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Abstract 
Optimization of the exploitation operation is one of the most important issues facing the mining engineers. 

Since several technical and economic parameters depend on the cut-off grade, optimization of this parameter 

is of particular importance. The aim of this optimization is to maximize the net present value (NPV). Since 
the objective function of this problem is non-linear, three methods can be used to solve it: analytical, 

numerical, and meta-heuristic. In this study, the Golden Section Search (GSS) method and the Imperialist 

Competitive Algorithm (ICA) are used to optimize the cut-off grade in mine No. 1 of the Golgohar iron 

mine. Then the results obtained are compared. Consecuently, the optimum cut-off grades using both methods 
are calculated between 40.5% to 47.5%. The NPVs obtained using the GSS method and ICA were 18487 and 

18142 billion Rials, respectively. Thus the value for GSS was higher. The annual number of iterations in the 

GSS method was equal to 18, and that for ICA was less than 18. Also computing and programming the 
process of golden section search method were easier than those for ICA. Therefore, the GSS method studied 

in this work is of a higher priority. 

 

Keywords: Optimization, Cut-off Grade, Golden Section Search (GSS) Method, Imperilist Competitive 
Algorithm (ICA), Mine No. 1 of Golgohar. 

1. Introduction 

Optimal exploitation of mineral reserves has 
always been considered by the designers and 

engineers. The most important objective of this 

operation is to maximize the net present value 
(NPV). Since 1954, optimizing the cut-off grade, 

upon which several operational and economical 

parameters depend, has been considered by 

several researchers. The basic algorithm used to 
determine the cut-off grades, which maximizes 

NPV of an operation in a one-metal deposit, 

subject to mining, milling, and refining capacities, 
has been proposed by Lane [1]. His theory takes 

into account the costs and capacity associated 

with these stages. Mine capacity is the maximum 
rate of mining the deposit, mill capacity is the 

maximum rate of processing ore, and refinery 

capacity is the maximum rate of production of the 

final product. Determination of the cut-off grade 
is based upon the fact that either one of these 

stages alone limits the total capacity of operation 

or a pair of stages may limit the entire operation. 
The optimum cut-off grade theory introduced by 

Lane determines the annual cut-off grades [2]. 

Ataei and Osanloo have developed a method to 

find out the optimum cut-off grade for multiple 
metal deposits. First, they defined the objective 

function for multiple metal deposits, and then, 

they used the golden section search (GSS) method 
and its equivalent factor to solve this optimizing 

problem [2, 3]. Among recent researches, the 

major contribution belongs to the Asad’s efforts. 
He first modified the Lane’s algorithm for the cut-

off grade optimization of two-mineral deposits 

with an option to stockpile. Then he presented a 
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model by combining the impacts for economical 

parameters, escalation, and stockpiling options 

into the cut-off grade optimization model [4, 5]. 

Bascetin and Nieto have proposed a new method 
for determination of the cut-off grade strategy 

based on the Lane’s algorithm by adding an 

optimization factor to the generalized reduced 
gradient algorithm in order to maximize NPV [6]. 

In 2008, Rashidinejad and co-workers presented a 

model for the optimum cut-off grade that not only 
relies on the economical aspect but also 

minimizes the form of acid mine drainage 

elimination or mitigation against the approach of 

postponing the restoration/reclamation activities at 
the end of the project life [7]. In 2009, he and 

others proposed a method to determine the cut-off 

grade based on the genetic-neural optimization for 
crude ore [8]. In 2012, Barr used the stochastic 

dynamic method to define the objective function 

for determining the optimum cut-off grade for 
single-metal and multi-metal deposit underprice 

uncertainty [9]. Abdolahisharif modified the 

Lane’s method in order to incorporate variable 

processing capacities in the algorithm [10]. Azimi 
utilized the multi-criteria ranking system to select 

the cut-off grade strategy under the metal price 

and geological uncertainties [11]. 
In this work, the performance of two different 

methods was studied for determination of the 

optimum cut-off grades. For this purpose, at first, 

the objective function for determination of the 
optimum cut-off grade was defined based on 

maximizing NPV for future cash flow for mine 

No. 1 in the Golgohar iron mine. Then the GSS 
method and the ICA were used to find out the 

optimum cut-off grade strategy, amount of 

material that must be send to each unit, amount of 

selling product, profit, and NPV of five-year 

production plans for the iron mine. 

2. Objective function 

Figure 1 shows the operation process for mine No. 

1 of Golgohar. As it can be seen from this figure, 
the mine is capable of putting on the market three 

types of products including sizing (the size 0-6, 6-

12 and 12-25 mm), concentrate, and pellet. Since 
the capacity of each unit including mining, 

concentrating, and pelletizing can constrain the 

operation, consequently, three objective functions 

can be defined based upon these constraints. Table 
1 shows the parameters used to define the 

objective functions, and these functions are shown 

in Table 2. 

 

 
Figure 1. Operation process in mine No. 1 of 

Golgohar. 

 

Table 1. Notations used for objective functions. 

Symbol Definition Unit 

Qm Material mined tone 
Qc Ore processed tone 

Qcon Concentrate produced tone 

Qp Pellet produced tone 
Qgr Ore sizing produced tone 
M Mining capacity tone/year 
C Milling capacity tone/year 
Vp Palletizing capacity tone/year 
α A part of ore that sent to concentrate plant - 
β A part of concentrate that sent to pelletizing plant - 
Pp Pellet price Rial/tone 

Pcon Concentrate price Rial/tone 

Pgr Ore sizing price Rial/tone 
m Mining cost Rial/tone 
c Processing cost Rial/tone 
p Pelletizing cost Rial/tone 

Cgr Ore sizing cost Rial/tone 
f Fixed cost Rial 
T Years of production year 
yc Recovery of processing % 

d Discount rate % 

Mine

Crusher and 

processing plant
Sizing Unit

Pelletizing plant

Selling Sizing Product
Selling Cocentrate

Selling Pellet
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Table 2. Objective functions. 

Limiting capacity Objective function 
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3. Process of problem solving 

The optimum cut-off grade depends upon NPV, 

which cannot be found out until the optimum cut-
off grades have been determined. The solution to 

this inter-dependent problem involves the iterative 

process. Therefore, a computer program was 
developed to solve the problem. The input data for 

this program is grade-tonnage distribution and 

economical and operational parameters shown in 

Tables 3 and 4, respectively. 
 

Table 3. Grade-tonnage distribution in pushback. 

Grade (%) 
Tonnage 

(tone) 
Average 

grade (%) 
40.5 - 45 6137335 43.75 
45 - 49.5 27346643 47.53 
49.5 - 54 33254956 51.52 
54 - 58.5 11258398 55.34 
58.5 - 63 438098 58.89 

Total ore (tone) 78435430 
Total waste (tone) 109305000 
Total material (tone) 187740430 

 

Table 4. Values for economical and operational 

parameters. 

Parameter Unit Value 

Mining capacity tone/year 40,000,000 

Milling capacity tone/year 12,000,000 

Palletizing capacity tone/year 4,200,000 

Mining cost Rial/tone 32,000 

Processing cost Rial/tone 212,000 

Pelletizing cost Rial/tone 400,000 

Ore sizing cost Rial/tone 50,000 

Fixed cost Rial/year 400,000,000,000 
Pellet price Rial/tone 2,600,000 

Concentrate price Rial/tone 874,000 

Ore sizing price Rial/tone 2,575,000 

Recovery % 67 

Discount rate % 21 

4. Optimization by GSS method 

One of the fastest methods to calculate the 

optimum point of unimodal functions is the 

elimination method. In the first step of this 

method, the uncertainty space of the problem is 

guessed. In the next step, by selecting the test 
points in the uncertainty space, and evaluating and 

comparing the objective functions at these test 

points, a part of the uncertainty space is 
eliminated. This reducing procedure is repeated 

until the uncertainty interval in each direction is 

less than a small specified value ε, where ε is the 

desirable accuracy for determining the optimum 
cut-off grades [2]. 

This method is described in the following steps 

[12]: 
1. Start with an initial guess point, say x1. 

2. Find f1 = f (x1). 

3. Assuming a step size s, find x2 = x1+s. 

4. Find f2 = f (x2). 
5. If f2<f1, and if the problem is one of 

minimization, the assumption of unimodality 

indicates that the desired minimum cannot lie at  
x<x1. Hence the search can be continued further 

along the points x3, x4 ,… using the unimodality 

assumption, while testing each pair of 
experiments. This procedure is continued until a 

point, xi = x1+(i−1)s, shows an increase in the 

function value. 

6. The search is terminated at xi, and either xi−1 or 
xi can be taken as the optimum point. 

7. Originally, if f2>f1, then the search should be 

carried out in the reverse direction at points x−2, 
x−3,…, where x−j = x1−(j−1)s. 

8. If f2=f1, then the desired minimum lies between 

x1 and x2, and the minimum point can be taken as 
either x1 or x2. 

9. If it happens that both f2 and f−2 are greater than 

f1, this implies that the desired minimum lies in 

the double interval x−2<x<x2. 
The ratio of the remaining length, after the 

elimination process, to the initial length in each 
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dimension is called the reduction ratio. Among the 

elimination methods, the reduction ratio for the 

GSS method is optimum and equal to 0.618. (This 

number is called the golden number.) [2] Hence, 
this method has the widest application. 

Figure 2 shows the GSS method for a one-

dimensional function. In the first step, assume (L, 
U) to be the initial interval of uncertainty, and 

note that the initial interval includes the optimum 

point. Then select two test points, g1 and g2, are 
calculate them as follows [2]: 

1

2

( ) 0.382

( ) 0.618

g L U L

g L U L

   

   
 (1) 

 
Figure 2. GSS method for one-dimensional function 

[2]. 

 

In the next step, the objective functions are 

evaluated in the g1 and g2 points. Depending upon 

the objective function values for these points, the 

length of the new uncertainty interval is 
successively reduced in each iteration. By 

considering this process for a maximizing 

problem, the results obtained for the objective 
function evaluation and reducing the interval of 

Figure 3 are as follow: 

1 2 1

1 2 2

( ) ( )

( ) ( )

if f g f g L g U U

if f g f g L L U g

   

   
 (2) 

 

 In this study, the desirable accuracy and the 

interval uncertainty were assumed to be 0.01% 

and 40.5%-58.5%, respectively. By running the 
program, the annual optimum cut-off grade in 18 

iterations was calculated. Table 5 shows the 

results obtained. 

Table 5. Optimum cut-off grade for different years of mine life. 
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1 47.48 40000000 11974565 650565 3011651 4200000 7659 18487 

2 47.28 39937732 12000000 928027 2188152 4200000 6874 14710 

3 47.02 39943516 12000000 900361 1345421 4200000 6067 10926 

4 45 34169784 12000000 739198 669563 4200000 5254 7153 

5 40.5 33689398 11993351 672744 0 4016084 4115 3401 

5. Optimization by ICA 

Different meta-heuristic algorithms have been 
proposed for solving an optimization problem. 

Most of these methods are inspired by modeling 

natural processes. In 2007, for first time, ICA was 

proposed by Atashpaz-Gargari and Lucas, and 
was inspired by the imperialist competition. 

Contrary to the conventional evolutionary 

methods, this algorithm is not based upon any 
phenomenon from the nature. ICA uses the  

socio-political evolution of human as a source of 

inspiration for developing a strong optimization 

strategy. In particular, this algorithm considers 

imperialism as a level of human social evolution, 
and by mathematically modeling this complicated 

political and historical process, it arrives at a tool 

for an evolutionary optimization [13]. 

Figure 3 shows the flowchart of ICA. Like other 
evolutionary ones, ICA starts with an initial 

population. Each individual of the population is 

called a country, in which some having the least 
cost are established as the imperialists, and the 

rest are the colonies of these imperialists. 
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Figure 3. Flowchart of ICA [14]. 

 

Division of all the colonies of the initial countries 

is based upon the power of the imperialist. For 

this, at first, it is necessary to define the 

normalized cost of an imperialist, by: 

max{ }n i n
i

C c c   (3) 

where cn is the cost of the nth imperialist, and Cn is 

its normalized cost. Having the normalized cost of 
all imperialists, the normalized power of each 

imperialist is defined as: 

1

imp

n
n N

i

i

C
p

C





 

 

(4) 

From a different point of view, the normalized 

power of an imperialist is the portion of colonies 

that should be possessed by that imperialist. Then 
the initial number of colonies of an empire would 

be: 

. . { .( )}n n colN C round p N  (5) 

Start

Initialize the empire

Is there a colony in an empire which 

has lower cost than that of imperialist?

Exchange the position of that 

imperialist and colony

Compute the total cost of all 

empires

Pick the weakest colony from the 

weakest empire and give it to the empire 

that has the most likelihood to possess it

Is there an empire 

with no colonies?

Eliminate this empire

Is stop condition 

satisfied?

End

No

Yes

No

Yes

Yes

No
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where N.C.n is the initial number of colonies of 

the nth empire, and Ncol is he number of all 

colonies. To divide the colonies, for each 

imperialist, N.C.n was chosen randomly [14]. 
 The colonies in each one of the empires start 

moving towards their imperialist, based on the 

assimilation policy. Figure 4 shows the movement 
of a colony towards the imperialist. In this 

movement, θ and x are arbitrary numbers, which 

are generated uniformly as

   ~ 0, , ~ ,x U d U     . Here, d is the 

distance between colony and imperialist, and β 
must be greater than 1. This constraint causes the 

colonies to get closer to the imperialist state from 

both sides. Moreover, γ is a parameter that adopts 
the deviation from the main direction. Although β 

and γ are random numbers, most of the times, the 

best fitted values for β and γ are approximately 2 
and π/4 (Rad), respectively [15]. 
 

 
Figure 4. Movement of colonies toward their 

relevant imperialist [14]. 
 

The total power of an empire is defined by the 
imperialist power and percentage of the colony 

power. Thus the total cost is defined by: 

. . ( )

{ ( )}

n n

n

T C Cost imperialist

mean Cost colonies of empire

 
 (6) 

 

where T.C.n is the total cost of the nth empire, and 

ξ is a positive number, which is considered to be 

less than 1. 

By defining the above equations, the imperialist 
competition begins. All the empires try to take the 

colonies of other empires under their control. The 

imperialistic competition gradually results in an 
increase in the power of powerful empires and a 

decrease in the power of weaker empires. This 

results in the collapse of weak empires. To start 
the competition, first one must find the possession 

probability of each empire based on its total 

power. The normalized total cost is simply 

obtained by: 
 

. . . max{ . . } . .n i n
i

N T C T C T C   (7) 

where N.T.C.n is the normalized cost of the nth 
empire. Having the normalized total cost, the 

possession probability of each empire is given by: 

 

1

. . .

. . .
n imp

n
p N

i

i

N T C
p

N T C






 (8) 

 
Finally, these processes successfully cause all the 

countries to converge to a situation in which there 

exists only one empire in the world, and all the 
other countries are colonies of that empire that 

have the same position and power as the 

imperialist [16]. The main steps in the algorithm 
are summarized in the pseudo-code shown in 

Figure 5. 

 

1) Select some random points on the function, and initialize the empires. 

2) Move the colonies toward their relevant imperialists (Assimilation). 

3) If there is a colony in an empire which has the lowest cost than that of the imperialist, exchange 

the positions of that colony and the imperialist. 

4) Compute the total cost of all empires (related to the power of both the imperialist and its 
colonies). 

5) Pick the weakest colony (colonies) from the weakest empire, and give it (them) to the empire that 

has the most likelihood to possess it (Imperialist competition). 

6) Eliminate the powerless empires. 

7) If there is just one empire, stop, if not go to 2. 

Figure 5. Pseudo-code of ICA [14]. 
 

It should be noted that each candidate grade is a 
country in ICA, and the objective function of the 

problem is the cost function of this algorithm. 

Also the annual final empire for ICA is the 
optimum cut-off grade. Figure  shows the 

minimum and mean costs of all the empires vs. 

iteration for each year. Since ICA is designed for 
the minimization problem, the objective function 

was used in its negative form. Therefore, in Figure 

6, NPV is negative. Table 6 shows the results 
obtained for this optimization method. 
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st
 year 

 
b. 2

nd
 year 

 
c. 3

rd
 year 

 
d. 4

th
 year 

 
e. 5

th
 year 

Figure 6. Minimum and mean costs of all imperialists vs. iteration for each year. 
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Table 6. Optimum cut-off grade for different years of mine life. 
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1 47.46 39981211 12000000 950009 3027388 4200000 7661 18142 

2 47.28 39988755 12000000 929231 2185268 4200000 6873 14291 

3 47.03 40000000 11998962 901609 1341771 4200000 6066 10420 

4 46.61 39987460 12000000 859080 496849 4200000 5220 6542 

5 40.5 27783008 9743843 550968 0 3261176 3262 2696 

6. Conclusions 

In this work, we investigated the performance of 

two different methods to find out the optimum 
cut-off grades in the mine No. 1 of Golgohar. For 

this purpose, in the first step, the objective 

function was developed by considering three types 

of salable products in this iron ore mine. In order 
to do so, at first, the Lane’s method was modified, 

and the objective function for determination of the 

optimum cut-off grade based on maximizing the 
net present value (NPV) for future cash flows was 

defined. Then the golden section search (GSS) 

method and imperialist competitive algorithm 
(ICA) were used. Conscuently, the optimum cut-

off grades were calculated between 40.5% and 

47.5% using both of these methods. NPVs 

obtained by the GSS method and ICA were 18487 
and 18142 billion Rials, respectively, and thus the 

value for the GSS method is higher. To solve the 

problem, the number of iterations in the GSS 
method for each year was equal to 18, and that in 

ICA was less than 18. Also the process of 

programming and computing in GSS was very 

easier than that in ICA. Thus, in this problem, 
GSS had a priority higher than ICA. 
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 چکیده:

عیبر حذ بٍ دلیل يابستگی پبرامتزَبی متعدذد   سبسی بُیىٍمیبن ایه سبسی عملیبت استخزاجی است. اس يی مُىذسیه معذن، بُیىٍر مسبئل پیص تزیه مُمیکی اس 

ٍ  اس آوجدبیی . است فعلیسبسی افشایص ارسش خبلص ای است. َذف اس ایه بُیىٍدارای اَمیت يیژٌ آن،فىی ي اقتصبدی بٍ  ٍ ایده   کد  اس ودً  ییزخیدی اسدت،     مسدئل

 ابتکدبری  فدزا ريش عذدی جستجًی وسبت طلایی ي الگًریتم حبضز ، در پژيَص ري اسایهتًان بکبر بزد.  را بزای حل آن می ابتکبری فزاَبی تحلیلی، عذدی ي ريش

بب یکذیگز مقبیسٍ ضذٌ است. بدز ایده اسدب ،     َب آنقزار گزفتٍ ي وتبیج حبصل اس  مًرد استفبدٌگُز گل 1 عیبر حذ معذن ضمبرٌ سبسی بُیىٍرقببت استعمبری بزای 

% محبسبٍ ضذٌ است. َمچىیه، مقذار ارسش خبلص فعلی حبصل اس ريش جستجًی وسبت طلایی بزابز 5/44% تب 5/40ز عیبرَبی حذ در َز دي ريش در ببسٌ مقبدی

ش جسدتجًی وسدبت   دَىذٌ مقذار بیطدتز بدزای ري  کٍ وطبن آمذٌ دست بٍریبل  میلیبرد 18142میلیبرد ریبل ي بزای الگًریتم رقببت استعمبری بزابز بب  18484بب 

ي در ريش رقببت استعمبری کمتز  18َبی طزح در ريش جستجًی وسبت طلایی بزابز بب  سبل یتعذاد ديرَبی محبسببتی بزای َمٍ مسئلٍطلایی است. بزای حل 

 ؛رقببت استعمبری داضدتٍ اسدت   ابتکبری فزااس الگًریتم  تزی آسبنوًیسی بًدٌ است. اس سًی دیگز، ريش جستجًی وسبت طلایی فزآیىذ محبسببتی ي بزوبمٍ 18اس 

 ، در ایه میبلعٍ ريش جستجًی وسبت طلایی دارای بزتزی ي ايلًیت وسبت بٍ الگًریتم رقببت استعمبری بًدٌ است.طًرکلی بٍبىببزایه 

 گُز.گل 1الگًریتم رقببت استعمبری، معذن ضمبرٌ ، ريش جستجًی وسبت طلایی، سبسی، عیبر حذ بُیىٍ کلمات کلیدی:

 


