Document Type : Case Study

Authors

Badan Riset dan Inovasi Nasional (BRIN), Indonesia

10.22044/jme.2025.16265.3158

Abstract

Due to its large nickel reserves, Indonesia has become one of the world's largest nickel mining sites and producers. Nickel is a mining commodity with high economic value. However, its mining activity can negatively impact the environment if not managed properly. Therefore, mitigation of the impact of nickel mining is necessary. This research has conducted erosion and infiltration tests at various locations in pre-nickel mining zones to mitigate the environmental impact of nickel mining activity. Erosion tests were performed using a rainfall simulator with five nozzles on a 12.5 m² demo plot. Infiltration tests were conducted using a double-ring infiltrometer. The result shows that surface runoff coefficients for disposal, limonite, saprolite, and quarry zones were higher than those for vegetated zones such as grassland, pepper plantation, and forest. The saprolite zone released the highest sediment load, i.e., 484.3 kg ha-1 hour-1, followed by the limonite and the pepper plantation zone, with 243.6 kg ha-1 hour-1 and 185 kg ha-1 hour-1. The highest Cr(VI) concentration, 0.7 mg L-1, was released from the disposal zone, followed by the saprolite, limonite, and pepper plantation zones, with concentrations of 0.56, 0.06, and 0.06 mg L-1, respectively. The infiltration equation obtained from each zone shows that revegetation can significantly reduce runoff. Therefore, revegetation should be prioritized in addition to end-of-pipe treatment to mitigate the impact of nickel mining activities.

Keywords

Main Subjects