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Abstract

In this work, the mechanism for fracture of brittle substances such as rocks under a uniform normal tension is
considered. The oriented straight micro-cracks are mostly created in all the polycrystalline materials
resulting from the stress concentrations. The present work focuses on the interactions of the pre-existing
micro-cracks, which can grow and propagate within a rock-like specimen. The micro-crack initiation and
propagation in rock-like specimens is investigated using the Fortran Code TDDCRACK?®, which is a 2D
displacement discontinuity method (DDM) for crack analysis, a boundary element computer code based on
the linear elastic fracture mechanics (LEFM) theory. In the present work, a higher order DDM is used to
implement special crack tip elements for estimation of the stress intensity factors (SIFs) and crack initiation
angles for the wing-crack problems initiated at different angles from the original micro-crack tips in an
infinite specimen under a uniform tension.

Keywords: Micro-Cracks, crack Interaction, crack Initiation, Rock-Like Specimens, Linear Elastic Fracture

Mechanics (LEFM) Theory, Displacement Discontinuity Method (DDM), Crack Coalescence.

1. Introduction

The crack propagation mechanism for solid
materials can be divided into two scales: micro-
fracture that usually deals with the initiation and
propagation of micro-cracks, and macro-fracture
that deals with the propagation of big cracks. One
can find to what extent the macro-fracturing
mechanism is affected by the micro-fracturing
one. The presence of micro-cracks in brittle
substances has more effects on their mechanical
behaviors. The mechanical behavior of rocks is
due to their micro-mechanical structures [1].
Micro-cracks typically nucleate at the positions of
stress concentrations such as pores, inclusions,
sharp micro-cracks, and triple connections.
Initiation of a micro-crack also occurs at the
micro-crack tip, and extends at an angle with
respect to the original micro-crack plane [2]. The
resulted cracks may be further extended in kinked
or curved forms. [3]. In uniaxial tension loadings,

crack initiation and specimen fracture may happen
very soon.

The mechanism for fracture of brittle substances
with orientated micro-cracks depends upon the
degree of interaction between the micro-cracks
and coalescence path, leading to a crack in the
macro-scale [4]. In studying the fracture
mechanism of brittle substances under uniaxial
tensile stress, fracture initiation is normally
expected in a direction perpendicular to the
maximum tensile stress, i.e. in the plane of the
critically oriented micro-cracks. In the case of
brittle fracture under compressive loading, one
might therefore expect that fracture initiation also
follows in a direction parallel to the maximum
compression stress, i.e. the one which is inclined
at 20-30° to the maximum stress direction [5]. In
rocks, crack initiation under tensions tress is
preferred due to the lower toughness of rock
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substances in tension than in shear [6]. The
mechanism of forming and coalescing micro-
cracks in composing macro-cracks (fatal-cracks)
or rupture of rocks is yet not a well-understood
matter, and the problem of the interaction between
micro-cracks and macro-cracks is always noted by
the researchers [7]. Although a number of
experimental reports have been published on the
micro-crack and coalescence patterns  of
specimens such as single and three micro-cracks
under uniaxial and biaxial = compression
loadings[e.g. 8-20], the extension numerical
models such as the code FROCK, damage model,
rock failure process analysis (RFPA®™), and2D
particle flow code (PFC?) are used in this field
[6, 10, 12, 13, 21-29]. A comparison between the
results obtained for several numerical models and
those obtained for the experiments conducted by
Bobet-Einstein and Sagong-Bobet [12, 13, 16] are
in good agreement. Due to the complexity of the
problem, nowadays, numerical or analytical-
numerical approaches are mostly used for the
rock-fracture modeling mechanism [7]. A
researcher analyses the growth of micro-cracks in
infinite planes. The present investigation was
carried out on the effect of fracturing on brittle
substances altering positions of micro-cracks that
are under tension loadings. A numerical model,
the displacement discontinuity crack
(TDDCRACK?) code, and a 2D code based on
the linear elastic fracture mechanics (LEFM)
theory were used to simulate the micro-crack
interaction of specimens containing micro-cracks.
There are a number of important fracture initiation
criteria that are applicable in practice, as follow:
the maximum tangential stress (ce-Criterion), the
maximum energy release rate (G-criterion),the
minimum  energy  density  criterion  (S-
criterion),and any modified form of these
mentioned issues e.g. F-criterion, which is a
modified energy release rate criterion [11, 30-36].
Although these criteria act prosperously for
predicting the wing-crack initiation (tension-
crack) under tension and compression loadings,
the maximum tangential stress criterion was used
here to predict the direction of micro-crack
initiations. In the present work, the numerical
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analysis of the growth of wing-cracks from the
pre-existing micro-cracks in rock-like specimens
under a uniform normal tensile stress was studied.
The initiation and growth of wing-cracks from a
single micro-crack (like the center slant micro-
crack) were solved, firstly, by the proposed
numerical model to verify the results obtained
using the higher order displacement discontinuity
code TDDCRACK?, which uses the linear and
quadratic displacement discontinuity formulation
with three special crack tip elements at each
micro-crack end. Comparing the numerical and
analytical values for the fracture parameters like
mode | and mode I, the stress intensity factors
(SIFs)were calculated for the problems, and the
validity of the numerical results was proved.
These results also show high accuracy of the
numerical values obtained by the proposed
method. Then the extension and growth of each
micro-crack and the interaction between them
were studied. In all cases, plane stress was used to
solve the stresses and displacements.

2. Application of quadratic collocation
displacement discontinuity method (DDM)
using three special crack tip elements

In the displacement discontinuity method (DDM),
the micro-crack surfaces are divided into multiple
segment elements, and for each one of these
elements, the opening displacement D, (normal
displacement discontinuity) and the sliding
displacement Dy (shear displacement
discontinuity) are directly calculated. Considering
a displacement discontinuity element with the
length of 2c on the x-axis, the widespread
displacement discontinuity variable u({) can be
calculated (Figure l1a). D, and D, are easily
determined by taking the uy and u, components of
the widespread displacement discontinuity
variable u(¢) in the interval [-c, +c], as shown in
Figure 1b.Therefore, the fundamental variables D,
and Dy can be written as [37, 38]:

DX =Uu, (XIO,) _UX(X,0+)
D, =u,(x,0_)-u,(x0,) @
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Figure 1. (a) Displacement discontinuity element and widespread displacement discontinuity variable u(¢), (b)
constant element displacement discontinuity.

In DDM, the boundaries are discretized into
multiple segment elements. The formulations of
three types of displacement discontinuity
variations with a constant variation in the
displacement along the elements, a linear
variation, and a quadratic variation have been
previously mentioned and used in the literature
[38-40]. The quadratic collocation displacement

discontinuity is fundamentally based upon
integrating the quadratic collocation shape
functions over the collinear, straight-line

displacement discontinuity elements.

Figure 2 shows the displacement distributions at
the quadratic collocation point ‘m’, which can be
calculated as:

Each element is divided
into three sub-elements

Dj(¢)=2A,(¢)D" for m=Lto3j=x,y (2

where D; is the fundamental variable. In each
collocation point, two fundamental variables are

calculated. Using €, =C, = C,, we have:

A(e) = (¢ —20) 181, Ay(() =

~(¢?—ac?) 14, Ag(Q) = (S +20) 180 )
which are the shape functions of the quadratic
collocation point ‘m’. In the quadratic collocation,
there are three collocation points for each element,
in which the displacements are typically
calculated. These collocations are located in the
center of the elements (Figure 2).

Yy

2C

Figure 2. Quadratic collocations for higher order displacement discontinuity variation.

The stresses and displacements for an oriented
straight micro-crack in an infinite specimen along
the x-axis in terms of the single harmonic
functions N(y,x) and M(y,x)have been given by
Crouch and Starfield [38] as:

T =20[ 2N,y + YN [+20[ My +yM ]
Oy = ZP[_VN xyy]+2p[M y —YM yyy]
Oxy =2p[2N yy TYN ]“LZPI:_VM xyy:|

(4)
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and the displacements are:

Ux :[2(1—" INy —YNyy ]*[—(1—2" x —YMyy ]
uy =[(1—2V)NX —nyy]+[2(1—v)My —yM yy]
p is the shear modulus, and Ny, My, N, and M,
are the partial derivatives of the single harmonic
functions N(y,x) and M(y,x) with respect to y and
X. These potential functions (for a quadratic

variation of displacement discontinuity along the
element) [40] can be written as:

()
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N(X, Y):_—liDTQk(Io’ |1’ Iz) ) M(X’ y):_—liD;an(lm Il’ Iz) (6)

Az (1 - V) m=1
The common function € can be defined as:

477(1_ V) m=1

1
Q, (I, 1. 1,) = [N (O In[(x =) + y2 dg, k=1,t03 (7)
The integrals I, I;, and I ;in function (7) can be obtained as:

1

10 y) = [In[x- )7 +y2] 4= (6, - 0,) — (x—c)In(ry) + (x+ ©) In(r,) — 2¢ (8-2)
R 1

1(X,y)= j‘gln[(x—g)2 + yz]zdg”:xy(@1 —492)+O.5(y2 —x? +c2)ln%—cx (8-b)
—C 2
. 1

L) =& mlx-0)t + 2T de=2 e - y2)e, - 0)+ .

L@y £ @y 6 o)) -2y + )

where 6y, &, I';, and I, can be derived as:

0, = arctan(x—zc), 0, = arctan(ch), I, = [(x—c)2 + yz]% and T, = [(x+c)2 + yz]% 9)

Partial derivatives of the integralsly, 1;, and I3
required for the solution of finite, infinite plane
problems are given in the appendix.

In order to eliminate the singularity of the
displacements and stress calculation near the
micro-crack ends, and to increase the accuracy of
the higher order DDM around the original micro-
crack tip, a special treatment of the micro-crack at
the tip is necessary [29, 30, 38]. In the previous
works, usually, one or two elements for a specific
crack tip has (have) been used. However, in the
present work, three special crack tip elements
were used at the end and initiation of each micro-
crack in the general higher order DDM. As shown
in Figure 3, using a special crack tip element with
the length of 2c, the displacement discontinuity
variations along this element can be written as the
following form [40]:

1 3

5
D, ({)=T{? +T,{2 +T, {2 (10)

Equation (10) can be arranged as the following
form:

D; (€) =[AT1(£)ID} ©)+[AT 2(OIDF ©) +[AT s(OIDS ) (11)

The crack tip element has the length
C=C;+C, +C,. ConsideringC, =C, =C;, the
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shape functions A, (£), A, (&) and A;(S) can

be written as:

1 3 5
15¢°2 2 2
Ari(6) = é; '§—3+—5.
& cf 8&?
1 3 5
52 32 2
Ar,(Q) = él ¢ 2 - ¢ = and (12)
NN S N Y.
1 3 S
3.2 2 2
AT 3(§)= g 1 - g 3 + g 5
N N = I N

The common function Q. (I, 15,,155) is
defined as:

c 1
Orm (Itm) = fkrm (C)ln[(x —§)2+y2}2d{, m=1,2,and3  (13)

—C

The integrals Iy, It,, and I3 can be expressed as:

c 1 1
r1(y) = [ ¢2In[ (x =¢)? +y? [2dg,

—C

c 3 1
lr2(,y) = [ ¢2In[(x =¢)? +y? J2dg (14)

—C

c 5 1
a0, y) = [ ¢2In[(x =¢)*+y? 2d¢
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Figure 3. A special crack tip element with three equal sub-elements.

The mode | and mode 11 SIFsK, and K,, can be

estimated based on the LEFM theory as the
opening and sliding displacements [39]:

1

__p (272
Ky _4(1_‘/)(0] Dy(C)y

(15)

1
and K“ = 4(1/_)1/ ) (chjz DX (C)

3. Initiation of micro-crack under a uniform
normal tension

In uniaxial tension loading, crack initiation and
specimen fracture befall very soon. In the study of
fracture of a brittle substance under a uniform
normal tension, initiation of fracture is expected to
occur in the perpendicular direction of maximum
tension, and crack initiation is expected to result
from the low fracture toughness in comparison to
the shear loading. Generally, two types of cracks
propagate from the pre-existing micro-cracks:
wing-cracks and secondary-cracks (Figure 4).

Oblique secondary—crack\

Pre-existing micro-crack \\“\

Quasi-coplanar
secondary-crack >

Wing-cracks are tension-cracks that are initiated
near the original tips of micro-cracks, and stably
propagate in the perpendicular direction of
maximum tension. Secondary-cracks are shear-
cracks that are initiated from the original tips of
micro-cracks, and are stably propagated. Shear-
cracks are initiated in two different directions:
coplanar (quasi-coplanar) and obligue to the pre-
existing micro-cracks. Two types of secondary-
cracks that may simultaneously befall can be
observed in Figure 4.Secondary-cracks (shear-
cracks) are mostly produced under the
compressive loading conditions. That is why, in
this work, the focus is on the wing-cracks, and
shear-cracks are not considered [22]. Wing-cracks
take place when the pre-existing micro-crack
inclination angle is between 30° and 90° with
respect to the loading direction. Wing-cracks do
not take place when the pre-existing micro-crack
inclination angle is less than 30° horizontally.

Quasi-coplanar

P secondary-crack

Wing-crack

Oblique secondary-
crack

Figure 4. Crack patterns induced in a rock-like specimen containing an inclined-crack subjected to tension.
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Also a great number of experiments have been
performed on the rock and rock-like specimens
with pre-existing micro-cracks under uniaxial
compression  loadings.  Wing-cracks  and
secondary-cracks have been observed in a large
number of these experiments [6].

4. Verification of DDM with quadratic
collocation using analytical solution

A simple problem for verifying the numerical
results and the proposed code is presented in this
paper. This problem is the center slant micro-
crack in an infinite specimen, shown in Figure 5.
The slant angle ¢ changes counter-clockwise from

the x (horizontal) axis, and the tensile stress o™ =
10 MPa is acting, considering the two cases
parallel to the (i) x-axis and (ii) y-axis. Half of the
micro-crack length, b= 1 mm, modulus of
elasticity E=10 GPa, Poisson’s ratiov = 0.2, and
fracture toughness K,c= 1.8MPa m"? are assumed.
The analytical solution of the mode | and mode II

SIFs, K, andk, for the infinite problem are
given as [42]:
1
K, =0”(7b)?a,
1
Ky =0 (7b)*m;

(16)

wherea; gngd @; are the dimensionless functions;

they enter the effects of loading and segment
geometry into SIFs, and also must be calculated
for any problem.

For example, for the following sample (Figure 5),

the functions@; gngw; in relation (16) can be
written as:

H
@;=sin

. f (17)
@,;=5In" ¢.cOS

Here, in order to predict the angle of wing-crack
initiation and the extension of micro-crack, the
maximum tangential stress criterion has been
used. This is a classical mixed mode criterion
which has been used vastly by several researches
[3, 30, 40- 44]. Based on this criterion, it can be
found out that micro-cracks always grow in the
perpendicular direction to the maximum tensile

stress. The maximum tangential strain stresso,
(in the extension of the micro-crack propagation)
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truly befalls in the following conditions; the micro
crack-propagation will initiate.

! cos@{m sin@cos%+K“ (1—3sin2%}=0 (18)

b= 2 2

Using this equation, the wing-crack initiation
angle (6o) can be determined:

2
Gy =2tan" K 4025 K—'2+8 for K, #0,
4K, Kii (19)

and 6,=0 for K, =0

Finally, the general form of criterion,o,, in the
toughness conditions for the fracture of materials
of mode | (i.e., K) and wing-crack initiation

angle can be expressed as the following relation
[36, 40]:

) 26 3 . Oy
cos—| K| cos® —=—-—=Ky; sin— |=K or 0.866K
2{ | > pRusing ic ( n)  (20)

K, and 0, for different micro-crack inclination
angles are obtained analytically using equations
(19-20). The linear and quadratic collocation
formulations have both been implemented into the
DDM code TDDCRACK? (based on the linear
elastic fracture mechanics), and used to
numerically solve this example problem. Different
micro-crack inclination angles under the tensile
stress have been used for the above mentioned
cases. There are totally 96 elements including 90
elements along the micro-crack and six elements,
three elements for each of the two micro-crack
tips. An L/b ratio of 0.1 was used to operate the
linear and quadratic collocation displacement
discontinuity codes. The results computed by the
TDDCRACK?® code for quadratic collocations
are given in Table 1, and graphically illustrated in
Figures 6 and 7 for the both cases (i) and (ii),
respectively, which show the correctness and
helpfulness of the quadratic collocation
formulation for the behavior of the cracked solids.
The results obtained show that the numerical
values obtained by the TDDCRACK?® code using
quadratic collocation are very accurate compared
to those obtained using linear collocation, and are
very close to the analytical results. Also,
according to Figure 8, wing-crack initiation angle
increases with reduction in the value of stress
intensity factor.
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c”=10Mpa
Figure 5. A center slant micro-crack in an infinite body under a uniform tension parallel to the y-axis.

Table 1. Analytical and numerical values for mode I and mode 11 SIFs K, /(o™ /zb) andK , /(o™ /7zb) for
different micro-crack inclination angels, using only 90 quadratic elements (360 collocation points) and three

special crack tip elements (L/b=0.1).

LOADING (x-axis) LOADING (y-axis)
K, ((o/7b) K, /(o\/7b) K, ((o/7b) K., /(o/7b)
? . TDDCRACK - TDDCRACK . TDDCRACK - TDDCRACK
Angle Analytical (quadratic) Analytical (quadratic) Analytical (quadratic) Analytical (quadratic)
170° 0.0301 0.0301 0.171 0.1710 0.9698 0.9699 0.171 0.1710
160° 0.1169 0.1169 0.3213 0.322 0.8830 0.8830 0.3213 0.3214
150° 0.2500 0.25 0.433 0.4377 0.7500 0.7501 0.433 0.433
140° 0.4131 0.4129 0.492 0.4922 0.5868 0.5870 0.492 0.4926
130° 0.5868 0.5869 0.4924 0.4924 0.4131 0.4132 0.4924 0.4924
120° 0.7500 0.7500 0.433 0.4333 0.2500 0.2491 0.433 0.4330
110° 0.8830 0.8830 0.3213 0.3214 0.1169 0.1169 0.3213 0.3221
100° 0.9698 0.9699 0.171 0.1714 0.0301 0.0301 0.171 0.1710
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Figure 6. Analytical and numerical values for mode I and mode 11 stress intensity factors K, /(o™ /zb) and

K, /(o™ /7b) for inclined single micro-cracks under a uniform tension parallel to x-axis, for L/b=0.1 and
270+6 points of quadratic collocation.

1.2 / *-—-/““—‘\

ol I\ |27

0.6 @i// ¢ TDDCRACK, mode |
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02 of Mode |
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90 140 190
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Figure 7. Analytical and numerical values for mode I and mode 11 SIFs K, /(o™ ,/zb) and K, /(c”/7b),

for inclined single micro-cracks under a uniform tension parallel to y-axis for L/b=0.1 and 270+6 points of
quadratic collocation.
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Figure 8. Relationship between stress intensity factor and micro-crack initiation angle.

Figure 8 shows that at low SIFs, micro-crack
initiation angles increase.

The center slant micro-crack problem has been
solved by different researchers, e.g. Guo et al.
[43], to get a simple analysis. These researchers
have also used the constant element displacement
discontinuity with a special crack tip element for
the angles 30, 40, 50,60,70, and 80 degrees. To
evaluate the micro-crack initiation angle 6, they
have used two initiation criteria: maximum

tangential tensile stress criterion (o, -criterion)
and minimum strain energy density criterion (S-

criterion), and compared their results with the
results obtained from other models. The results
obtained for the micro-crack initiation angle 6, by
TDDCRACK®*Code  from the  quadratic
collocations using the maximum tangential tensile
stress criterion, and the results obtained by Guo et
al. [43] are given in Table 2, and graphically
illustrated in Figure 9. As it can be seen in this
table, the numerical results obtained by the
TDDCRACK®*Code are comparatively more
accurate.

Table 2. Micro-crack initiation angle 8, for center slant micro-crack problem obtained by different methods.

Results obtained by TDDCRACK;p code Results obtained by Guo et al [43].

Angle Quadratic collocation o-criterion S-criterion Experimental Numerical
150° 60.0098° 60.2° 63.5° 62.4° 67.0°
140° 55.65° 55.7° 56.7° 55.1° 59.0°
130° 50.29° 50.2° 49.5° 51.1° 51.0°
120° 43.22° 43.2° 41.9° 43.1° 41.0°
110° 33.26° 33.2° 31.8° 30.7° 29.0°
100° 18.91° 19.3° 18.5° 17.3° 15.0°
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Figure 9. Micro-crack initiation angle 8, as a function of micro-crack inclination angle ¢.

5. Effects of specimen size and boundary

Consider a center slant micro-crack in a finite
plate having a width 2W, as shown in Figure 10.
Let the micro-crack length b=1mm, the tensile
stress o= 10 MPa (acting parallel to the y-axis),

o

modulus of elasticity E=10 GPa, Poisson’s ratio
v= 0.2, and fracture toughness K,c= 1.8 MPa m*?.

AREEN

2h

.,
.
\,
e}\\
\,

%“

y
¢ X
v

d
<

2W

COTTTIT

o

Figure 10. A degree center slant micro-crack in a finite plate with w/h=1.

The effect of specimen boundary on the crack
propagation mechanism of a single micro-crack
can be studied by considering the micro-crack
inclination angles ¢ as 150°, 135°, and 120°.
Table 3 shows the effect of specimen boundary on
the normalized values evaluated considering
different b/W ratios. The ratio of micro-crack
length, b, to plate width, W, changes as

82

b =0.01,0.03,0.06,0.09,0.2,0.4,0.6,0.8.
w
The normalized SIFsK, / (o4/7 b)and

K, /(c+7b) and crack initiation angles (0) for

different micro-crack inclinations are obtained
numerically by means of the computer code
TDDCRACK?.
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Table 3. Numerical values for normalized mode I and mode 11 stress intensity factors K, / (o/7 b),

K, /(o 7b), and crack initiation angle (8) for center slant micro-crack, using different crack length to plate
width ratios (i.e. different b/W ratios).

®=120° ¢ =135° o =150°

o K o) K, (oymb) 6 K loyab) K lofab) @ | K o) K, (ofmb) @

0.01 0.254 0.432 59.79° 0.504 0.498 52.97° 0.753 0.432 43.07°
0.03 | 955 0432  s5979° | 0504 0499  5296°| 0.754 0432 43.07°
0.06 | (o55 0433  5978° | 0.506 0500  5295°| 0.757 0433  43.05°
009 | 957 0435  59.76° | 0509 0502  5293°| 0.761 0435  43.03°
0.2 0.266 0.446 59.66° 0.529 0.517 52.78° 0.793 0.449 42.84°
0.4 0.306 0.49 59.2° 0.608 0.571 52.16° 0.913 0.498 42.04°
0.6 0.39 0.565 58.08° 0.758 0.661 50.94° 0.986 0.575 40.61°
0.8 0.58 0.676 55.34° 1.024 0.793 48.89° 1.478 0.691 38.78°

The numerical results obtained are illustrated
graphically in Figures 11 to 13. The results given
in Table 3 and Figures 11 to 13 show that as the
b/W ratio increases above 0.4, the normalized

SIFsK, /(o/z b) and K, K(o/zb) also

increase but for the ratios below 0.4, the SIFs

approache their corresponding analytical values
for the infinite body case (as expected) [43]. One
may find that when the micro-cracks approach the
left and right surfaces of the specimen, the SIFs
increase, and the propagation of crack slows
down.
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Figure 11. Normalized SIFs K, / (/7 b) and K|, /(c\/ D) vs. different b/W ratios in a finite rock specimen
for ¢=150°.
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6. Initiation and interaction of three pre-
existing micro-cracks

6.1. Effects of orientation of micro-cracks on
SIFs

Consider a specimen with three micro-cracks, as
shown in Figure 14. Two of these micro-cracks
are parallel, but the third one is not. The physical
and loading parameters are the same as those
given for the center slant crack problem, shown in
Figure 5 (section 4).

Figure 14. Three inclined micro-cracks in an infinite body under a uniform normal tension with spacing S=2b.

Figures 15 and 16 show the plots of mode | and
mode 1l SIFs for six original tips of micro-cracks
by considering micro -crack 1 and micro-crack
3(micro-crack 1 and micro-crack 3 are parallel)
with constant inclination angles 0=60° and =60°
and the micro-crack 2 are at different y angles
with respect to the direction of micro-crack 1 and
micro-crack 3 (i.e. at angles, ¢= 150°, 140°,120°,
100°,80°, and 60°.

The effect of orientation brings about the
following properties.

For the original tip4, k, is always a constant
value for different inclination angles of micro-
crack3, because in this case, it is in the state of
""zero interaction". For the original tip 1, kI value

increases a bit by increasing the inclination angle
of micro-crack3 () from 60 to 120, and from 120

to 150, it decreases. For the original tip 2, for K,
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value, there is a little increase in the inclination
angle for micro-crack3 (¢) from 60 to the vertical,
and from this to 150 there is a decrease. For the

original tip 3, K, value shows a small decrease
with increase in the inclination angle of micro-
crack3 (¢) from 60 to 90, and from 90 to 150,
there is a small increase. For the original tip 6, k,

decreases considerably with increase in the
inclination angle of micro-crack3 (¢) from 60 to
90, because the maximum interaction of the
micro-crack appears to befall for the inclination
angle of micro-crack3 that is equal to 150, while
micro-crack3 appears to be fully non-oriented

with micro-crack 2. In fact, kI gets the zero value

when ¢ is almost 90, because micro-crack3 is
almost 90, since it grows further in the shearing

mode. The maximum value for K, (0.772) befalls
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at @=150 because the original tip 6 strongly
interacts with the lower original tip formicro-
crackl. As it was previously shown for two

micro-cracks, treatment of K, also shows a
significant difference in K, for the three micro-
cracks. For the original tips of micro crack3, in

the range of 130<¢<140, |kII | increases when

micro-crack 1 is completely non-oriented with
micro-crack 2. In contrast, when the two original
tips of micro-crack3 approach other original tips

of the neighboring micro-cracks, both kI and |

15

K, | increase as the distance between the original

tips decreases.

According to Figure 17, the wing-crack initiation
angles of all the original tips vs. the micro-crack
inclination angles change in the inclination angle
of micro-crack3, and the inclination angles for
other micro-cracks are constant. Based on Figure
17, the most changeability is in the original tips of
micro-crack 3. The maximum value for the wing
crack initiation angle (6,~77) befalls at ¢=150 for
the original tip5.
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Figure 15. Treatment of mode | SIFs vs. locations of three micro-cracksunder a uniform tension parallel to the y-
axis for L/b=0.1 and 360+6 points for each micro-crack.
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6.2. Treatment of SIFs on distances of three
micro-cracks from each other

Any original micro-crack tip has a zone of stress
influence. In this zone, the linear elastic fracture
mechanics (LEFM) theory is used to obtain linear
elastic solutions [12, 32]. If the zones of the
influence of stress resulted from each micro-crack
are far enough from each other, they act as a
single micro-crack in the computation of SIFs for
each original tip (i.e. there is zero interaction).
Figure 18 shows the zone stress influence for a
single micro-crack.

A Zone of stress
influence

Tip of micro-crack

Figure 18. Zone of stress influence for a single
micro-crack.
In the present study, each one of the three micro-
cracks present has vertical and horizontal
distances in its own center to those of the other
micro-cracks. For any of the three micro-cracks,
the main micro-crack orientation is a=60, p=50,
and ¢=40, and the main micro-crack lengthis 2b in
this example. As it is shown in Figures 19 and 20,

the mode | and mode Il SIFs are changed by
varying S. The mode | and mode Il SIFs are
changed in different spacings. The mode | and
mode Il SIFs for five different spacings were
obtained (for S/b= 1, 1.5, 2, 2.5, 3). The results
obtained show that with increase in the spacing,

K, andK,, are likely to reach the value for zero

interaction when the micro-cracks get much far
away from each other (i.e. for large S and/or S/b

ratios). In fact, for the original tip 6, kI gets the

zero value if S<1. Hence, the wing crack
propagated length from the original tip 6 is likely
to be limited since wing-crack cannot grow
towards the center of the micro-crack (See Figure

19). The maximum value for K, (0.65) befalls

when S= 1 because the original tip 6 strongly
interacts with the lower original tip of micro-

crackl. As increases more and more, kI tends

toward the value for zero interaction, i.e. for the
original tips 4 and 5. Figure 20 shows the mode 11
stress intensity factor with respect to different
spacings for completely non-oriented micro-
cracks. The figure shows that mode 11 SIFs of the
original tips 1 and 2 for micro-crack 3 are
negative in comparison with the other original tips
of micro-cracks. Figure 21 shows the wing-crack
initiation angles of all original tips, that changed
in spacing.
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7. Conclusions

According to the complexity of crack coalescence
problem, accurate calculation of SlIFs related to
micro-cracks and interactions of all micro-cracks
with each other using micro-mechanics discrete
methods and finite element analysis (FEM) are, to
some extent, difficult or time-consuming.
Therefore, semi-analytical methods like the
displacement discontinuity method (DDM), based
on the linear elastic fracture mechanics (LEFM)
theory, can be used. A numerical model on the
basis of computing the stress intensity factors
(SIFs) and wing-crack initiation angles for
cracked substances under a normal uniform
tension was presented. Any mixed mode fracture
criterion can be implemented to this numerical
code. However, in the present work, based on the
LEFM principles, the maximum tangential stress
criterion or o-criterion was implemented into the
Code TDDCRACK?Pin order to investigate the
interactions of micro-cracks. TDDCRACK?® is a
well-organized and -verified computer code. The
structure of this code is segmental, and considers
two boundary conditions for each micro-crack.
Several simple and frequently used samples could
be selected and explained to verify the present
numerical method. However, here, it was limited
to only one. Also to show that the results are in a
good agreement with the analytical solutions and
experimental observations for single micro-
cracks, in these models, linear and quadratic
collocations with three special crack tip elements
for each micro-crack tip at the same time were
implemented into the Code TDDCRACK®. The
differences between parallel micro-cracks and
non-oriented  micro-cracks ~ were  further
discovered using the mentioned numerical
method. The numerical simulation was carried out
considering infinite planes with three micro-
cracks under a uniform tension.

Studied variables:

Comparing the parallel and non-parallel micro-
cracks, the effects of crack distances and
inclinations of three micro-cracks showed that
these factors had a strong influence on the
breaking path. However, this model is capable of
solving problems in the fractured media
containing multiple micro-cracks under various
loading conditions, e.g. pure tensile, pure shear,
and tension shear.
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APPENDIX
INTEGRALS AND DERIVATIVES FOR CONSTANT, LINEAR, AND QUADRATIC VARIATIONS OF
DISPLACEMENT DISCONTINUITY

1. Constant Integral Iy and Its Derivatives
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