[1]. Kotal, M., Jakhar, S., Roy, S., & Sharma, H. K. (2022). Cathode materials for rechargeable lithium batteries: Recent progress and future prospects. Journal of Energy Storage, 47, 103534.
[2] Nickel Institute. (2022). About nickel. https://nickelinstitute.org/en/nickel-and-a-low-carbon-future
[3]. Nuhu, B. A., Bamisile, O., Adun, H., Abu, U. O., & Cai, D. (2023). Effects of transition metals for silicon-based lithium-ion battery anodes: A comparative study in electrochemical applications. Journal of Alloys and Compounds, 933, 167737.
[4]. U.S. Geological Survey. (2022). Nickel statistics and information. https://www.usgs.gov/centers/national-minerals-information-center/nickel-statistics-and-information
[5]. Han, S., Zhenghao, M., Meilin, L., Xiaohui, Y., & Xiaoxue, W. (2023). Global supply sustainability assessment of critical metals for clean energy technology. Resources Policy, 85, 103994.
[6]. International Energy Agency. (2025). Global critical minerals outlook 2025. https://www.iea.org/reports/global-critical-minerals-outlook-2025
[7]. Cerdeira-Pérez, A., Monterroso, C., Rodríguez-Garrido, B., Machinet, G., Echevarria, G., Prieto-Fernández, Á., & Kidd, P. S. (2019). Implementing nickel phytomining in a serpentine quarry in NW Spain. Journal of Geochemical Exploration, 197, 1–13.
[8]. Tognacchini, A., Rosenkranz, T., van der Ent, A., Machinet, G. E., Echevarria, G., & Puschenreiter, M. (2020). Nickel phytomining from industrial wastes: Growing nickel hyperaccumulator plants on galvanic sludges. Journal of Environmental Management, 254, 109798.
[9]. Tiseo, I. (2022). Electric vehicle battery recycling capacity 2021, by country. Global Tech Environmental. https://www.globaltechenvironmental.com/services/hybrid-ev-battery-recycling
[10]. Junior, A. B. B., Martins, F. P., Cezarino, L. O., Liboni, L. B., Tenório, J. A. S., & Espinosa, D. C. R. (2023). The sustainable development goals, urban mining, and the circular economy. The Extractive Industries and Society, 16, 101367.
[11]. Das, A. P., van Hullebusch, E. D., & Akçil, A. (2024). Sustainable management of mining waste and tailings: a circular economy approach. CRC Press.
[12]. Kierczak, J., Pietranik, A., & Pędziwiatr, A. (2021). Ultramafic geoecosystems as a natural source of Ni, Cr, and Co to the environment: A review. Science of the Total Environment, 755, 142620.
[13]. Galey, M., van der Ent, A., Iqbal, M., & Rajakaruna, N. (2017). Ultramafic geoecology of south and Southeast Asia. Botanical Studies, 58(1), 18.
[14]. Hseu, Z.-Y., Zehetner, F., Fujii, K., Watanabe, T., & Nakao, A. (2018). Geochemical fractionation of chromium and nickel in serpentine soil profiles along a temperate to tropical climate gradient. Geoderma, 327, 97–106.
[15]. Nascimento, C. W. A. d., Lima, L. H. V., Silva, Y. J. A. B. d., & Biondi, C. M. (2022). Ultramafic soils and nickel phytomining opportunities: A review. Revista Brasileira de Ciência do Solo, 46, e0210099.
[16]. Vithanage, M., Kumarathilaka, P., Oze, C., Karunatilake, S., Seneviratne, M., Hseu, Z.-Y., Gunarathne, V., Dassanayake, M., Ok, Y. S., & Rinklebe, J. (2019). Occurrence and cycling of trace elements in ultramafic soils and their impacts on human health: A critical review. Environment International, 131, 104974.
[17]. Dushyantha, N., Weerawarnakula, S., Premasiri, R., Abeysinghe, B., Ratnayake, N., Batapola, N., & Ranasinghe, M. (2021). Potential ecological risk assessment of heavy metals (Cr, Ni, and Co) in serpentine soil at Ginigalpelessa in Sri Lanka. Arabian Journal of Geosciences, 14(13), 1255.
[18]. van der Ent, A., Baker, A. J., Reeves, R. D., Chaney, R. L., Anderson, C. W., Meech, J. A., Erskine, P. D., Simonnot, M.-O., Vaughan, J., & Morel, J. L. (2015). Agromining: farming for metals in the future? In: ACS Publications.
[19]. Carpen, H. L., & Giese, E. C. (2022). Enhancement of nickel laterite ore bioleaching by Burkholderia sp. using a factorial design. Applied Water Science, 12(8), 181.
[20]. Biocyclopedia. (2023). Nickel. https://biocyclopedia.com/index/plant_nutrition/essential_elements_micronutrients/nickel/nickel.php
[21]. Morel, J. (2015). Agromining: A new concept. Echevarria G, Morel JL, Simonnot MO, leaders. Workshop,
[22]. Divya, V. U., Sindhu, P. V., & Aiswarya, N. S. (2024). Agromining: Agroremediation for heavy metal contaminated ecosystems: A review. Bhartiya Krishi Anusandhan Patrika, 39(1), 51–55.
[23]. Baker, A., & Brooks, R. (1989). Terrestrial higher plants which hyperaccumulate metallic elements. A review of their distribution, ecology and phytochemistry. Biorecovery, 1(2), 81–126.
[24]. van der Ent, A., Baker, A., van Balgooy, M., & Tjoa, A. (2013). Ultramafic nickel laterites in Indonesia (Sulawesi, Halmahera): mining, nickel hyperaccumulators and opportunities for phytomining. Journal of Geochemical Exploration, 128, 72–79.
[25]. Reeves, R. D., Baker, A. J., Jaffré, T., Erskine, P. D., Echevarria, G., & van der Ent, A. (2018). A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytologist, 218(2), 407–411.
[26]. van der Ent, A., Baker, A. J. M., Echevarria, G., Simonnot, M.-O., & Morel, J. L. (Eds.). (2021). Agromining: Extracting unconventional resources from plants (2nd ed.; Mineral Resource Reviews). Springer.
[27]. Robinson, B., Brooks, R., Howes, A., Kirkman, J., & Gregg, P. (1997). The potential of the high-biomass nickel hyperaccumulator Berkheya coddii for phytoremediation and phytomining. Journal of Geochemical Exploration, 60(2), 115–126.
[28]. Brooks, R., Robinson, B., Howes, A., & Chiarucci, A. (2001). An evaluation of Berkheya coddii Roessler and Alyssum bertolonii Desv. for phytoremediation and phytomining of nickel. South African Journal of Science, 97(11), 558–560.
[29]. Leigh Broadhurst, C., Tappero, R. V., Maugel, T. K., Erbe, E. F., Sparks, D. L., & Chaney, R. L. (2009). Interaction of nickel and manganese in accumulation and localization in leaves of the Ni hyperaccumulators Alyssum murale and Alyssum corsicum. Plant and Soil, 314(1), 35–48.
[30]. Fernando, E. S., Quimado, M. O., & Doronila, A. I. (2014). Rinorea niccolifera (Violaceae), a new, nickel-hyperaccumulating species from Luzon Island, Philippines. PhytoKeys, (37), 1.
[31]. Kidd, P. S., Bani, A., Benizri, E., Gonnelli, C., Hazotte, C., Kisser, J., Konstantinou, M., Kuppens, T., Kyrkas, D., & Laubie, B. (2018). Developing sustainable agromining systems in agricultural ultramafic soils for nickel recovery. Frontiers in Environmental Science, 6, 44.
[32]. Rosenkranz, T., Kidd, P., & Puschenreiter, M. (2018). Effect of bacterial inoculants on phytomining of metals from waste incineration bottom ash. Waste Management, 73, 351–359.
[33]. Rue, M., Rees, F., Simonnot, M.-O., & Morel, J. L. (2019). Phytoextraction of Ni from a toxic industrial sludge amended with biochar. Journal of Geochemical Exploration, 196, 173–181.
[34]. Rosenkranz, T., Hipfinger, C., Ridard, C., & Puschenreiter, M. (2019). A nickel phytomining field trial using Odontarrhena chalcidica and Noccaea goesingensis on an Austrian serpentine soil. Journal of Environmental Management, 242, 522–528.
[35]. Echevarria, G. (2015). LIFE-Agromine project page. LIFE-Agromine. https://life-agromine.com/en/homepage/
[36]. Moghadam, H. S., Corfu, F., Stern, R. J., & Lotfi Bakhsh, A. (2019). The Eastern Khoy metamorphic complex of NW Iran: a Jurassic ophiolite or continuation of the Sanandaj–Sirjan Zone? Journal of the Geological Society, 176(3), 517–529.
[37]. Akbari, S., Karimi, A., Lakzian, A., & Fotovat, A. (2022). Pedogenesis and distribution of Ni and Cr in an ultramafic soil toposequence under arid climate. Eurasian Soil Science, 55(4), 520–532.
[38]. Ghafoori, M., Shariati, M., van der Ent, A., & Baker, A. J. (2022). Interpopulation variation in nickel hyperaccumulation and potential for phytomining by Odontarrhena penjwinensis from Western Iran. Journal of Geochemical Exploration, 237, 106985.
[39]. Ghafoori, M., Shariati, M., van der Ent, A., & Baker, A. J. (2023). Nickel hyperaccumulation, elemental profiles and agromining potential of three species of Odontarrhena from the ultramafics of Western Iran. International Journal of Phytoremediation, 25(3), 381–392.
[40]. Ghaderian, S., & Baker, A. (2007). Geobotanical and biogeochemical reconnaissance of the ultramafics of Central Iran. Journal of Geochemical Exploration, 92(1), 34–42.
[41]. Ghaderian, S. M., Mohtadi, A., Rahiminejad, M. R., & Baker, A. J. M. (2007). Nickel and other metal uptake and accumulation by species of Alyssum (Brassicaceae) from the ultramafics of Iran. Environmental Pollution, 145(1), 293–298.
[42]. Ghaderian, S. M., Fattahi, H., Khosravi, A. R., & Noghreian, M. (2009). Geobotany and biogeochemistry of serpentine soils of Neyriz, Iran. Northeastern Naturalist, 16(sp5), 8–20.
[43]. Mohtadi, A., & Ghaderian, S. M. (2015). Biogeochemistry and geobotany of the serpentine soils of the Rezvanshahr area in northwestern Iran: a preliminary investigation. Australian Journal of Botany, 63(4), 367–371.
[44]. Ghaderian, S., Mohtadi, A., Rahiminejad, R., Reeves, R., & Baker, A. (2007). Hyperaccumulation of nickel by two Alyssum species from the serpentine soils of Iran. Plant and Soil, 293(1), 91–97.
[45]. Sigma-Aldrich. (2025). Nickel(II) ammonium sulfate hexahydrate. https://www.sigmaaldrich.com
[46]. ICIS. (2025). Nickel ammonium sulfate market insights. https://www.icis.com
[47]. Najafi, M. S., & Kuchak, V. S. (2024). Ensemble‐based monthly to seasonal precipitation forecasting for Iran using a regional weather model. International Journal of Climatology, 44(12), 4366–4387.
[48]. Aalijahan, M., & Khosravichenar, A. (2021). A multimethod analysis for average annual precipitation mapping in the Khorasan Razavi Province (Northeastern Iran). Atmosphere, 12(5), 592.
[49]. Paul, A. L. D., & Chaney, R. L. (2024). Influence of subsoil and soil volume on the accumulation of nickel by Odontarrhena corsica grown on a serpentine soil. International Journal of Phytoremediation, 26(6), 928–935.
[50]. Chaney, R. L., Chen, K.-Y., Li, Y.-M., Angle, J. S., & Baker, A. J. (2008). Effects of calcium on nickel tolerance and accumulation in Alyssum species and cabbage grown in nutrient solution. Plant and Soil, 311(1), 131–140.
[51]. Bani, A., & Echevarria, G. (2019). Can organic amendments replace chemical fertilizers in nickel agromining cropping systems in Albania? International Journal of Phytoremediation, 21(1), 43–51.
[52]. Santisteban, J. I., Mediavilla, R., Lopez-Pamo, E., Dabrio, C. J., Zapata, M. B. R., García, M. J. G., Castano, S., & Martínez-Alfaro, P. E. (2004). Loss on ignition: a qualitative or quantitative method for organic matter and carbonate mineral content in sediments? Journal of Paleolimnology, 32(3), 287–299.
[53]. Pollard, A. J., McCartha, G. L., Quintela-Sabaris, C., Flynn, T. A., Sobczyk, M. K., & Smith, J. A. C. (2021). Intraspecific variation in nickel tolerance and hyperaccumulation among serpentine and limestone populations of Odontarrhena serpyllifolia (Brassicaceae: Alysseae) from the Iberian Peninsula. Plants, 10(4), 800.
[54]. Gryschko, R., Kuhnle, R., Terytze, K., Breuer, J., & Stahr, K. (2005). Soil extraction of readily soluble heavy metals and as with 1 M NH4NO3-solution-evaluation of DIN 19730 (6 pp). Journal of Soils and Sediments, 5(2), 101–106.
[55]. Shi, G., & Cai, Q. (2009). Cadmium tolerance and accumulation in eight potential energy crops. Biotechnology Advances, 27(5), 555–561.
[56]. Zhang, X., Laubie, B., Houzelot, V., Plasari, E., Echevarria, G., & Simonnot, M.-O. (2016). Increasing purity of ammonium nickel sulfate hexahydrate and production sustainability in a nickel phytomining process. Chemical Engineering Research and Design, 106, 26–32.
[57]. Brooks, R. R. (1987). Serpentine and its vegetation. A multidisciplinary approach.
[58]. Kruckeberg, A. (1992). Plant life of western North American ultramafics. In The ecology of areas with serpentinized rocks: a world view (pp. 31–73). Springer.
[59]. Osmani, M., Bani, A., Gjoka, F., Pavlola, D., Naqellari, P., Shahu, E., Duka, I., & Echevarria, G. (2018). The natural plant colonization of ultramafic post-mining area of Përrenjas, Albania. Periodico di Mineralogia, 87, 135–146.
[60]. Nicks, L. J., & Chambers, M. F. (1998). A pioneering study of the potential of phytomining for nickel. Plants that Hyperaccumulate Heavy Metals: Their Role in Phytoremediation, Microbiology, Archaeology, Mineral Exploration, and Phytomining. CAB International, Wallingford, UK, 313-325.
[61]. Mizuno, T., & Kirihata, Y. (2015). Elemental composition of plants from the serpentine soil of Sugashima Island, Japan. Australian Journal of Botany, 63(4), 252–260.
[62]. Gramlich, A., Moradi, A. B., Robinson, B. H., Kaestner, A., & Schulin, R. (2011). Dimethylglyoxime (DMG) staining for semi-quantitative mapping of Ni in plant tissue. Environmental and Experimental Botany, 71(2), 232–240.
[63]. Hipfinger, C., Laux, M., & Puschenreiter, M. (2022). Comparison of four nickel hyperaccumulator species in the temperate climate zone of Central Europe. Journal of Geochemical Exploration, 234, 1–10.
[64]. Bani, A., Echevarria, G., Zhang, X., Benizri, E., Laubie, B., Morel, J. L., & Simonnot, M.-O. (2015). The effect of plant density in nickel-phytomining field experiments with Alyssum murale in Albania. Australian Journal of Botany, 63(2), 72–77.
[65]. Anderson, C., Brooks, R., Chiarucci, A., LaCoste, C., Leblanc, M., Robinson, B., Simcock, R., & Stewart, R. (1999). Phytomining for nickel, thallium and gold. Journal of Geochemical Exploration, 67(1–3), 407–415.
[66]. Pardo, T., Rodríguez-Garrido, B., Saad, R. F., Soto-Vázquez, J. L., Loureiro-Viñas, M., Prieto-Fernández, Á., Echevarria, G., Benizri, E., & Kidd, P. S. (2018). Assessing the agromining potential of Mediterranean nickel-hyperaccumulating plant species at field-scale in ultramafic soils under humid-temperate climate. Science of the Total Environment, 630, 275–286.
[67]. Vaughan, J., Riggio, J., Chen, J., Peng, H., Harris, H. H., & van der Ent, A. (2017). Characterisation and hydrometallurgical processing of nickel from tropical agromined bio-ore. Hydrometallurgy, 169, 346–355.
[68]. Barbaroux, R., Plasari, E., Mercier, G., Simonnot, M.-O., Morel, J.-L., & Blais, J.-F. (2012). A new process for nickel ammonium disulfate production from ash of the hyperaccumulating plant Alyssum murale. Science of the Total Environment, 423, 111–119.
[69]. Marković, B., Jovanović, G., Ranđelović, D., Miletić, M., Vuković, N., Vujović, N., & Sokić, M. (2025). Impact of recrystallization on the purity of ANSH crystals produced from Ni hyperaccumulator Plant. Tehnika, 76(1), 45–53.
[70]. Li, Y.-M., Chaney, R. L., Brewer, E. P., Angle, J. S., & Nelkin, J. (2003). Phytoextraction of nickel and cobalt by hyperaccumulator Alyssum species grown on nickel-contaminated soils. Environmental Science & Technology, 37(7), 1463–1468.
[71]. Rue, M., Paul, A. L., Echevarria, G., van der Ent, A., Simonnot, M.-O., & Morel, J. L. (2020). Uptake, translocation and accumulation of nickel and cobalt in Berkheya coddii, a ‘metal crop’ from South Africa. Metallomics, 12(8), 1278–1289.
[72]. Vandeginste, V., Lim, C., & Ji, Y. (2024). Exploratory review on environmental aspects of enhanced weathering as a carbon dioxide removal method. Minerals, 14(1), 75.
[73]. Bi, B., Li, G., Goll, D. S., Lin, L., Chen, H., Xu, T., Chen, Q., Li, C., Wang, X., & Hao, Z. (2024). Enhanced rock weathering increased soil phosphorus availability and altered root phosphorus‐acquisition strategies. Global Change Biology, 30(5), e17310.
[74]. Clarkson, M. O., Larkin, C. S., Swoboda, P., Reershemius, T., Suhrhoff, T. J., Maesano, C. N., & Campbell, J. S. (2024). A review of measurement for quantification of carbon dioxide removal by enhanced weathering in soil. Frontiers in Climate, 6, 1345224.
[75]. Jerden, J., Mejbel, M., Zamuner Filho, A. N., Carroll, M., & Campe, J. (2024). The impact of geochemical and life-cycle variables on carbon dioxide removal by enhanced rock weathering: Development and application of the Stella ERW model. Applied Geochemistry, 167, 106002.
[76]. Tomlinson, S. D., Tsopelakou, A. M., Onn, T. M., Barrett, S. R., Boies, A. M., & Fitzgerald, S. D. (2025). Modelling laminar flow in V-shaped filters integrated with catalyst technologies for atmospheric pollutant removal. arXiv preprint arXiv:2506.00603.
[77]. Gahane, D., Biswal, D., & Mandavgane, S. A. (2022). Life cycle assessment of biomass pyrolysis. BioEnergy Research, 15(3), 1387–1406.
[78]. Salehi, S., Pouresmaieli, M., & Qarahasanlou, A. N. (2025). A sustainable way to prevent oral diseases caused by heavy metals with phytoremediation. Case Studies in Chemical and Environmental Engineering, 11, 101106.
[79] Wang, J., & Delavar, M. A. (2024). Modelling phytoremediation: Concepts, methods, challenges and perspectives. Soil & Environmental Health, 2(1), 100062.
[80]. Wang, C., Deng, L., Zhang, Y., Zhao, M., Liang, M., Lee, L.-C., Cristhian, C.-O., Yang, L., & He, T. (2024). Farmland phytoremediation in bibliometric analysis. Journal of Environmental Management, 351, 119971.
[81]. Pouresmaieli, M., Ataei, M., Qarahasanlou, A. N., & Barabadi, A. (2024). Building ecological literacy in mining communities: A sustainable development perspective. Case Studies in Chemical and Environmental Engineering, 9, 100554.
[82]. Pouresmaieli, M., Ataei, M., Qarahasanlou, A. N., & Barabadi, A. (2023). Integration of renewable energy and sustainable development with strategic planning in the mining industry. Results in Engineering, 20, 101412.
[83]. Banerjee, S., Ghosh, S., Jha, S., Kumar, S., Mondal, G., Sarkar, D., Datta, R., Mukherjee, A., & Bhattacharyya, P. (2023). Assessing pollution and health risks from chromite mine tailings contaminated soils in India by employing synergistic statistical approaches. Science of the Total Environment, 880, 163228.