Document Type : Review Paper

Authors

Department of Civil and Environmental Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India

Abstract

Mining activities adversely affect the groundwater quality. Human health also subsequently gets affected because of many environmental and ecological risks due to mobilization of contaminants and alteration of hydrogeochemical processes. This review assesses the hydrogeochemical characteristics and groundwater quality in mining areas emphasizing the crucial processes like rock-water interaction, acid mine drainage formation, and heavy metal contamination. These processes impact the end uses of groundwater quality like drinking, irrigation and industrial uses. To understand the causes of contamination and the availability and suitability of the water, groundwater investigation is required such as assessment of physicochemical parameters and hydrogeochemical faces. By using isotopic techniques and integration of spatial and temporal changes with remote sensing and GIS application, pollution load can be evaluated on water resources. A bibliographic analysis highlights the current research progress in mining sector, focusing on global and regional studies and their impact on water resources. Contamination from heavy metals like arsenic, chromium, cadmium, and other toxic elements has posed serious illnesses to human health and the surrounding ecosystem. The review also highlights the research gaps and prospects for improving groundwater resources through appropriate mitigation strategies like sustainable mining practices and water treatment technologies. 

Keywords

Main Subjects

[1]. Guo, W., Li, P., Du, Q., Zhou, Y., Xu, D., & Zhang, Z. (2024). Hydrogeochemical processes regulating the groundwater geochemistry and human health risk of groundwater in the rural areas of the Wei River Basin, China. Exposure and Health16(2), 291-306.
[2]. Dheeraj, V. P., Singh, C. S., Sonkar, A. K., & Kishore, N. (2024). Heavy metal pollution indices estimation and principal component analysis to evaluate the groundwater quality for drinking purposes in coalfield region, India. Sustainable Water Resources Management10(1), 31.
[3]. Mazinder Baruah, P., & Singh, G. (2024). Assessing the utilization potential of pumped-out minewater for potability in the water-stressed coal mining region of Jharia, India: a quantitative, qualitative and probabilistic health risk assessment. Environment, Development and Sustainability26(3), 6517-6542.
[4]. Kar, S., Sen, E., & Mukherjee, S. (2020). A geospatial technique‐based site suitability analysis for construction of water reservoirs in Arsha and Balarampur Blocks, Purulia. World Water Policy6(1), 52-88.
[5]. Huang, W., Duan, W., & Chen, Y. (2021). Rapidly declining surface and terrestrial water resources in Central Asia driven by socio-economic and climatic changes. Science of the Total Environment784, 147193.
[6]. Nayak, P., Mohanty, A. K., Samal, P., Khaoash, S., & Mishra, P. (2023). Groundwater quality, hydrogeochemical characteristics, and potential health risk assessment in the Bhubaneswar City of Eastern India. Water, Air, & Soil Pollution234(9), 609.
[7]. Xiao, J., Wang, L., Chai, N., Liu, T., Jin, Z., & Rinklebe, J. (2021). Groundwater hydrochemistry, source identification and pollution assessment in intensive industrial areas, eastern Chinese loess plateau. Environmental Pollution278, 116930.
[8]. Samal, P., Mohanty, A. K., Khaoash, S., & Mishra, P. (2022). Hydrogeochemical evaluation, groundwater quality appraisal, and potential health risk assessment in a coal mining region of Eastern India. Water, Air, & Soil Pollution233(8), 324.
[9]. Gao, Y., Qian, H., Ren, W., Wang, H., Liu, F., & Yang, F. (2020). Hydrogeochemical characterization and quality assessment of groundwater based on integrated-weight water quality index in a concentrated urban area. Journal of cleaner production260, 121006.
[10]. Bulut, O.F., Duru, B., Çakmak, Ö., Günhan, Ö., Dilek, F.B. and Yetis, U., 2020. Determination of groundwater threshold values: A methodological approach. Journal of cleaner production, 253, p.120001.
[11]. Amiri, V., Sohrabi, N., Li, P., & Amiri, F. (2023). Groundwater quality for drinking and non-carcinogenic risk of nitrate in urban and rural areas of Fereidan, Iran. Exposure and Health15(4), 807-823.
[12]. Appelo, C. A. J., & Postma, D. (2004). Geochemistry, groundwater and pollution. CRC press.
[13]. Nayak, P., Mohanty, A. K., Samal, P., Khaoash, S., & Mishra, P. (2023). Groundwater quality, hydrogeochemical characteristics, and potential health risk assessment in the Bhubaneswar City of Eastern India. Water, Air, & Soil Pollution234(9), 609.
[14]. Gaikwad, S., Gaikwad, S., Meshram, D., Wagh, V., Kandekar, A., & Kadam, A. (2020). Geochemical mobility of ions in groundwater from the tropical western coast of Maharashtra, India: implication to groundwater quality. Environment, Development and Sustainability22, 2591-2624.
[15]. Singh, C. K., Kumar, A., Shashtri, S., Kumar, A., Kumar, P., & Mallick, J. (2017). Multivariate statistical analysis and geochemical modeling for geochemical assessment of groundwater of Delhi, India. Journal of Geochemical Exploration175, 59-71.
[16]. Falagán, C., Grail, B. M., & Johnson, D. B. (2017). New approaches for extracting and recovering metals from mine tailings. Minerals Engineering106, 71-78.
[17]. Agboola, O., Babatunde, D. E., Fayomi, O. S. I., Sadiku, E. R., Popoola, P., Moropeng, L., ... & Mamudu, O. A. (2020). A review on the impact of mining operation: Monitoring, assessment and management. Results in Engineering8, 100181.
[18]. Bilim, N., & Bilim, A. (2022). Estimation of the risk of work-related accidents for underground hard coal mine workers by logistic regression. International journal of occupational safety and ergonomics28(4), 2362-2369.
[19]. Dorin, I., Diaconescu, C., & Topor, D. I. (2014). The role of mining in national economies. International Journal of Academic Research in Accounting, Finance and Management Sciences4(3), 155-160.
[20]. Agboola, O. (2019). The role of membrane technology in acid mine water treatment: a review. Korean Journal of Chemical Engineering36, 1389-1400.
[21]. Oyewo, O. A., Agboola, O., Onyango, M. S., Popoola, P., & Bobape, M. F. (2018). Current methods for the remediation of acid mine drainage including continuous removal of metals from wastewater and mine dump. In Bio-geotechnologies for mine site rehabilitation (pp. 103-114). Elsevier.
[22]. Kuyucak, N. (2002). Acid mine drainage prevention and control options. CIM bulletin, 96-102.
[23]. Bobbins, K. (2015). Acid mine drainage and its governance in the Gauteng City-Region.
[24]. Van Eck, N. J., & Waltman, L. (2017). Citation-based clustering of publications using CitNetExplorer and VOSviewer. Scientometrics111, 1053-1070.
[25]. Kazapoe, R. W., Addai, M. O., Amuah, E. E. Y., & Dankwa, P. (2024). Characterization of groundwater in southwest Ghana: Implications for sustainable agriculture and safe water supply in a mining-dominated zone. Environmental and Sustainability Indicators22, 100341.
[26]. Yao, K. M., Soro, T. D., Koua, T. J. J., Tchakray, A. J. F., Konan, Y. E. D., & Dibi, B. (2024). Hydrogeochemical Characterization of Groundwater from Fissured Aquifers in the Angovia Mine Operating Permit Area (Central-West Côte d’Ivoire). Journal of Water Resource and Protection16(1), 83-101.
[27]. Xue, J., Ma, L., Qian, J., & Zhao, W. (2024). Hydrogeochemical characteristics and evolution mechanism of groundwater in the Guqiao Coal Mine, Huainan Coalfield, China. Environmental Earth Sciences83(1), 35.
[28]. Lu, C., Cheng, W., Yin, H., Li, S., Zhang, Y., Dong, F., ... & Zhang, X. (2024). Study on inverse geochemical modeling of hydrochemical characteristics and genesis of groundwater system in coal mine area–a case study of Longwanggou Coal Mine in Ordos Basin. Environmental Science and Pollution Research31(11), 16583-16600.
[29]. Kou, X., Zhao, Z., Duan, L., & Sun, Y. (2024). Hydrogeochemical Behavior of Shallow Groundwater around Hancheng Mining Area, Guanzhong Basin, China. Water16(5), 660.
[30] Pandey, S., Dhuria, S. S., & Devi, G. Environmental Risks Due to Heavy Metal Pollution of Water Resulted From Coal Mining Wastes in Korba Chhattisgarh, India.
[31]. Das, M., & Semy, K. (2023). Monitoring the dynamics of acid mine drainage affected stream surface water hydrochemistry at Jaintia Hills, Meghalaya, India. Environmental Science and Pollution Research30(30), 75489-75499.
[32]. Anjali, R., Krishnakumar, S., Thivya, C., Kasilingam, K., Gandhi, M. S., Selvakumar, S., ... & Magesh, N. S. (2023). Assessment of mine water quality for domestic and irrigation purposes, Neyveli coal mine region, Southern India. Total Environment Research Themes6, 100047.
[33]. Ahmed, S. I., Sonkar, A. K., Kishore, N., Varshney, R., & Jhariya, D. (2022). Hydrogeochemical characterization and qualitative assessment of groundwater in Jampali Coal Mining Area, Chhattisgarh, India. Journal of The Institution of Engineers (India): Series A103(4), 1109-1125.
[34]. Jha, A. K., SubhajitSikdar, S., Sharma, U., Thakur, R., Majumder, S., Anand, A., & Kumari, P. Geochemical mobilization of Arsenic, Chromium and Uranium in Gangetic Plain of Bihar and Jharkhand.
[35]. Prasad, D., Singh, P. K., Mahato, J. K., & Saw, S. (2022). Hydrogeochemical characterization of groundwater in fire and non-fire zones of Jharia Coal Field, Eastern India, using water quality index (WQI), hierarchical cluster analysis (HCA), and human health risk. Arabian Journal of Geosciences15(9), 927.
[36]. Singh, V., Karan, S. K., Singh, C., & Samadder, S. R. (2023). Assessment of the capability of SWAT model to predict surface runoff in open cast coal mining areas. Environmental Science and Pollution Research30(14), 40073-40083.
[37]. Kumar, A., & Krishna, A. P. (2021). Groundwater quality assessment using geospatial technique based water quality index (WQI) approach in a coal mining region of India. Arabian Journal of Geosciences14(12), 1126.
[38]. Prathap, A., & Chakraborty, S. (2019). Hydrochemical characterization and suitability analysis of groundwater for domestic and irrigation uses in open cast coal mining areas of Charhi and Kuju, Jharkhand, India. Groundwater for sustainable development9, 100244.
[39]. Abdelaal, A., Sultan, M., Abotalib, A. Z., Bedair, M., Krishnamurthy, R. V., & Elhebiry, M. (2023). Emerging mercury and methylmercury contamination from new artisanal and small-scale gold mining along the Nile Valley, Egypt. Environmental Science and Pollution Research30(18), 52514-52534.
[40]. Ewusi, A., Sunkari, E. D., Seidu, J., & Coffie-Anum, E. (2022). Hydrogeochemical characteristics, sources and human health risk assessment of heavy metal dispersion in the mine pit water–surface water–groundwater system in the largest manganese mine in Ghana. Environmental Technology & Innovation26, 102312.
[41]. Guo, Y., Li, G., Wang, L., & Zhang, Z. (2023). Hydrochemical characteristics of mine water and their significance for the site selection of an underground reservoir in the Shendong coal mining area. Water15(6), 1038.
[42]. Anang, E., Tei, M., Antwi, A.B., Aduboffour, V.K. and Anang, B., 2023. Assessment of groundwater and surface water quality in a typical mining community: application of water quality indices and hierarchical cluster analyses. Journal of Water and Health21(7), pp.925-938.
[43]. Chen, D., Feng, Q., & Gong, M. (2023). Contamination characteristics and source identification of groundwater in Xishan coal mining area of Taiyuan based on hydrochemistry and sulfur–oxygen isotopes. Water15(6), 1169.
[44]. Yan, Z., Li, Z., Li, P., Zhao, C., Xu, Y., Cui, Z., & Sun, H. (2023). Hydrochemical assessments and driving forces of water resources in coal mining areas: a case study of the Changhe River Basin, Shanxi. Environmental Earth Sciences82(19), 447.
[45]. Hussain, R., Wei, C., & Luo, K. (2019). Hydrogeochemical characteristics, source identification and health risks of surface water and groundwater in mining and non-mining areas of Handan, China. Environmental earth sciences78(14), 402.
[46]. Zhong, X., Wu, Q., Tang, B., Wang, Y., Chen, J., & Zeng, Y. (2024). Hydrogeochemical Mechanisms and Hydraulic Connection of Groundwaters in the Dongming Opencast Coal Mine, Hailar, Inner Mongolia. Mine Water and the Environment43(1), 28-40.
[47]. Zhang, Z., Li, H., Zhang, F., Qian, J., Han, S., & Dai, F. (2023). Groundwater Hydrogeochemical Processes and Potential Threats to Human Health in Fengfeng Coal Mining Area, China. Water15(22), 4024.
[48]. Vesković, J., Bulatović, S., Miletić, A., Tadić, T., Marković, B., Nastasović, A., & Onjia, A. (2024). Source-specific probabilistic health risk assessment of potentially toxic elements in groundwater of a copper mining and smelter area. Stochastic Environmental Research and Risk Assessment38(4), 1597-1612.
[49]. Li, Y., Wang, Q., Jiang, C., Li, C., Hu, M., & Xia, X. (2024). Spatial characteristics and controlling indicators of major hydrochemical ions in rivers within coal-grain composite areas via multivariate statistical and isotope analysis methods. Ecological Indicators158, 111352.
[50]. Qu, S., Liao, F., Wang, G., Wang, X., Shi, Z., Liang, X., ... & Liu, T. (2023). Hydrochemical evolution of groundwater in overburden aquifers under the influence of mining activity: combining hydrochemistry and groundwater dynamics analysis. Environmental Earth Sciences82(6), 135.
[51]. Reddy, Y. S., & Sunitha, V. (2023). Assessment of Heavy metal pollution and its health implications in groundwater for drinking purpose around inactive mines, SW region of Cuddapah Basin, South India. Total Environment Research Themes8, 100069.
[52]. Kumari, A., Sinha, A., Singh, D. B., & Pasupuleti, S. (2024). Source apportionment and health risk assessment in chromite mining area: Insights from entropy water quality indexing and Monte Carlo simulation. Process Safety and Environmental Protection184, 526-541.
[53]. Nti, E. K., Kranjac-Berisavljevic, G., & Doke, D. A. (2024). Assessing the impact of artisanal gold mining on the environmental sustainability of groundwater resource for water security in southwestern Ghana. Environmental Challenges14, 100804.
[54]. Liu, F., Wang, G., Li, B., Wang, C., Qu, S., & Liao, F. (2024). Rare earth element behaviors of groundwater in overlying aquifers under the influence of coal mining in northern Ordos Basin, China. Environmental Science and Pollution Research31(9), 13284-13301.
[55]. Qiao, W., Li, W., Zhang, S., & Niu, Y. (2019). Effects of coal mining on the evolution of groundwater hydrogeochemistry. Hydrogeology Journal27(6), 2245-2262.
[56]. Punkkinen, H., Räsänen, L., Mroueh, U. M., Korkealaakso, J., Luoma, S., Kaipainen, T., ... & Krogerus, K. (2016). Guidelines for mine water management. VTT Technology266, 1-157.
[57]. Wolkersdorfer, C., & Mugova, E. (2022). Effects of mining on surface water. Encyclopedia of Inland Waters4, 170-188.
[58]. Shams, M., Tavakkoli Nezhad, N., Dehghan, A., Alidadi, H., Paydar, M., Mohammadi, A. A., & Zarei, A. (2022). Heavy metals exposure, carcinogenic and non-carcinogenic human health risks assessment of groundwater around mines in Joghatai, Iran. International Journal of Environmental Analytical Chemistry102(8), 1884-1899.
[59]. Sengupta, M. (2021). Environmental impacts of mining: monitoring, restoration, and control. CRC Press.
[60]. Saha, D., & Ray, R. K. (2019). Groundwater resources of India: potential, challenges and management. Groundwater development and management: issues and challenges in South Asia, 19-42.
[61]. Ratnaike, R. N. (2003). Acute and chronic arsenic toxicity. Postgraduate medical journal79(933), 391-396.
[62]. Martin, S., & Griswold, W. (2009). Human health effects of heavy metals. Environmental Science and Technology briefs for citizens15(5), 1-6.
[63]. Zafar, A., Javed, S., Akram, N., & Naqvi, S. A. R. (2024). Health Risks of Mercury. In Mercury Toxicity Mitigation: Sustainable Nexus Approach (pp. 67-92). Cham: Springer Nature Switzerland.
[64]. Parida, L., & Patel, T. N. (2023). Systemic impact of heavy metals and their role in cancer development: a review. Environmental Monitoring and Assessment195(6), 766.
[65]. Li Chen, T., Wise, S. S., Kraus, S., Shaffiey, F., Levine, K. M., Thompson, W. D., ... & Pierce Wise Sr, J. (2009). Particulate hexavalent chromium is cytotoxic and genotoxic to the North Atlantic right whale (Eubalaena glacialis) lung and skin fibroblasts. Environmental and molecular mutagenesis50(5), 387-393.
[66]. Reif, B. M., & Murray, B. P. (2024). Chromium Toxicity. In StatPearls [Internet]. StatPearls Publishing.
[67]. Nishijo, M., Nakagawa, H., Suwazono, Y., Nogawa, K., & Kido, T. (2017). Causes of death in patients with Itai-itai disease suffering from severe chronic cadmium poisoning: a nested case–control analysis of a follow-up study in Japan. BMJ open7(7), e015694.
[68]. World Health Organization. (2010). Exposure to cadmium: A major public health concern. World Health Organization. Retrieved August 20, 2024, from http://www.who.int/ipcs/features/cadmium.pdf
[69]. Orlowski, C., & Piotrowski, J. K. (2003). Biological levels of cadmium and zinc in the small intestine of non-occupationally exposed human subjects. Human & experimental toxicology22(2), 57-63.
[70]. Health Protection Agency. (2010). Cadmium: Toxicological overview (p. 15). Health Protection Agency, United Kingdom. Retrieved August 20, 2024, from https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/337542/hpa_cadmium_toxicological_overview_v3.pdf
[71]. Gidlow, D. A. (2015). Lead toxicity. Occupational medicine65(5), 348-356.
[72]. Sankhla, M. S., Kumari, M., Nandan, M., Kumar, R., & Agrawal, P. (2016). Heavy metals contamination in water and their hazardous effect on human health-a review. Int. J. Curr. Microbiol. App. Sci (2016)5(10), 759-766.
[73]. Raj, K., & Das, A. P. (2023). Lead pollution: Impact on environment and human health and approach for a sustainable solution. Environmental Chemistry and Ecotoxicology5, 79-85.
[74]. Zhou, M., Li, X., Zhang, M., Liu, B., Zhang, Y., Gao, Y., ... & Yu, H. (2020). Water quality in a worldwide coal mining city: A scenario in water chemistry and health risks exploration. Journal of Geochemical Exploration213, 106513.
[75]. Samal, P., Mohanty, A. K., Khaoash, S., Mishra, P., & Ramaswamy, K. (2024). Health risk assessment and hydrogeochemical modelling of groundwater due to heavy metals contaminants at Basundhara coal mining region, India. International Journal of Environmental Analytical Chemistry, 104(4), 735-754.
[76]. Baloyi, J., Ramdhani, N., Mbhele, R., & Ramutshatsha-Makhwedzha, D. (2023). Recent progress on acid mine drainage technological trends in South Africa: Prevention, treatment, and resource recovery. Water15(19), 3453.
[77]. Johnson, D. B., & Hallberg, K. B. (2005). Acid mine drainage remediation options: a review. Science of the total environment338(1-2), 3-14.
[78]. Daraz, U., Li, Y., Ahmad, I., Iqbal, R., & Ditta, A. (2023). Remediation technologies for acid mine drainage: Recent trends and future perspectives. Chemosphere311, 137089.
[79]. Larochelle, T., Noble, A., Ziemkiewicz, P., Hoffman, D., & Constant, J. (2021). A fundamental economic assessment of recovering rare earth elements and critical minerals from acid mine drainage using a network sourcing strategy. Minerals11(11), 1298.
[80]. Bai, S. J., Li, J., Yuan, J. Q., Bi, Y. X., Ding, Z., Dai, H. X., & Wen, S. M. (2023). An innovative option for the activation of chalcopyrite flotation depressed in a high alkali solution with the addition of acid mine drainage. Journal of Central South University30(3), 811-822.
[81]. Laker, M. C. (2023). Environmental impacts of gold mining—with special reference to South Africa. Mining3(2), 205-220.
[82]. Jiao, Y., Zhang, C., Su, P., Tang, Y., Huang, Z., & Ma, T. (2023). A review of acid mine drainage: Formation mechanism, treatment technology, typical engineering cases and resource utilization. Process Safety and Environmental Protection170, 1240-1260.
[83]. Prasad, B., Kumari, P., Bano, S., & Kumari, S. (2014). Ground water quality evaluation near mining area and development of heavy metal pollution index. Applied water science4(1), 11-17.
[84]. Reuters. (2024, August 7). Poland drafting plan to reduce Oder River salinity, minister says. Reuters. https://www.reuters.com/business/environment/poland-drafting-plan-reduce-oder-river-salinity-minister-says-2024-08-07/
[85]. Reuters. (2024, August 22). Lithium mining is slowly sinking Chile's Atacama salt flat, study shows. Reuters. https://www.reuters.com/sustainability/land-use-biodiversity/lithium-mining-is-slowly-sinking-chiles-atacama-salt-flat-study-shows-2024-08-22/
[86]. Neogi, B., Tiwari, A. K., Singh, A. K., & Pathak, D. D. (2018). Evaluation of metal contamination and risk assessment to human health in a coal mine region of India: A case study of the North Karanpura coalfield. Human and Ecological Risk Assessment: An International Journal24(8), 2011-2023.
[87]. Tytkowska-Owerko, M., Reczek, L., & Michel, M. M. (2025). Nickel Removal Accompanying Underground Water Purification from Iron and Manganese. Desalination and Water Treatment, 101223.
[88]. Rahman, H. U., & Ditta, A. (2025). Mine Remediation and Climate Changes. In Sustainable Remediation for Pollution and Climate Resilience (pp. 89-128). Springer, Singapore.
[89]. MUHIZI, P. (2023). The efficiency of clay-based adsorbent in fluoride removal from groundwater: adsorption process. Journal of Mining and Environment14(3), 839-851.
[90]. Rajeev, A., Shah, R., Shah, P., Shah, M., & Nanavaty, R. (2025). The potential of big data and machine learning for ground water quality assessment and prediction. Archives of Computational Methods in Engineering32(2), 927-941.
[91]. Bayatzadeh Fard, Z., Ghadimi, F., & Fattahi, H. (2017). Use of artificial intelligence techniques to predict distribution of heavy metals in groundwater of Lakan lead-zinc mine in Iran. Journal of Mining and Environment8(1), 35-48.
[92]. Moghaddam, S., Dezhpasand, S., Kamkar Rohani, A., Parnow, S., & Ebrahimi, M. (2017). Detection and determination of groundwater contamination plume using time-lapse electrical resistivity tomography (ERT) method. Journal of Mining and Environment8(1), 103-110.
[93]. Sakizadeh, M., & Mirzaei, R. (2016). A comparative study of performance of K-nearest neighbors and support vector machines for classification of groundwater. Journal of Mining and Environment7(2), 149-164.