[1]. Wills, B.A. (1985). Mineral processing technology, 3rd ed., Pergamon Press, Oxford, 521 P.
[2]. Clout, J.M.F., & Manuel, J.R. (2015). Mineralogical, chemical and physical characterization of iron ore. In: Lu, L. (Ed.), Iron Ore, Woodhead Publishing, Oxford, pp. 45–84.
[3]. Kiptarus, J.J., Muumbo, A.M., Makokha, A.B., & Kimutai, S.K. (2015). Characterization of selected mineral ores in the eastern zone of Kenya: case study of Mwingi North Constituency in Kitui County. International Journal of Mining Engineering and Mineral Processing, 4, 8–17.
[4]. Akhgar, B.N., Kheiri, S., Faridazad, M., Chehreghani, S., & Bahrami, A. (2024). Modification of mineral processing circuit in Arjin mine through a mineralogical study: magnetic separation and reverse flotation. Iranian Journal of Earth Science, 16, 1–9.
[5]. Saravari, A., Sam, A., & Shayanfar, S. (2021). Desulfurization of iron ore concentrate using a combination of magnetic separation and reverse flotation. Journal of Chemical Technology and Metallurgy, 56: 1102–1110.
[6]. Yu, J., Ge, Y. and Cai, X. (2016). The desulfurization of magnetite ore by flotation with a mixture of xanthate and dixanthogen. Minerals, 6, 70.
[7]. Bai, S., Li, J., Bi, Y., Yuan, J., Wen, S., & Ding, Z. (2023). Adsorption of sodium oleate at the microfine hematite/aqueous solution interface and its consequences for flotation. International Journal of Mining Science and Technology, 33, 105–113.
[8]. Song, S., Zhang, G., Luo, Z., & Lv, B. (2019). Development of a fluidized dry magnetic separator and its separation performance tests. Mineral Processing and Extractive Metallurgy Review, 40, 307–313.
[9]. Mackay, D.A.R., Simandl, G.J., Luck, P., Grcic, B., Li, C., Redfearn, M., & Gravel, J. (2015). Concentration of carbonatite indicator minerals using a Wilfley gravity shaking table: a case history from the Aley carbonatite. Geological Fieldwork 2014, British Columbia Geological Survey Paper, pp. 189.
[10]. Vinhal, J.T., Costa, R.H., Junior, A.B.B., Espinosa, D.C.R., & Tenório, J.A.S. (2020). Gravity separation of zinc mine tailing using Wilfley shaking table to concentrate hematite. In: Energy Technology 2020: Recycling, Carbon Dioxide Management, and Other Technologies, Springer International Publishing.
[11]. Prusti, P., Rath, S.S., Dash, N., Meikap, B.C., & Biswal, S.K. (2021). Pelletization of hematite and synthesized magnetite concentrate from a banded hematite quartzite ore: A comparison study. Advanced Powder Technology, 32, 3735–3745.
[12]. Haghi, S.M.A., Zabett, A., & Mirjalili, M. (2021). The mechanism of the reduction of hematite-magnetite concentrate by graphite-calcium carbonate mixture in Hoganas process. Journal of Metallurgical and. Materials Engineering, 32, 45–56.
[13]. Liang, Z., Peng, X., Huang, Z., Chen, J., Li, J., Yi, L., & Huang, B. (2023). Non-isothermal reduction kinetics of low-grade iron ore–coal mini-pellet in a low-temperature rotary kiln process. Materials Today Communications, 35, 105607.
[14]. Yu, J., Sun, H., Sun, X., Guo, Y., Zhang, W., & Li, Y. (2025). Kinetic study on low-temperature reduction of hematite in a microfluidized bed: Effect of pore characteristics on reaction rate. Materials Today Communications, 46, 112886.
[15]. Huang, H., Li, J., Li, X., & Zhan, Z. (2013). Iron removal from extremely fine quartz and its kinetics. Separation and Purification Technology, 108, 45–50.
[16]. Lee, S.O., Tran, T., Jung, B.H., Kim, S.J., & Kim, M.J. (2007). Dissolution of iron oxide using oxalic acid. Hydrometallurgy, 87, 91.
[17]. Martínez-Luévanos, A., Rodríguez-Delgado, M.G., Uribe-Salas, A., Carrillo-Pedroza, F.R., & Osuna-Alarcón, J.G. (2011). Leaching kinetics of iron from low grade kaolin by oxalic acid solutions. Applied Clay Science, 51, 473–477.
[18]. Tuncuk, A., & Akcil, A. (2016). Iron removal in production of purified quartz by hydrometallurgical process. International Journal of Mineral Processing, 153, 44–50.
[19]. Feng, D., & van Deventer, J.S.J. (2007). Effect of hematite on thiosulphate leaching of gold. International Journal of Mineral Processing, 82, 138–147.
[20]. Salmimies, R., Mannila, M., Kallas, J., & Häkkinen, A. (2012). Acidic dissolution of hematite: Kinetic and thermodynamic investigations with oxalic acid. International Journal of Mineral Processing, 110–111, 121–125.
[21]. Carmignano, O.R., Vieira, S.S., Teixeira, A.P.C., Lameiras, F.S., Brandão, P.R.G., & Lago, R.M. (2021). Iron ore tailings: Characterization and applications. Journal of the Brazilian Chemical Society, 32, 1895–1911.
[22]. Nyarige, J.S., Krüger, T.P.J., & Diale, M. (2020). Influence of precursor concentration and deposition temperature on the photoactivity of hematite electrodes for water splitting. Materials Today Communications, 25, 101459.
[23]. Pourghahramani, P., & Forssberg, E. (2006). Microstructure characterization of mechanically activated hematite using XRD line broadening. International Journal of Mineral Processing, 79, 106–119.
[24]. Ermolovich, E.A., & Ermolovich, O.V. (2016). Effects of mechanical activation on the structural changes and microstructural characteristics of the components of ferruginous quartzite beneficiation tailings. International Journal of Mining Science and Technology, 26, 1043–1049.
[25]. Akhgar, B.N., & Pourghahramani, P. (2015). Impact of mechanical activation and mechanochemical activation on natural pyrite dissolution. Hydrometallurgy, 153, 83–87.
[26]. Pourghahramani, P., & Akhgar, B.N. (2006). Characterization of structural changes of mechanically activated natural pyrite using XRD line profile analysis. International Journal of Mineral Processing, 134, 23–28.
[27]. Pourghahramani, P., & Akhgar, B.N. (2015). Influence of mechanical activation on the reactivity of natural pyrite in lead (II) removal from aqueous solutions. Journal of Industrial and Engineering Chemistry, 25, 131–137.
[28]. Balaz, P. (2003). Mechanical activation in hydrometallurgy. International Journal of Mineral Processing, 72, 341–354.
[29]. Akhgar, B.N., Pazouki, M., Ranjbar, M., Hosseinnia, A., & Salarian, R. (2012). Application of Taguchi method for optimization of synthetic rutile nanopowder preparation from ilmenite concentrate. Chemical Engineering Research and Design, 90, 220–228.
[30]. Akhgar, B.N., Kavanlouei, M., Farhoudi, S., & Rohzad, M.H. (2024). Impact of mechanical activation and mechanochemical activation on microstructural changes, leaching rate and leachability of natural chalcopyrite. Mineral Engineering, 217, 108962.
[31]. Clearfield, A., Riebenspies, J.H., & Bhuvanesh, N. (2009). Principle and Application of Powder Diffraction, 1st ed., Wiley-Blackwell, Hoboken, 426 P.
[32]. Chen, L.Q., & Gu, Y. (2014). Computational Metallurgy. In: Laughlin, D.E. and Hono, K. (Eds.), Physical Metallurgy, 5th ed., Elsevier, Oxford, pp. 2807–2835.
[33]. Norrish, K. (1962). Quantitative analysis by X-ray diffraction. Clay Minerals, 5(28), 98–109.
[34]. Tahmasebi, R., Shamanian, M., Abbasi, M.H., & Panjepour, M. (2009). Effect of iron on mechanical activation and structural evolution of hematite-graphite mixture. Journal of Alloys and Compounds, 472, 334–342.
[35]. Cullity, B.D., & Stock, S.R. (2009). Elements of X-ray Diffraction, 3rd ed., Prentice Hall, New Jersey, 664 P.
[36]. Li, C., Liang, B., & Wang, H. (2008). Preparation of synthetic rutile by hydrochloric acid leaching of mechanically activated Panzhihua ilmenite. Hydrometallurgy, 91, 121–129.
[37]. Zdujić, M., Jovalekić, C., Karanović, Lj., Mitrić, M., Poleti, D., & Skala, D. (1998). Mechanochemical treatment of α-Fe₂O₃ powder in air atmosphere. Materials Science and Engineering: A, 245, 109–117.