Document Type : Case Study
Author
Mining Engineering
Abstract
This study evaluates rock mass ratings, rock strength parameters, and the geological structures of the dominant rock units alongside a quantitative assessment of the performance of various anchor systems for enhanced ground support in mine excavations located within the Synclinorium area. This region is notable for its complex, folded, and mineralized formations. The deeper levels of the synclinorium are characterised by poor ground conditions, faults, and shear zones. Stress induced by mining activities worsens the situation. These factors have significantly impacted the stability of excavation. Fall-of-ground (FOG) incidents have exhibited a concerning increase over the past nine years. This trend necessitates a thorough investigation into the factors contributing to it. Our research employed empirical methods for rock mass classification, specifically utilising Barton’s Q system and Bieniawski and Scanline mapping of geological structures along the crosscut walls at a 1.50 m elevation. We conducted borehole logging and pull-out tests to evaluate the working and ultimate capacities of rock bolt anchors deployed in the excavations. Borehole cores were analysed for geological formations, colour, and grain size. The findings indicate that excavations in areas with mined-through rock and stone necessitate urgent and intensive roof support to stabilise the surrounding rock mass, thereby enhancing standing time. Additionally, we identified joint patterns, joint orientations, and the various stresses affecting the surrounding rock mass in the crosscuts. The above highlights the importance of geological data in the design of effective ground control and support mechanisms. Pull-out testing conducted at the 3360 level recorded a 28.6% failure rate in primary development despite very competent ground.
Keywords
Main Subjects