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Abstract 

The cracked Brazilian disc (CBD) specimen is widely used in order to determine mode-I/II and mixed-mode 

fracture toughness of a rock medium. In this study, the stress intensity factor (SIF) on the crack-tip in this 

specimen is calculated for various geometrical crack conditions using the extended-finite element method 

(X-FEM). This method is based upon the finite element method (FEM). In this method, the crack is modeled 

independently from the mesh. The results obtained show that the dimensionless SIFs for the pure modes I 

and II increase with increase in the crack length but the angle in which pure mode-II occurs decreases. For 

the mixed-mode loading, with increase in the crack angle, NI value decreases, while NII value increases to a 

maximum value and then decreases. The results obtained from the crack propagation examinations show that 

the crack angle has an important effect on the crack initiation angle. The crack initiation angle increases with 

increase in the crack angle. When the crack angle is zero, then the crack is propagated along its initial 

direction, whereas in the mixed-mode cases, the crack deviates from the initial direction, and propagates in a 

direction (approximately) parallel to the direction of maximum compressive load. 

 

Keywords: Cracked Brazilian Disc (CBD), Stress Intensity Factor (SIF), Extended Finite Element Method 

(X-FEM), Mixed-Mode. 

1. Introduction 

Discontinuities always exist in a rock medium. 

Most rock failures occur due to the stress 

concentration on the crack-tips and their 

propagations. Two principal subjects involved in 

the rock fracture are toughness and mode of the 

fracture. Fracture toughness is the critical value 

for the stress intensity factor (SIF) on the crack-

tip. When SIF exceeds this value, the crack grows, 

and the direction of crack propagation also 

depends upon the loading condition and crack 

geometry. Generally, in a rock medium, crack 

occurs in pure mode-I, pure mode-II or mixed-

mode I-II loading. In recent years, several 

laboratory specimens have been introduced to 

study fracturing in rocks. The cracked Brazilian 

disc (CBD) specimen, due to its simple geometry, 

easy preparation, and straight testing and loading 

condition, is widely used [1-5]. Also this 

specimen can be used in the determination of the 

mode-I, mode-II, and mixed-mode I-II fracture 

toughness. Determination of fracture toughness in 

this specimen requires calculating the stress 

intensity factor (SIF) on the crack-tip; one way for 

this calculation is using the finite element method 

(FEM). In this method, the discontinuity must be 

located on the boundary of elements, and this 

method also requires implementing a special mesh 

generation on the crack-tip, so that it can be used 

to calculate SIF. These problems have led to the 

development of a new method named extended-

finite element method (X-FEM). In this method, 

discontinuous enrichment functions are added to 

the finite element approximation to account for 

the presence of the crack. Hence, the discontinuity 

is independent from the mesh, and, unlike FEM, 

there is no need to re-mesh the domain in the 

crack growth process. In X-FEM, an initial 

discretization is generated, and then different 

crack geometries are inserted into it. X-FEM was 

first proposed by Belytschko and Black [6]. They 
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provided a method based on FEM to model crack 

growth by minimizing re-meshing. Moës et al. [7] 

improved this method, so that the entire crack 

domain is modeled completely independent from 

the mesh. They called this X-FEM. However, the 

most significant and effective step in developing 

X-FEM was achieved by Dolbow [8].  

Considering the importance of crack-tip SIF 

calculation and X-FEM efficiency in problems 

involving crack, this study was aimed to calculate 

SIF on crack-tip and also crack propagation 

direction in the CBD specimen for various 

geometrical crack conditions (i.e. different crack 

length and different angles with respect to the 

diametrical loading) using X-FEM. An object-

oriented code called MEX-FEM, based on X-

FEM, was developed to simulate the crack in the 

rock medium. In this code, SIF in the crack-tip is 

calculated through the interaction integral, and the 

crack growth direction is predicted using the 

maximum tangential stress criterion. 

The outline of this work is as follows. Description 

of the CBD model is presented in Section 2. 

Section 3 is devoted to the brief definition of the 

X-FEM approximations for the problems in the 

linear elastic fracture mechanics. Determination of 

SIF in the CBD specimens is presented in Section 

4. Section 5 presents the conclusion of this work.  

2. Cracked Brazilian Disc (CBD) specimen 

The CBD specimen has been initially used by 

Awaji and Sato [9]. The geometry of the CBD 

specimen is shown in Figure 1. Atkinson et al. 

[10] have formulated SIF for this model geometry. 

This method allows testing under mode-I, mode-II 

and mixed-mode I-II loading conditions using the 

same specimen arrangement and experimental set-

up. 

 
 

Figure 1. Geometry of CBD specimen. 

The expressions below are used for the fracture 

toughness computation of CBD: 

P a
K NI I

RB
 (1) 

P a
K NII II
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 (2) 

where KI is mode-I stress intensity factor, KII is 

mode-II stress intensity factor, R is the radius of 

CBD, B is the thickness of the disk, P is the 

compressive load at failure, ɑ is the half-crack 

length, and NI and NII values are the 

dimensionless stress intensity factors that depend 

on the ratio of half crack to radius (ɑ/R) and crack 

orientation angles with respect to the diametrical 

load [4]. 

Atkinson, et al. [10] have considered two- and 

five-term approximations, and also a simplified 

short crack approximation in order to determine 

SIF in the CBD specimen. Although there is a 

difference between the results obtained for these 

approximations, their comparison has shown that 

the approximate of the short crack for a crack 

length (ɑ/R) smaller than 0.3 has an acceptable 

accuracy. Also the results obtained show that the 

two- and five-term approximations have very 

close results. The following equations have been 

proposed to approximate SIFs [10]:  
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where Ti and Si are the numerical factors, with 

their values given in Table 1. 

 
Table 1. Ti and Si values for equations (3) and (4). 

(a/R) T1 T2 S1 S2 

0.1 1.014998 0.503597 1.009987 0.502341 

0.2 1.060049 0.514907 1.039864 0.509959 

0.3 1.135551 0.533477 1.089702 0.522272 

0.4 1.243134 0.559734 1.160796 0.539824 

0.5 1.387239 0.594892 1.257488 0.563966 

0.6 1.578258 0.642124 1.390654 0.597985 
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3. Extended-finite element method (X-FEM) 

This method is based upon the finite element and 

partition of unity methods. The idea is to enrich 

the usual finite element spaces with additional 

degrees of freedom to account for the presence of 

the crack [11]. Since the mesh does not need to 

conform to the problem geometry, there is no 

need for re-meshing during the crack propagation. 

Existence of the crack causes two different 

enrichment types in the problem: crack interior 

and crack tip enrichments. The nodes whose nodal 

shape function support intersects the interior of 

the crack are enriched by a step function, and the 

element nodes that contain the crack-tip are 

enriched by the 2D linear elastic asymptotic near-

tip fields (as seen in Figure 2) [12]. The interior of 

a crack is modeled by the generalized Heaviside 

enrichment function H, where H takes on the 

value +1 above the crack and -1 below the crack: 

 

 
1   0

1   0

for x
H x

for x

 
 

 

 (5) 

 
 

Figure 2. Illustration of a crack on a mesh. Circled nodes are enriched by Heaviside function, and squared nodes 

are enriched by near-tip functions. 
 

In order to model the crack-tip, and also to 

improve the representation of crack-tip fields, 

crack-tip enrichment functions were used. For an 

isotropic material, the crack-tip enrichment 

functions are given as [13]: 

 
sin , cos ,

2 2
( , )

sin sin , cos sin
2 2

1,2,3,4

r r

F r

r r
j

j

 


 

 

 
  

  
 
  



 
(6) 

Among these functions, only the first one is 

discontinuous, indicating that discontinuity of the 

function is along the two faces of the crack. The 

extended finite element approximation for the 

displacement field is [12]: 
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where N(x) is a shape function, ui is a nodal 

displacement (standard degree of freedom), aj is a 

vector of additional degree for the nodal freedom 

associated with the Heaviside function, and   
  is a 

vector of additional degree for the nodal 

associated with the elastic asymptotic crack-tip 

functions. In the above equation, I is the set of all 

nodes in the mesh, J is the set of nodes enriched 

with discontinuous enrichment, and K is the set of 

nodes enriched with asymptotic enrichment. 

Stress intensity factors are computed using the 

domain forms of the interaction integrals [12]: 
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(8) 

This integral is calculated over the elements 

intersected by a circle of radius rd, and centered at 

crack-tip (i.e. the shaded elements in Figure 3). 

The relationship between stress intensity factors 

and interaction integral is [12]: 

1,2 (1) (2) (1) (2)2( ) ( )
  I I II III K K K K
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 
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 (9) 

Crack tip
Crack interior 
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Figure 3. Illustration of elements for calculation of interaction integral (shaded elements). 

 
Prediction of the crack growth direction is one of 

the important problems involved in the fracture 

mechanics. Although several different criteria 

have been proposed for determining the direction 

of crack propagation under general mixed-mode 

loading conditions, the most  commonly used ones 

are the maximum tangential stress (MTS) criterion 

[14], the maximum energy release rate criterion 

[15], and also the minimum strain energy density 

[16]. However, the maximum tangential stress 

criterion in which the crack is propagated from 

crack-tip along the direction of maximum 

tangential stress has been used more extensively 

in X-FEM for modeling crack growth. Therefore, 

this criterion was used for determining the crack 

growth direction in this study. The direction of 

crack growth is calculated using the following 

equation: 

2

1 1
2 tan 8

4

I I
c

II II

K K

K K
 

 
     

  
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 (10) 

where    is the crack growth angle, and KI and KII 

are stress intensity factor modes I and II, 

respectively.  

4. SIF in CBD specimen 

As mentioned earlier, in X-FEM, an initial 

discretization is generated, and then different 

crack geometries can be considered into it. When 

the crack angle from the loading axis is zero, pure 

mode-I occurs. Variation in the dimensionless 

stress intensity factor for pure mode-I (NI) with 

crack length ratio (ɑ/R) is shown in Figure 4. NI 

value for pure mode-I increases with increase in 

the crack length. Changing the crack angle 

produces different combinations of modes I and 

II. Figure 5 shows the results obtained from this 

study for ɑ/R = 0.1, and the results given by 

Atkinson, et al. [10]. As it can be seen in this 

figure, the values obtained using X-FEM are in 

good agreement with the results obtained by 

Atkinson et al. [10]. 

Variations in the NI and NII values with the crack 

angles for different crack length ratios are shown 

in Figure 6. With increase in the crack angle, NI 

value decreases but NII value increases to a 

maximum one and then decreases. Theoretically, 

pure mode-II occurs when NI value is zero for a 

mixed-mode loading condition. For different 

crack lengths, pure mode-II occurs at different 

angles. These angles can be obtained from Figure 

6. The pure mode-II angles for various crack 

lengths are shown in Figure 7. Note that the angle 

for pure mode-II decreases with increase in the 

crack length. Figure 8 shows the variation in the 

NII values for pure mode-II with the crack length 

ratio. NII value for pure mode-II increases with 

increase in the crack length. 

  

rd

Crack tip
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Figure 4. Variation in NI values with crack length ratios. 

 

 

Figure 5. Variations in NI and NII values with crack angle β. 

 

 

Figure 6a. Variations in NI and NII values with crack angle β: a) (ɑ/R)=0.1-0.3; b) (ɑ/R)=0.4-0.7. 
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Figure 6b. Variations in NI and NII values with crack angle β: a) (ɑ/R)=0.1-0.3; b) (ɑ/R)=0.4-0.7. 

 
 

Figure 7. Variation in crack angle of pure mode-II with (ɑ/R). 

 

 
Figure 8. Variation in NII value with crack length ratio. 
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5. Crack propagation in CBD specimen 

In this work, quasi-static crack propagation in the 

CBD specimen was simulated using MEX-FEM. 

In the simulation, the crack propagation angle, θc, 

was determined using the maximum tangential 

stress criterion. The crack modeling in X-FEM is 

mesh- independent, i.e. the finite element mesh is 

generated before the analysis starts. In order to 

make the results applicable to more practical 

conditions, the analysis was conducted only for 

those values of α having KI ≥ 0. 

The result obtained for the crack propagation 

examinations show that for the crack angle of 

zero, pure mode-I occurs, and thus the crack 

initiation angle equals zero. In the other cases and 

under the mixed-mode conditions, the crack angle 

has an important effect on the crack initiation 

angle. As for the increase in the crack angle, the 

crack initiation angle increases as well, as shown 

in Figure 9.  

As shown in this figure, the effect of crack length 

on the crack initiation angle is smaller in 

comparison to the effect of the crack angle on it. 

As in the crack lengths (ɑ/R) of 0.1 and 0.2, there 

is no significant difference in the magnitude of 

crack initiation angle. The effect is more obvious 

for the increase in the crack length. 

 
Figure 9. Variation in crack initiation angle with crack angle. 

 
The CBD specimens were simulated by MEX-

FEM, and the crack propagation paths in the 

specimen with crack length ratio of 0.3 and crack 

angles of 0, 10, and 20 were shown in Figure 10. 

It can be seen that when the crack angle is zero (as 

shown in Figure 10a), the specimen is subjected to 

pure mode-I and the crack grows along its primary 

angle, whereas, in the combinational cases, it 

deviates from the initial direction, and propagates 

toward the loading points. Therefore, as reported 

in the literature [17], the crack inclination angle in 

rock-like specimens has a significant effect on 

their final breakage. 

 

   
(a) (b) (c) 

Figure 10. Crack propagation path in CBD specimens with different crack inclination angles: a  β    ; b) β     ;c) 

β    . 
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6. Conclusions 

In this work, the extended finite element method 

(X-FEM) was used to evaluate the stress intensity 

factor (SIF) for various crack geometries in the 

CBD specimen. This method is based upon the 

finite element method (FEM), and employs the 

enrichment functions for crack modeling 

independent from the element. Different crack 

geometries can be easily inserted in a similar 

discretization. These results coincide with the 

previous results reported in the literature. The 

results show that with increase in the crack length, 

the dimensionless stress intensity factors for pure 

modes I and II increase, while the angle for pure 

mode-II decreases. For mixed-mode loading, NI 

value decreases with increase in the crack angle, 

whereas NII value increases to a maximum and 

then decreases. Furthermore, the results obtained 

for the crack propagation examinations show that 

the crack angle has an important effect on the 

crack initiation angle. The crack initiation angle 

increases with increase in the crack angle. When 

the crack angle is zero, the crack grows along its 

initial direction, whereas, in the mixed-mode 

cases, the crack deviates from the initial direction, 

and propagates toward the loading points. 

Therefore, the crack inclination angle in rock-like 

specimens has a significant effect on their final 

breakage. The results obtained from this work also 

demonstrate the X-FEM potential to simulate the 

crack in rock materials. 

 

References 
[1]. Ayatollahi, M. and Aliha, M. (2005). Cracked 

Brazilian disc specimen subjected to mode II 

deformation, Engineering fracture mechanics. 72 (4): 

493- 503. 

[2]. Ayatollahi, M. and Aliha, M. (2008). On the use of 

Brazilian disc specimen for calculating mixed mode I–

II fracture toughness of rock materials, Engineering 

Fracture Mechanics. 75 (16): 4631- 4641. 

[3]. Ayatollahi, M. and Sistaninia, M. (2011). Mode ІІ 

fracture study of rocks using Brazilian disk specimens, 

International Journal of Rock Mechanics and Mining 

Sciences. 48 (5): 819- 826. 

[4]. Ghazvinian, A., Nejati, H. R., Sarfarazi, V. and 

Hadei, M. R. (2013). Mixed mode crack propagation in 

low brittle rock-like materials, Arabian Journal of 

Geosciences. 6 (11): 4435- 4444. 

[5]. Markides, C. F., Pazis, D. and Kourkoulis, S. 

(2013). The centrally cracked Brazilian disc: closed 

solutions for stresses and displacements for cracks 

under opening mode, Journal of Engineering 

Mathematics. 83 (1): 143- 168. 

[6]. Belytschko, T. and Black, T. (1999). Elastic crack 

growth in finite elements with minimal remeshing, 

International journal for numerical methods in 

engineering. 45 (5): 601- 620. 

[7]. Moës, N., Dolbow, J. and Belytschko, T. (1999). A 

finite element method for crack growth without 

remeshing, Int. J. Numer. Meth. Engng. 46: 131- 150. 

[8]. Dolbow, J. E. (1999). An extended finite element 

method with discontinuous enrichment for applied 

mechanics, Northwestern university. 

[9]. Awaji, H. and Sato, S. (1978). Combined mode 

fracture toughness measurement by the disk test, 

Journal of Engineering Materials and Technology. 100: 

175. 

[10]. Atkinson, C., Smelser, R. and Sanchez, J. (1982). 

Combined mode fracture via the cracked Brazilian disk 

test, International Journal of Fracture, 18 (4): 279- 291. 

[11]. Richardson, C. L., Hegemann, J., Sifakis, E., 

Hellrung, J. and Teran, J. M. (2011). An XFEM 

method for modeling geometrically elaborate crack 

propagation in brittle materials, International Journal 

for Numerical Methods in Engineering. 88 (10): 1042- 

1065. 

[12]. Sukumar, N. and Prévost, J. H. (2003). Modeling 

quasi-static crack growth with the extended finite 

element method Part I: Computer implementation, 

International Journal of Solids and Structures. 40 (26): 

7513- 7537. 

[13]. Fleming, M., Chu, Y., Moran, B., Belytschko, T., 

Lu, Y. and Gu, L. (1997). Enriched element-free 

Galerkin methods for crack tip fields, International 

Journal for Numerical Methods in Engineering. 40 (8): 

1483- 1504. 

[14]. Erdogan, F. and Sih, G. (1963). On the crack 

extension in plates under plane loading and transverse 

shear, Journal of basic engineering. 85: 519. 

[15]. Nuismer, R. (1975). An energy release rate 

criterion for mixed mode fracture, International Journal 

of Fracture. 11 (2): 245- 250. 

[16]. Sih, G. C. (1974). Strain-energy-density factor 

applied to mixed mode crack problems, International 

Journal of Fracture. 10 (3): 305- 321. 

[17]. Haeri, H., Shahriar, K., Marji, M. F. and 

Moarefvand, P. (2014). Experimental and numerical 

study of crack propagation and coalescence in pre-

cracked rock-like disks, International Journal of Rock 

Mechanics and Mining Sciences. 67: 20- 28. 



 9314، سال اول ، شمارهششمدوره زیست، پژوهشی معدن و محیط -و همکاران/ نشریه علمی افتخاری

 

 

 

یافتهالمان محدود توسعهبا استفاده از  دارسازی گسترش ترک در نمونه دیسک برزیلی ترکشبیه  

 

حمید هاشم الحسینی و علیرضا باغبانان، *مصلح افتخاری  

، ایرانصنعتی اصفهان، دانشگاه معدندانشکده مهندسی   

00/0/0295، پذیرش 91/5/0294ارسال   

 eftekhari_mosleh@yahoo.com* نویسنده مسئول مکاتبات: 

 

 چکیده:

شود. در این تحقیق، فاکتور میمود ترکیبی استفاده همچنین تعیین چقرمگی مودهای خالص یک و دو و  منظور بهای گسترده طور بهدار نمونه دیسک برزیلی ترک

 محاسبه  یافته توسعهشدت تنش نوک ترک و همچنین مسیر گسترش ترک در این نمونه برای شرایط مختلف ترک با استفاده از روش المان محدود 

دهد که فاکتور شود. نتایج نشان میی میسازبندی مدلاز شبکه لمان محدود است و در آن ترک مستقلمبتنی بر روش ا یافته توسعهشود. روش المان محدود می

یابد. کاهش می ،دهدای که در آن مود خالص دو رخ میزاویه که درحالییابد های خالص یک و دو با افزایش طول ترک افزایش میشدت تنش بدون بعد برای مود

یابد. نتایج افزایش و پس از آن کاهش می یمقدار حداکثریک تا  NIIدار یابد اما مقکاهش می NIبرای حالت بارگذاری مود ترکیبی با افزایش طول ترک، مقدار 

با افزایش زاویه ترک، زاویه شروع  که طوری بهدهد که زاویه ترک نقش مهمی در میزان زاویه شروع ترک دارد ها نشان میهای گسترش ترک در این نمونهبررسی

و  شده منحرفدر موارد مود ترکیبی، ترک از مسیر خود  که درحالییابد ترک در جهت اولیه خود گسترش میزاویه ترک صفر باشد  که زمانییابد. ترک افزایش می

 یابد.به سمت محل بارگذاری گسترش می

 یافته، مود ترکیبی. دار، فاکتور شدت تنش، روش المان محدود توسعهدیسک برزیلی ترک کلمات کلیدی:

 

 


