Document Type : Original Research Paper

Authors

1 Department of Mining Engineering, Faculty of Engineering and Natural Sciences, Konya Technical University, Konya, Turkey

2 Department of Mining Engineering, Faculty of Engineering Sciences, Omdurman Islamic University, Omdurman, Sudan

3 Department of Economic Geology and Mining, Red Sea University, Port Sudan, Sudan

4 Department of Metallurgical and Materials Engineering, Faculty of Engineering, Firat University, Elazig Turkey

Abstract

This article describes the kinetics of utilizing ammonium nitrate to dissolve pure metallic silver in hydrogen peroxide solution (H2O2). Using pure metallic silver allows for precise leaching kinetics research by removing interference from impurities and facilitating accurate interpretation of rate-controlling mechanisms. The impact of temperature, rotation speed, H2O2 concentration, and ammonium nitrate concentration were all examined. The results show a favorable relationship between the rate of silver (Ag) dissolution and the rotation speed. Additionally, a low concentration of ammonium nitrate (between 0.003 and 0.20 M) has advantageous effects on Ag dissolution. The dissolution rate was significantly impacted by H2O2 concentrations between 0.08 and 0.15 M, because this range of H₂O₂ concentration required to provide sufficient oxidative potential for significant silver solubility. However, this effect is less pronounced in the 0.20–0.50 M range. 20 - 50 °C range of temperatures are advantageous since H2O2 is stable in this range. It was calculated that the activation energy was 25.66 kJ/mol.

Keywords

Main Subjects

[1]. Aydogan, S., Abdelraheem, M. T. O., Ali, B., & Boyrazli, M. (2025). Kinetics Study on the Leaching of Metallic Silver with Ammonium Carbonate as an Eco-Friendly Alternative for Cyanide. JOM, 1-10.
[2]. Osman Abdelraheem, M. T., Akasha, M., & Agacayak, T. (2022). Recyanidation of Gold Heaps Tailing at Hassai Region in Red Sea State, Sudan. Journal of Mining Science, 58(4), 628-634.
[3]. Chen, X., Ren, Y., Qu, G., Wang, Z., Yang, Y., & Ning, P. (2023). A review of environmental functional materials for cyanide removal by adsorption and catalysis. Inorganic Chemistry Communications, 157, 111298.
[4]. Islas, H., Flores, M. U., Juárez, J. C., Reyes, M., Blanco, A., Gutierrez, E. J., ... & Reyes, I. A. (2021). Silver leaching from jarosite-type compounds using cyanide and non-cyanide lixiviants: A kinetic approach. Minerals Engineering, 174, 107250.
[5]. Abikak, Y., Kenzhaliev, B., Akcil, A., Dembele, S., Koizhanova, A., Bakhytuly, N., & Kassymova, G. (2025). Optimization of Thiourea-Promoted Gold and Silver Leaching from Pyrite Cinders Using Response Surface Methodology (RSM). Processes, 13(5), 1277.
[6]. Gamiño-Arroyo, Z., Pareau, D., Buch, A., Gomez-Castro, F. I., Sánchez-Cadena, L. E., Stambouli, M., ... & Avila-Rodriguez, M. (2021). Design of multistage extraction system for simultaneous separation of silver and gold from thiourea solutions. Chemical Engineering and Processing-Process Intensification, 164, 108391.
[7]. Azizitorghabeh, A., Wang, J., Ramsay, J. A., & Ghahreman, A. (2021). A review of thiocyanate gold leaching–Chemistry, thermodynamics, kinetics and processing. Minerals Engineering, 160, 106689.
[8]. Rezaee, M., Abdollahi, H., Saneie, R., Mohammadzadeh, A., Rezaei, A., Darvanjooghi, M. H. K., ... & Magdouli, S. (2022). A cleaner approach for high-efficiency regeneration of base and precious metals from waste printed circuit boards through stepwise oxido-acidic and thiocyanate leaching. Chemosphere, 298, 134283.
[9]. Azizitorghabeh, A., Mahandra, H., Ramsay, J., & Ghahreman, A. (2021). Gold leaching from an oxide ore using thiocyanate as a lixiviant: process optimization and kinetics. ACS omega, 6(27), 17183-17193.
[10]. El-Shaheny, R., El Hamd, M. A., El-Enany, N., Alshehri, S., & El-Maghrabey, M. (2024). Insights on the utility of ionic liquids for greener recovery of gold and silver from water, wastes, and ores. Journal of Molecular Liquids, 126034.
[11]. Vereycken, W., Riano, S., Gerven, T. V., & Binnemans, K. (2020). Extraction behavior and separation of precious and base metals from chloride, bromide, and iodide media using undiluted halide ionic liquids. ACS Sustainable Chemistry & Engineering, 8(22), 8223-8234.
[12]. Pereira, M. M., Costa, F. O., Gomes, R. F., Rodrigues, M. L. M., da Silva, G. A., & Leão, V. A. (2020). Multivariate study of a novel hydrometallurgical route employing chloride/hypochlorite for leaching silver from printed circuit boards. Chemical Engineering Research and Design, 163, 115-124.
[13]. Chen, J., Xie, F., Wang, W., Fu, Y., & Wang, J. (2022). Leaching of gold and silver from a complex sulfide concentrate in copper-tartrate-thiosulfate solutions. Metals, 12(7), 1152.
[14]. Hernández-Ávila, J., Salinas-Maldonado, R. G., García-Cerón, A., Flores-Badillo, J., Cerecedo-Sáenz, E., Toro, N., & Salinas-Rodríguez, E. (2025). A Comparative Study of Cyanide and Thiosulfate for Silver Leaching from Tailings: A Kinetics Approach. Processes, 13(5), 1522.
[15]. Roldán-Contreras, E., Salinas-Rodríguez, E., Hernández-Ávila, J., Cerecedo-Sáenz, E., Rodríguez-Lugo, V., I. Jeldres, R., & Toro, N. (2020). Leaching of silver and gold contained in a sedimentary ore, using sodium thiosulfate; a preliminary kinetic study. Metals, 10(2), 159.
[16]. Bae, M., Kim, S., Sohn, J., Yang, D., & Lee, H. (2020). Leaching behavior of gold and silver from concentrated sulfide ore using ammonium thiosulfate. Metals, 10(8), 1029.
[17]. Liu, Z. W., Guo, X. Y., Tian, Q. H., & Zhang, L. (2022). A systematic review of gold extraction: Fundamentals, advancements, and challenges toward alternative lixiviants. Journal of Hazardous Materials, 440, 129778.
[18]. Whitehead, J. A., Zhang, J., McCluskey, A., & Lawrance, G. A. (2009). Comparative leaching of a sulfidic gold ore in ionic liquid and aqueous acid with thiourea and halides using Fe (III) or HSO5− oxidant. Hydrometallurgy, 98(3-4), 276-280.
[19]. Lewis, R. J., 1997, “Hazardous chemicals desk reference”, New York, international Thomson publishing company.
[20]. Molleman, E. and Dreisinger, D., 2002, “The treatment of copper-gold ores by ammonium thiosulfate leaching”, Hydrometallurgy, 66, 1-21.
[21]. Navarro, P., Vargas, C., Villarroel, A. and Alguacil, F. J., 2002, “On the use of ammoniacal/ammonium thiosulphate for gold extraction from a concentrate”, Hydrometallurgy, 65, 37-42.
[22]. Starovoytov, O. N., Kim, N. S., & Han, K. N. (2007). Dissolution behavior of silver in ammoniacal solutions using bromine, iodine and hydrogen-peroxide as oxidants. Hydrometallurgy, 86(1-2), 114-119.
[23] Aydogan, S., Abdelraheem, M. T. O., Ali, B., & Boyrazli, M. (2025). Dissolution of metallic silver with ammonium acetate and hydrogen peroxide solution as a greener substitute for cyanide: kinetics study. Discover Chemistry, 2(1), 196.
[24]. Aydogan S, A
bdelraheem M T O, Ali B, & Boyrazli M. (2024). Leaching Kinetics of Metallic Silver Using Di-ammonium Tartrate and Hydrogen Peroxide Solution as a Greener Substitute for Cyanide. Journal of Sustainable Metallurgy, 10(4), 2442-2454.
[25]. Yahaya, S. M., Mahmud, A. A., Abdullahi, M., & Haruna, A. (2023). Recent advances in the chemistry of nitrogen, phosphorus and potassium as fertilizers in soil: A review. Pedosphere, 33(3), 385-406.
[26]. Kudryashova, O. S., Kataev, A. V., & Malinina, L. N. (2015). Solubility in the NaNO3-NH4NO3-KNO3-H2O system. Russian Journal of Inorganic Chemistry, 60, 355-361.
[27]. Aydogan S, Abdelraheem M T O, Ali B, & Boyrazli M. (2025). Leaching Kinetics of Metallic Silver with Sodium Cyanide in Hydrogen Peroxide Solution. The Canadian Journal of Chemical Engineering.
[28]. Abdelraheem M T O, Agacayak T (2023) Investigation of the effect of some polar organic solvents on the leaching and dissolution kinetics of chalcopyrite in hydrogen peroxide and sulfuric acid solution. Bulletin of the Chemical Society of Ethiopia. 37(3): 779-788.
[29]. Abdelraheem M T O, Agacayak T (2022). Effect of organic and inorganic compounds on dissolution kinetics of chalcopyrite in hydrogen peroxide–Hydrochloric acid system. Journal of Saudi Chemical Society, 26(3).
[30]. Feng X, Long Z, Cui D, Wang L, Huang X, Zhang G (2013) Kinetics of rare earth leaching from roasted ore of bastnaesite with sulfuric acid. Trans. Nonferrous Metals Soc. China 23: 849–854.
[31]. Saxena N N, Mandre N R (1992) Mixed control kinetics of copper dissolution for copper ore using ferric chloride. Hydrometallurgy. 28: 111–117.
[32]. Yang, X. & Honaker, R. Q. (2020). Leaching kinetics of rare earth elements from fire clay seam coal. Minerals, 10(6), 491.
[33]. Xu, H., Qian, Y., Zhou, Q., Wei, C., Wang, Q., Zhao, W., ... & Xu, J. (2022). Kinetics and Mechanisms of Artificial Willemite Leaching in Low-Sulfuric-Acid Solution at Elevated Temperature. Metals, 12(12), 2031.
[34]. Levich V G, Tobias C W (1963) Physicochemical hydrodynamics. J. Electrochem. Soc. 110, 251C.