Kina, E. (2022). Haul truck fuel consumption modeling under random operating conditions: A case study. Transportation Research Part D: Transport and Environment, 102, 103135.
[24]. Tadubana, G., Sigweni, B., & Suglo, R. (2021). Case-based reasoning system for prediction of fuel consumption by haulage trucks in open-pit mines. International Journal of Electrical and Computer Engineering, 11(4), 3129–3136.
[25]. Vera-Burau, A., Álvarez-Ramírez, D., Sanmiquel, L., & Bascompta, M. (2023). A comparison of the fuel consumption and truck models in different production scenarios. Applied Sciences, 13(9), 5769.
[26]. Norgate, T., & Haque, N. (2012). Using life cycle assessment to evaluate some environmental impacts of gold production. Journal of Cleaner Production, 29–30, 53–63.
[27]. Peralta, S., Sasmito, A. P., & Kumral, M. (2016). Reliability effect on energy consumption and greenhouse gas emissions of mining hauling fleet towards sustainable mining. Journal of Sustainable Mining, 15(3), 115–122.
[28]. Jayanthakumaran, K., Verma, R., & Liu, Y. (2012). CO₂ emissions, energy consumption, trade and income: A comparative analysis of China and India. Energy Policy, 42, 450–460.
[29]. Biniaris, D., Xiroudakis, G., Saratsis, G., Exadaktylos, G., & Varouchakis, E. (2025). Minimization of CO₂ emissions in open-pit mines by using stochastic simulations. Circular Economy and Sustainability.
[30]. Nordin, I., Elofsson, K., & Jansson, T. (2024). Cost-effective reductions in greenhouse gas emissions: Reducing fuel consumption or replacing fossil fuels with biofuels. Energy Policy, 190, 114138.
[31]. Ren, G., Wang, W., Wu, W., Hu, Y., & Liu, Y. (2023). Carbon emission prediction model for the underground mining stage of metal mines. Sustainability, 15.
[32]. de Carvalho, J., de Castro, A., Brasil, G., de Souza, P., & Mendiburu, A. (2022). CO₂ emission factors and carbon losses for off-road mining trucks. Energies, 15.
[33]. Rexis, M., Röck, M., & Hausberger, S. (2018). Comparison of fuel consumption and emissions for representative heavy-duty vehicles in Europe. The International Council on Clean Transportation, FVT-099/17.
[34]. Sun, X., Mi, Z., Zhang, J., & Li, J. (2024). Driving factors of carbon emissions from household energy combustion in China. Energy Policy, 186, 114013.
[35]. Rodríguez-Benavides, D., Andrés-Rosales, R., Álvarez-García, J., & Bekun, F. V. (2024). Convergence of clubs between per capita carbon dioxide emissions from fossil fuels and cement production. Energy Policy, 186, 114007.
[36]. Huang, Y., Song, G., & Yu, L. (2024). Development of weight-specific scaled tractive power distributions of heavy-duty trucks for emission estimation. International Journal of Sustainable Transportation, 1–13.
[37]. Kim, D., Ki, H., Suh, W., Lee, S., & Ko, J. (2024). Factors driving reduction in CO₂ emissions from personal travel: A repeated cross-sectional analysis. International Journal of Sustainable Transportation, 18, 662–679.
[38]. Yin, C., Wang, C., Wang, Q., & Ge, Y. (2024). Effects of regional freight structure and energy intensity on CO₂ emission of transport a case study in Yangtze River Delta. International Journal of Sustainable Transportation, 18, 379–392.
[39]. O’Riordan, V., Rogan, F., Ó’Gallachóir, B., & Daly, H. (2023). Impact of an emissions-based car tax policy on CO₂ emissions and tax revenue from private cars in Ireland. International Journal of Sustainable Transportation, 17, 969–981.
[40]. Ashik, F., Rahman, M., Antipova, A., & Zafri, N. (2023). Analyzing the impact of the built environment on commuting-related carbon dioxide emissions. International Journal of Sustainable Transportation, 17.
[41]. Han, M., Håkansson, J., Svensson, T., & Zhao, X. (2025). Planning for energy-efficient transport in a small town: Influence from different urban configurations of destination points and housing establishments. International Journal of Sustainable Transportation, 19, 121–132.
[42]. Wu, S., Yang, Z., & Yao, S. (2025). Impacts of high-speed rail on household carbon dioxide emissions: Evidence from China. International Journal of Sustainable Transportation, 19, 149–164.
[43]. Kaarsberg, T., HuangFu, E., & Roop, J. (2007). Extreme energy efficiency in the U.S.: Industrial, economic and environmental impacts. ACEEE Summer Study on Energy Efficiency in Industry, 4, 24–35.
[44]. Norgate, T., & Haque, N. (2010). Energy and greenhouse gas impacts of mining and mineral processing operations. Journal of Cleaner Production, 18.
[45]. Soofastaei, A., Aminossadati, S., Arefi, M., & Kizil, M. (2016). Development of a multi-layer perceptron artificial neural network model to determine haul trucks energy consumption. International Journal of Mining Science and Technology, 26.
[46]. Sahoo, L., Bandyopadhyay, S., & Banerjee, R. (2014). Benchmarking energy consumption for dump trucks in mines. Applied Energy, 113, 1386–1396.
[47]. Giannelli, R., Nam, E., Helmer, K., Younglove, T., Scora, G., & Barth, M. (2005). Heavy-duty diesel vehicle fuel consumption modeling based on road load and power train parameters. SAE Technical Papers.
[48]. Zhang, K., & Frey, H. C. (2006). Road grade estimation for on-road vehicle emissions modeling using light detection and ranging data. Journal of the Air & Waste Management Association, 56, 777–788.
[49]. Cloke, J., Boulter, P., & Davies, G. (1998). Traffic management and air quality research programme. TRL Report, 327.
[50]. Soofastaei, A., Aminossadati, S., Kizil, M., & Knights, P. (2016). A discrete-event model to simulate the effect of truck bunching due to payload variance on cycle time, hauled mine materials and fuel consumption. International Journal of Mining Science and Technology, 26.
[51]. Dindarloo, S., & Siami-Irdemoosa, E. (2016). Determinants of fuel consumption in mining trucks. Energy, 112.
[52]. Rodovalho, E. da C., Lima, H., & de Tomi, G. (2016). New approach for reduction of diesel consumption by comparing different mining haulage configurations. Journal of Environmental Management, 172.
[53]. Patterson, S. R., Kozan, E., & Hyland, P. (2017). Energy efficient scheduling of open-pit coal mine trucks. European Journal of Operational Research, 262.
[54]. Kecojevic, V., & Komljenovic, D. (2011). Haul truck fuel consumption and CO₂ emission under various engine load conditions. SME Annual Meeting and Exhibit and CMA 113th National Western Mining Conference 2011.
[55]. Topal, E., & Ramazan, S. (2010). A new MIP model for mine equipment scheduling by minimizing maintenance cost. European Journal of Operational Research, 207.
[56]. Soofastaei, A., Aminossadati, S., & Knights, P. (2014). Payload variance plays a critical role in fuel consumption of mining haul trucks. Australian Resources and Investment, 8.
[57]. Tolouei, R., & Titheridge, H. (2009). Vehicle mass as a determinant of fuel consumption and secondary safety performance. Transportation Research Part D: Transport and Environment, 14.
[58]. Oh, Y., Park, J., Lee, J., Eom, M. Do, & Park, S. (2014). Modeling effects of vehicle specifications on fuel economy based on engine fuel consumption map and vehicle dynamics. Transportation Research Part D: Transport and Environment, 32.
[59]. Xiao, Y., Zhao, Q., Kaku, I., & Xu, Y. (2012). Development of a fuel consumption optimization model for the capacitated vehicle routing problem. Computers & Operations Research, 39.
[60]. Correa Espinal, A., Cogollo Flórez, J., & Salazar López, J. (2010). Evaluación del efecto de la conducción eficiente en el consumo de combustible en vehículos de transporte de carga pesada usando diseño de experimentos. Producción + Limpia, 5.
[61]. Melkumova, L., & Shatskikh, S. (2017). Comparing Ridge and LASSO estimators for data analysis. Procedia Engineering.
[62]. Lawrence, K. (1984). Robust ridge estimation methods for predicting U.S. coal mining fatalities. Communications in Statistics - Theory and Methods, 13.
[63]. Cotrina, M., Marquina, J., Mamani, J., Arango, S., Gonzalez, J., Ccatamayo, J., & Noriega, E. (2024). Predictive model using machine learning to determine fuel consumption in CAT-777F mining equipment. International Journal of Mining and Mineral Engineering, 15, 147–160.
[64]. Cotrina, M., Marquina, J., & Noriega, E., et al. (2024). Predicting open pit mine production using machine learning techniques: A case study in Peru. Journal of Mining and Environment, 15, 1345–1355.
[65]. Marquina, J., Cotrina, M., Mamani, J., Noriega, E., Vega, J., & Cruz, J. (2024). Copper ore grade prediction using machine learning techniques in a copper deposit. Journal of Mining and Environment, 15(3), 1011–1027.
[66]. Marquina, J., Cotrina, M., Mamani, J., Soto, L., Ccatamayo, J., Ortiz, S., & Cruz, J. (2023). Application of multilayer perceptron neural network in geological modeling of categorical variables: A case study in Peru. Mathematical Modelling of Engineering Problems, 11(6), 1463–1472.
[67]. Carneiro, T., Rocha, P., Carvalho, P., & Fernández, L. (2022). Ridge regression ensemble of machine learning models applied to solar and wind forecasting in Brazil and Spain. Applied Energy, 314, 118936.
[68]. Wang, X., Wang, X., Ma, B., Li, Q., Wang, C., & Shi, Y. (2023). High-performance reversible data hiding based on ridge regression prediction algorithm. Signal Processing, 204, 108818.
[69]. Geraldo-Campos, L., Soria, J., & Pando-Ezcurra, T. (2022). Machine learning for credit risk in the Reactive Peru Program: A comparison of the Lasso and Ridge regression models. Economies, 10.
[70]. Carneiro, T., Rocha, P., Carvalho, P., & Fernández-Ramírez, L. (2022). Ridge regression ensemble of machine learning models applied to solar and wind forecasting in Brazil and Spain. Applied Energy, 314.
[71]. Cotrina, M., Marquina, J., & Polo, J. (2025). Prediction of unit haulage cost in an underground mine using machine learning techniques. Journal of Sustainable Mining, 24, 250–266.
[72]. Priya Varshini, A., Anitha Kumari, K., Janani, D., & Soundariya, S. (2021). Comparative analysis of machine learning and deep learning algorithms for software effort estimation. Journal of Physics: Conference Series.
[73]. Yashwanth, N. (2020). Evaluation metrics & model selection in linear regression. Towards Data Science.
[74]. Anticona Cueva, J., Anticona Cueva, T., Cotrina Teatino, M., Noriega Vidal, E., Valdivieso Velarde, A., & Vera Encarnación, J. (2023). Optimización de la fragmentación de la voladura de rocas en open pit mediante modelos predictivos. Proceedings of the 3rd LACCEI International Multiconference on Entrepreneurship, Innovation and Regional Development (LEIRD 2023).
[75]. Anticona-Cueva, J., Noriega-Vidal, E., Cotrina-Teatino, M., & Arango-Retamozo, M. (2024). Evaluation of predictive models for the optimization of the cost of unit operations in artisanal underground mining. Mathematical Modelling of Engineering Problems, 11, 2901–2911.
[76]. Mangukiya, R., & Sklarew, D. (2023). Analyzing three pillars of sustainable development goals at sub-national scales within the USA. World Development Sustainability, 2.
[77]. Mensah, J. (2019). Sustainable development: Meaning, history, principles, pillars, and implications for human action: Literature review. Cogent Social Sciences, 5.
[78]. Purvis, B., Mao, Y., & Robinson, D. (2019). Three pillars of sustainability: In search of conceptual origins. Sustainability Science, 14.
[79]. Niedoba, T., & Pieta, P. (2016). Applications of ANOVA in mineral processing. Mining Science, 23, 43–54.
[80]. WBCSD (2016). Contribuyendo a los Objetivos de Desarrollo Sostenible: El enfoque de Negocios Inclusivos.
[81]. Ministerio del Ambiente (2020). Perú ratifica sus compromisos asumidos en el Acuerdo de París e incrementará su ambición climática.