Document Type : Case Study

Authors

1 Department of Mining Engineering, Faculty of Mining, Petroleum & Geophysics Eng, Shahrood University of Technology, Shahrood, Iran

2 Department of Agronomy and Plant Breeding, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran

3 Farhangian University, Shahid Modarres Campus, Sanandaj, Kurdistan, Iran

4 Department of Basic Sciences, Shahid Modarres Campus, Farhangian University, Sanandaj, Iran

5 Sustainable Minerals Institute, The University of Queensland, Brisbane, Australia

Abstract

This study evaluated the efficiency of the native hyperaccumulator Odontarrhena inflata in extracting nickel (Ni) from ultramafic soils in the Robat-Sefid region of northeastern Iran and assessed the feasibility of applying agromining under controlled conditions. A six-month greenhouse experiment was conducted using homogenized serpentine soil with a total Ni concentration of 1,460 mg/kg. By the end of the cultivation period, the aerial parts of the plant yielded 122 g of dry biomass containing 2,195 mg/kg of Ni. The calculated bioconcentration factor (BCF = 1.5) and translocation factor (TF = 3.53) confirmed effective Ni uptake and translocation from roots to shoots. The biomass was pyrolyzed at 550 °C to produce ash, which underwent cross-washing and sulfuric acid (H₂SO₄) leaching. This leaching process achieved a Ni extraction efficiency of 78.9%, and the overall Ni recovery from soil to biomass ash was estimated at 3.53%. Elemental analyses showed substantial reduction of Magnesium (Mg) and Iron (Fe) in the final crystalline product; however, Calcium (Ca) and Sodium (Na) remained at appreciable levels, indicating that further recrystallization or purification steps are necessary to achieve industrial-grade ANSH (ammonium nickel sulfate hexahydrate). Compared with other Ni hyperaccumulators, O. inflata exhibited lower shoot Ni levels than Odontarrhena chalcidica and Alyssum murale, but the combination of its strong ecological adaptability, elevated TF, and native occurrence collectively designates it as a sustainable and promising candidate for agromining applications in nickel-rich soils of Iran.

Keywords

Main Subjects

[1]. Kotal, M., Jakhar, S., Roy, S., & Sharma, H. K. (2022). Cathode materials for rechargeable lithium batteries: Recent progress and future prospects. Journal of Energy Storage, 47, 103534.
[2] Nickel Institute. (2022). About nickel. https://nickelinstitute.org/en/nickel-and-a-low-carbon-future
[3]. Nuhu, B. A., Bamisile, O., Adun, H., Abu, U. O., & Cai, D. (2023). Effects of transition metals for silicon-based lithium-ion battery anodes: A comparative study in electrochemical applications. Journal of Alloys and Compounds, 933, 167737.
[4]. U.S. Geological Survey. (2022). Nickel statistics and information. https://www.usgs.gov/centers/national-minerals-information-center/nickel-statistics-and-information
[5]. Han, S., Zhenghao, M., Meilin, L., Xiaohui, Y., & Xiaoxue, W. (2023). Global supply sustainability assessment of critical metals for clean energy technology. Resources Policy, 85, 103994.
[6]. International Energy Agency. (2025). Global critical minerals outlook 2025. https://www.iea.org/reports/global-critical-minerals-outlook-2025
[7]. Cerdeira-Pérez, A., Monterroso, C., Rodríguez-Garrido, B., Machinet, G., Echevarria, G., Prieto-Fernández, Á., & Kidd, P. S. (2019). Implementing nickel phytomining in a serpentine quarry in NW Spain. Journal of Geochemical Exploration, 197, 1–13.
[8]. Tognacchini, A., Rosenkranz, T., van der Ent, A., Machinet, G. E., Echevarria, G., & Puschenreiter, M. (2020). Nickel phytomining from industrial wastes: Growing nickel hyperaccumulator plants on galvanic sludges. Journal of Environmental Management, 254, 109798.
[9]. Tiseo, I. (2022). Electric vehicle battery recycling capacity 2021, by country. Global Tech Environmental. https://www.globaltechenvironmental.com/services/hybrid-ev-battery-recycling
[10]. Junior, A. B. B., Martins, F. P., Cezarino, L. O., Liboni, L. B., Tenório, J. A. S., & Espinosa, D. C. R. (2023). The sustainable development goals, urban mining, and the circular economy. The Extractive Industries and Society, 16, 101367.
[11]. Das, A. P., van Hullebusch, E. D., & Akçil, A. (2024). Sustainable management of mining waste and tailings: a circular economy approach. CRC Press.
[12]. Kierczak, J., Pietranik, A., & Pędziwiatr, A. (2021). Ultramafic geoecosystems as a natural source of Ni, Cr, and Co to the environment: A review. Science of the Total Environment, 755, 142620.
[13]. Galey, M., van der Ent, A., Iqbal, M., & Rajakaruna, N. (2017). Ultramafic geoecology of south and Southeast Asia. Botanical Studies, 58(1), 18.
[14]. Hseu, Z.-Y., Zehetner, F., Fujii, K., Watanabe, T., & Nakao, A. (2018). Geochemical fractionation of chromium and nickel in serpentine soil profiles along a temperate to tropical climate gradient. Geoderma, 327, 97–106.
[15]. Nascimento, C. W. A. d., Lima, L. H. V., Silva, Y. J. A. B. d., & Biondi, C. M. (2022). Ultramafic soils and nickel phytomining opportunities: A review. Revista Brasileira de Ciência do Solo, 46, e0210099.
[16]. Vithanage, M., Kumarathilaka, P., Oze, C., Karunatilake, S., Seneviratne, M., Hseu, Z.-Y., Gunarathne, V., Dassanayake, M., Ok, Y. S., & Rinklebe, J. (2019). Occurrence and cycling of trace elements in ultramafic soils and their impacts on human health: A critical review. Environment International, 131, 104974.
[17]. Dushyantha, N., Weerawarnakula, S., Premasiri, R., Abeysinghe, B., Ratnayake, N., Batapola, N., & Ranasinghe, M. (2021). Potential ecological risk assessment of heavy metals (Cr, Ni, and Co) in serpentine soil at Ginigalpelessa in Sri Lanka. Arabian Journal of Geosciences, 14(13), 1255.
[18]. van der Ent, A., Baker, A. J., Reeves, R. D., Chaney, R. L., Anderson, C. W., Meech, J. A., Erskine, P. D., Simonnot, M.-O., Vaughan, J., & Morel, J. L. (2015). Agromining: farming for metals in the future? In: ACS Publications.
[19]. Carpen, H. L., & Giese, E. C. (2022). Enhancement of nickel laterite ore bioleaching by Burkholderia sp. using a factorial design. Applied Water Science, 12(8), 181.
[20]. Biocyclopedia. (2023). Nickel. https://biocyclopedia.com/index/plant_nutrition/essential_elements_micronutrients/nickel/nickel.php
[21]. Morel, J. (2015). Agromining: A new concept. Echevarria G, Morel JL, Simonnot MO, leaders. Workshop,
[22]. Divya, V. U., Sindhu, P. V., & Aiswarya, N. S. (2024). Agromining: Agroremediation for heavy metal contaminated ecosystems: A review. Bhartiya Krishi Anusandhan Patrika, 39(1), 51–55.
[23]. Baker, A., & Brooks, R. (1989). Terrestrial higher plants which hyperaccumulate metallic elements. A review of their distribution, ecology and phytochemistry. Biorecovery, 1(2), 81–126.
[24]. van der Ent, A., Baker, A., van Balgooy, M., & Tjoa, A. (2013). Ultramafic nickel laterites in Indonesia (Sulawesi, Halmahera): mining, nickel hyperaccumulators and opportunities for phytomining. Journal of Geochemical Exploration, 128, 72–79.
[25]. Reeves, R. D., Baker, A. J., Jaffré, T., Erskine, P. D., Echevarria, G., & van der Ent, A. (2018). A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytologist, 218(2), 407–411.
[26]. van der Ent, A., Baker, A. J. M., Echevarria, G., Simonnot, M.-O., & Morel, J. L. (Eds.). (2021). Agromining: Extracting unconventional resources from plants (2nd ed.; Mineral Resource Reviews). Springer.
[27]. Robinson, B., Brooks, R., Howes, A., Kirkman, J., & Gregg, P. (1997). The potential of the high-biomass nickel hyperaccumulator Berkheya coddii for phytoremediation and phytomining. Journal of Geochemical Exploration, 60(2), 115–126.
[28]. Brooks, R., Robinson, B., Howes, A., & Chiarucci, A. (2001). An evaluation of Berkheya coddii Roessler and Alyssum bertolonii Desv. for phytoremediation and phytomining of nickel. South African Journal of Science, 97(11), 558–560.
[29]. Leigh Broadhurst, C., Tappero, R. V., Maugel, T. K., Erbe, E. F., Sparks, D. L., & Chaney, R. L. (2009). Interaction of nickel and manganese in accumulation and localization in leaves of the Ni hyperaccumulators Alyssum murale and Alyssum corsicum. Plant and Soil, 314(1), 35–48.
[30]. Fernando, E. S., Quimado, M. O., & Doronila, A. I. (2014). Rinorea niccolifera (Violaceae), a new, nickel-hyperaccumulating species from Luzon Island, Philippines. PhytoKeys, (37), 1.
[31]. Kidd, P. S., Bani, A., Benizri, E., Gonnelli, C., Hazotte, C., Kisser, J., Konstantinou, M., Kuppens, T., Kyrkas, D., & Laubie, B. (2018). Developing sustainable agromining systems in agricultural ultramafic soils for nickel recovery. Frontiers in Environmental Science, 6, 44.
[32]. Rosenkranz, T., Kidd, P., & Puschenreiter, M. (2018). Effect of bacterial inoculants on phytomining of metals from waste incineration bottom ash. Waste Management, 73, 351–359.
[33]. Rue, M., Rees, F., Simonnot, M.-O., & Morel, J. L. (2019). Phytoextraction of Ni from a toxic industrial sludge amended with biochar. Journal of Geochemical Exploration, 196, 173–181.
[34]. Rosenkranz, T., Hipfinger, C., Ridard, C., & Puschenreiter, M. (2019). A nickel phytomining field trial using Odontarrhena chalcidica and Noccaea goesingensis on an Austrian serpentine soil. Journal of Environmental Management, 242, 522–528.
[35]. Echevarria, G. (2015). LIFE-Agromine project page. LIFE-Agromine. https://life-agromine.com/en/homepage/
[36]. Moghadam, H. S., Corfu, F., Stern, R. J., & Lotfi Bakhsh, A. (2019). The Eastern Khoy metamorphic complex of NW Iran: a Jurassic ophiolite or continuation of the Sanandaj–Sirjan Zone? Journal of the Geological Society, 176(3), 517–529.
[37]. Akbari, S., Karimi, A., Lakzian, A., & Fotovat, A. (2022). Pedogenesis and distribution of Ni and Cr in an ultramafic soil toposequence under arid climate. Eurasian Soil Science, 55(4), 520–532.
[38]. Ghafoori, M., Shariati, M., van der Ent, A., & Baker, A. J. (2022). Interpopulation variation in nickel hyperaccumulation and potential for phytomining by Odontarrhena penjwinensis from Western Iran. Journal of Geochemical Exploration, 237, 106985.
[39]. Ghafoori, M., Shariati, M., van der Ent, A., & Baker, A. J. (2023). Nickel hyperaccumulation, elemental profiles and agromining potential of three species of Odontarrhena from the ultramafics of Western Iran. International Journal of Phytoremediation, 25(3), 381–392.
[40]. Ghaderian, S., & Baker, A. (2007). Geobotanical and biogeochemical reconnaissance of the ultramafics of Central Iran. Journal of Geochemical Exploration, 92(1), 34–42.
[41]. Ghaderian, S. M., Mohtadi, A., Rahiminejad, M. R., & Baker, A. J. M. (2007). Nickel and other metal uptake and accumulation by species of Alyssum (Brassicaceae) from the ultramafics of Iran. Environmental Pollution, 145(1), 293–298.
[42]. Ghaderian, S. M., Fattahi, H., Khosravi, A. R., & Noghreian, M. (2009). Geobotany and biogeochemistry of serpentine soils of Neyriz, Iran. Northeastern Naturalist, 16(sp5), 8–20.
[43]. Mohtadi, A., & Ghaderian, S. M. (2015). Biogeochemistry and geobotany of the serpentine soils of the Rezvanshahr area in northwestern Iran: a preliminary investigation. Australian Journal of Botany, 63(4), 367–371.
[44]. Ghaderian, S., Mohtadi, A., Rahiminejad, R., Reeves, R., & Baker, A. (2007). Hyperaccumulation of nickel by two Alyssum species from the serpentine soils of Iran. Plant and Soil, 293(1), 91–97.
[45]. Sigma-Aldrich. (2025). Nickel(II) ammonium sulfate hexahydrate. https://www.sigmaaldrich.com
[46]. ICIS. (2025). Nickel ammonium sulfate market insights. https://www.icis.com
[47]. Najafi, M. S., & Kuchak, V. S. (2024). Ensemble‐based monthly to seasonal precipitation forecasting for Iran using a regional weather model. International Journal of Climatology, 44(12), 4366–4387.
[48]. Aalijahan, M., & Khosravichenar, A. (2021). A multimethod analysis for average annual precipitation mapping in the Khorasan Razavi Province (Northeastern Iran). Atmosphere, 12(5), 592.
[49]. Paul, A. L. D., & Chaney, R. L. (2024). Influence of subsoil and soil volume on the accumulation of nickel by Odontarrhena corsica grown on a serpentine soil. International Journal of Phytoremediation, 26(6), 928–935.
[50]. Chaney, R. L., Chen, K.-Y., Li, Y.-M., Angle, J. S., & Baker, A. J. (2008). Effects of calcium on nickel tolerance and accumulation in Alyssum species and cabbage grown in nutrient solution. Plant and Soil, 311(1), 131–140.
[51]. Bani, A., & Echevarria, G. (2019). Can organic amendments replace chemical fertilizers in nickel agromining cropping systems in Albania? International Journal of Phytoremediation, 21(1), 43–51.
[52]. Santisteban, J. I., Mediavilla, R., Lopez-Pamo, E., Dabrio, C. J., Zapata, M. B. R., García, M. J. G., Castano, S., & Martínez-Alfaro, P. E. (2004). Loss on ignition: a qualitative or quantitative method for organic matter and carbonate mineral content in sediments? Journal of Paleolimnology, 32(3), 287–299.
[53]. Pollard, A. J., McCartha, G. L., Quintela-Sabaris, C., Flynn, T. A., Sobczyk, M. K., & Smith, J. A. C. (2021). Intraspecific variation in nickel tolerance and hyperaccumulation among serpentine and limestone populations of Odontarrhena serpyllifolia (Brassicaceae: Alysseae) from the Iberian Peninsula. Plants, 10(4), 800.
[54]. Gryschko, R., Kuhnle, R., Terytze, K., Breuer, J., & Stahr, K. (2005). Soil extraction of readily soluble heavy metals and as with 1 M NH4NO3-solution-evaluation of DIN 19730 (6 pp). Journal of Soils and Sediments, 5(2), 101–106.
[55]. Shi, G., & Cai, Q. (2009). Cadmium tolerance and accumulation in eight potential energy crops. Biotechnology Advances, 27(5), 555–561.
[56]. Zhang, X., Laubie, B., Houzelot, V., Plasari, E., Echevarria, G., & Simonnot, M.-O. (2016). Increasing purity of ammonium nickel sulfate hexahydrate and production sustainability in a nickel phytomining process. Chemical Engineering Research and Design, 106, 26–32.
[57]. Brooks, R. R. (1987). Serpentine and its vegetation. A multidisciplinary approach.
[58]. Kruckeberg, A. (1992). Plant life of western North American ultramafics. In The ecology of areas with serpentinized rocks: a world view (pp. 31–73). Springer.
[59]. Osmani, M., Bani, A., Gjoka, F., Pavlola, D., Naqellari, P., Shahu, E., Duka, I., & Echevarria, G. (2018). The natural plant colonization of ultramafic post-mining area of Përrenjas, Albania. Periodico di Mineralogia, 87, 135–146.
[60]. Nicks, L. J., & Chambers, M. F. (1998). A pioneering study of the potential of phytomining for nickel. Plants that Hyperaccumulate Heavy Metals: Their Role in Phytoremediation, Microbiology, Archaeology, Mineral Exploration, and Phytomining. CAB International, Wallingford, UK, 313-325.
[61]. Mizuno, T., & Kirihata, Y. (2015). Elemental composition of plants from the serpentine soil of Sugashima Island, Japan. Australian Journal of Botany, 63(4), 252–260.
[62]. Gramlich, A., Moradi, A. B., Robinson, B. H., Kaestner, A., & Schulin, R. (2011). Dimethylglyoxime (DMG) staining for semi-quantitative mapping of Ni in plant tissue. Environmental and Experimental Botany, 71(2), 232–240.
[63]. Hipfinger, C., Laux, M., & Puschenreiter, M. (2022). Comparison of four nickel hyperaccumulator species in the temperate climate zone of Central Europe. Journal of Geochemical Exploration, 234, 1–10.
[64]. Bani, A., Echevarria, G., Zhang, X., Benizri, E., Laubie, B., Morel, J. L., & Simonnot, M.-O. (2015). The effect of plant density in nickel-phytomining field experiments with Alyssum murale in Albania. Australian Journal of Botany, 63(2), 72–77.
[65]. Anderson, C., Brooks, R., Chiarucci, A., LaCoste, C., Leblanc, M., Robinson, B., Simcock, R., & Stewart, R. (1999). Phytomining for nickel, thallium and gold. Journal of Geochemical Exploration, 67(1–3), 407–415.
[66]. Pardo, T., Rodríguez-Garrido, B., Saad, R. F., Soto-Vázquez, J. L., Loureiro-Viñas, M., Prieto-Fernández, Á., Echevarria, G., Benizri, E., & Kidd, P. S. (2018). Assessing the agromining potential of Mediterranean nickel-hyperaccumulating plant species at field-scale in ultramafic soils under humid-temperate climate. Science of the Total Environment, 630, 275–286.
[67]. Vaughan, J., Riggio, J., Chen, J., Peng, H., Harris, H. H., & van der Ent, A. (2017). Characterisation and hydrometallurgical processing of nickel from tropical agromined bio-ore. Hydrometallurgy, 169, 346–355.
[68]. Barbaroux, R., Plasari, E., Mercier, G., Simonnot, M.-O., Morel, J.-L., & Blais, J.-F. (2012). A new process for nickel ammonium disulfate production from ash of the hyperaccumulating plant Alyssum murale. Science of the Total Environment, 423, 111–119.
[69]. Marković, B., Jovanović, G., Ranđelović, D., Miletić, M., Vuković, N., Vujović, N., & Sokić, M. (2025). Impact of recrystallization on the purity of ANSH crystals produced from Ni hyperaccumulator Plant. Tehnika, 76(1), 45–53.
[70]. Li, Y.-M., Chaney, R. L., Brewer, E. P., Angle, J. S., & Nelkin, J. (2003). Phytoextraction of nickel and cobalt by hyperaccumulator Alyssum species grown on nickel-contaminated soils. Environmental Science & Technology, 37(7), 1463–1468.
[71]. Rue, M., Paul, A. L., Echevarria, G., van der Ent, A., Simonnot, M.-O., & Morel, J. L. (2020). Uptake, translocation and accumulation of nickel and cobalt in Berkheya coddii, a ‘metal crop’ from South Africa. Metallomics, 12(8), 1278–1289.
[72]. Vandeginste, V., Lim, C., & Ji, Y. (2024). Exploratory review on environmental aspects of enhanced weathering as a carbon dioxide removal method. Minerals, 14(1), 75.
[73]. Bi, B., Li, G., Goll, D. S., Lin, L., Chen, H., Xu, T., Chen, Q., Li, C., Wang, X., & Hao, Z. (2024). Enhanced rock weathering increased soil phosphorus availability and altered root phosphorus‐acquisition strategies. Global Change Biology, 30(5), e17310.
[74]. Clarkson, M. O., Larkin, C. S., Swoboda, P., Reershemius, T., Suhrhoff, T. J., Maesano, C. N., & Campbell, J. S. (2024). A review of measurement for quantification of carbon dioxide removal by enhanced weathering in soil. Frontiers in Climate, 6, 1345224.
[75]. Jerden, J., Mejbel, M., Zamuner Filho, A. N., Carroll, M., & Campe, J. (2024). The impact of geochemical and life-cycle variables on carbon dioxide removal by enhanced rock weathering: Development and application of the Stella ERW model. Applied Geochemistry, 167, 106002.
[76]. Tomlinson, S. D., Tsopelakou, A. M., Onn, T. M., Barrett, S. R., Boies, A. M., & Fitzgerald, S. D. (2025). Modelling laminar flow in V-shaped filters integrated with catalyst technologies for atmospheric pollutant removal. arXiv preprint arXiv:2506.00603.
[77]. Gahane, D., Biswal, D., & Mandavgane, S. A. (2022). Life cycle assessment of biomass pyrolysis. BioEnergy Research, 15(3), 1387–1406.
[78]. Salehi, S., Pouresmaieli, M., & Qarahasanlou, A. N. (2025). A sustainable way to prevent oral diseases caused by heavy metals with phytoremediation. Case Studies in Chemical and Environmental Engineering, 11, 101106.
[79] Wang, J., & Delavar, M. A. (2024). Modelling phytoremediation: Concepts, methods, challenges and perspectives. Soil & Environmental Health, 2(1), 100062.
[80]. Wang, C., Deng, L., Zhang, Y., Zhao, M., Liang, M., Lee, L.-C., Cristhian, C.-O., Yang, L., & He, T. (2024). Farmland phytoremediation in bibliometric analysis. Journal of Environmental Management, 351, 119971.
[81]. Pouresmaieli, M., Ataei, M., Qarahasanlou, A. N., & Barabadi, A. (2024). Building ecological literacy in mining communities: A sustainable development perspective. Case Studies in Chemical and Environmental Engineering, 9, 100554.
[82]. Pouresmaieli, M., Ataei, M., Qarahasanlou, A. N., & Barabadi, A. (2023). Integration of renewable energy and sustainable development with strategic planning in the mining industry. Results in Engineering, 20, 101412.
[83]. Banerjee, S., Ghosh, S., Jha, S., Kumar, S., Mondal, G., Sarkar, D., Datta, R., Mukherjee, A., & Bhattacharyya, P. (2023). Assessing pollution and health risks from chromite mine tailings contaminated soils in India by employing synergistic statistical approaches. Science of the Total Environment, 880, 163228.