Document Type : Original Research Paper

Authors

1 Department of Mining and Metallurgical Engineering, Yazd University, Yazd, Iran

2 Yazd University

10.22044/jme.2025.16402.3200

Abstract

The scheduling of short-term production in open-pit mining requires determining an optimal extraction sequence for blocks to fulfill multiple goals over a short-term monthly, weekly and daily planning horizon. These goals include meeting required limits on ore grade, production tonnage, waste removal, and slope constraints. One of the key objectives of Short-Term Production Scheduling (STPS) is to ensure a stable and continuous supply of ore to the processing plant, while minimizing operating costs through measures such as reducing unnecessary equipment movements and variation in feed quality. However, one of the major obstacles to the operational feasibility of STPS is the limited working space available for equipment, as well as the excessive equipment movement between benches within each scheduling period. To tackle these challenges, this paper employs an Integer Goal Programming (IGP) with a new constraint that limits active benches per period, enhancing the practicality of production schedules. Unlike previous GP-based STPS models, it improves operational feasibility by ensuring extraction continuity and minimizing equipment movement. The model was tested on a copper deposit using GAMS software. The results show that by applying this new constraint, the average number of active benches per month was reduced from 14 to 10 )36% reduction) and the number of extraction periods per bench from 6 to 4 (33% reduction) without violating the existing constraints such as ore grade, tonnage, or slope. This approach improves equipment efficiency, reduces fuel consumption, reducing equipment relocation costs, promoting operational continuity of extraction and enhances operational feasibility in real conditions.

Keywords

Main Subjects