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Abstract 

In this research work, the frequency domain (FD) of surface geochemical data was analyzed to decompose 

the complex geochemical patterns related to different depths of the mineral deposit. In order to predict the 

variation in mineralization in the depth and identify the deep geochemical anomalies and blind 

mineralization using the surface geochemical data for the Dalli Cu-Au porphyry deposit, a newly developed 

approach was proposed based on the coupling Fourier transform and principal component analysis. The 

surface geochemical data was transferred to FD using Fourier transformation and high and low pass filters 

were performed on FD. Then the principal component analysis method was employed on these frequency 

bands separately. This new combined approach demonstrated desirably the relationship between the high and 

low frequencies in the surface geochemical distribution map and the deposit depth. This new combined 

approach is a valuable data-processing tool and pattern-recognition technique to identify the promising 

anomalies, and to determine the mineralization trends in the depth without drilling. The information obtained 

from the exploration drillings such as boreholes confirms the results obtained from this method. The new 

exploratory information obtained from FD of the surface geochemical distribution map was not achieved in 

the spatial domain. This approach is quite inexpensive compared to the traditional exploration methods. 

 

Keywords: Principal Component Analysis, Frequency Domain (FD), 2D Fourier Transformation, Blind 

Mineralization, Pattern Recognition. 

1. Introduction 

The geo-chemical interpretations are usually 

carried out in the spatial domain. In addition to the 

spatial domain methods for anomaly separation, 

the frequency domain (FD) of the geochemical 

data has been used to decompose the complex 

geo-chemical patterns and separate the syngenetic 

component related to very low frequencies from 

anomalous factors. The power spectrum-area (SA) 

fractal method has been applied for the separation 

of geochemical patterns on the basis of distinct 

self-similarity in FD of the geochemical data [1-

10]. The SA fractal method can decompose the 

complex geochemical patterns into anomalies and 

backgrounds. The Fourier method is the most 

powerful technique used for signal analysis. It 

transforms the signal from the time domain or 

spatial domain to FD, in which many 

characteristics of the signal are revealed [6]. 

Grigorian has propounded a zonality model in the 

spatial domain to recognize a blind mineralization 

zone from a dispersed mineralization one [11, 12]. 

Several methods have been performed to 

determine the hidden ore bodies in the spatial 

domain of geochemical data based on the horizons 

of the erosional surface [11-16]. Ziaii et al. have 

successfully separated a dispersed mineralization 

from blind mineralization using the neuro-fuzzy 

modeling-based genetic algorithms [17]. 

To investigate the mineralization characteristics 

and to identify the mineralization factor(s), the 
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PCA method has frequently been applied to the 

analysis of geochemical and geo science data [18-

21]. 

PCA is a multivariate statistical method for the 

geo-information identification and integration of 

geo-datasets [22]. Correlated variables in geo-

datasets with high dimensionality are transformed 

into several uncorrelated principal components 

(PCs) based on a covariance or correlation matrix 

[23]. The reduced number of PCs obtained 

increases the interpretability of the information 

available for specific objectives [24]. In this 

research work, in order to determine the 

exploratory features of the geochemical data from 

the Dalli area in different frequencies, the high-

pass and low-pass filters are performed on FD of 

geochemical data based on the wave number 

values, and the principal component analysis 

(PCA) method is employed on these different 

frequency bands separately, and as a result, the 

mineralization components are evaluated. 

2. Geological particulars, alteration,and 

mineralogical structure in studied area 

The Dalli porphyry deposit was formed in the 

Uremia–Dokhtar magmatic belt, which is located 

in the central Iran [25, 26]. In this belt, the 

plutonic rocks mostly include diorite, 

granodiorite, and granitoid, and the oligo-Miocene 

volcanic rocks include andesite, dacite, and 

pyroclastics. The mineralized Cu-Au zone in this 

area was formed in the igneous diorite, quartz 

diorite porphyry (QDP), and the volcanic rocks 

such as porphyritic amphibole andesite, andesite, 

dacite, and pyroclastics were formed during the 

late Miocene to Pliocene (Figure 1) [27]. There 

are different types of alterations such as potassic, 

propylitic, silicic, and locally phyllic in the Dalli 

area. The potassic alteration was formed during 

the tonalitic intrusion that includes a high amount 

of mineralization, consisting of quartz-potassium, 

feldspar-magnetite, and biotite. Potassic alteration 

occurred in the center of the area, and was 

progressively surrounded by the sericitic, sericite-

chlorite, and propylitic alteration zones towards 

the border in the porphyry deposits. In the QDP 

and andesite rocks, the Cu-Au mineralization is 

related to the potassic-phyllic and propylitic-

silicic alteration zones, respectively. 

Mineralization in the northern part of Dalli occurs 

in the granodiorite plutonic complex (tonalite), 

quartz diorite, and andesite rocks. The QDP rocks 

indicate a high quartz-magnetite vein and a 

mineralization with high potassic alteration. 

Mineralization in the northern Dalli occurs in the 

quartz veins as a stockwork. Chalcopyrite is the 

main sulfide mineral, and pyrite and bornite also 

exist in the studied area. Malachite, iron oxide, 

pyrite, and chalcopyrite can also be observed in 

the drilled trenches. The supergene, transition, and 

hypogene zones have been identified using 

malachite, native Cu, and bornite. Molybdenum 

increases near the center of the granodiorite 

intrusion. The potassic alteration includes gold, 

bornite, chalcopyrite, pyrite, magnetite, 

hematite±sericite, biotite, and quartz [25]. 

3. Fourier transform 

Two-dimensional Fourier transform (2D-FT) 

allows us to represent and interpret the spatial data 

such as the images in FD [28]. The spatial domain 

responses can be considered as superimposed 

signals of different frequencies [7]. The spatial 

data can be transferred to FD, based on 2D-FT 

[29, 30], which decomposes the signals to 

different frequencies. Fourier transformation 

decomposes the signals into different frequencies. 

One of the equations used to conduct FT has been 

presented by Dobrin and Savit [31]: 

( , ) ( , )cos(K )

( , )sin(K )

x y x y

x y

F K K f x y x K y dxdy

i f x y x K y dxdy

 



 



  



 

 

 (1) 

Where f(x,y) is the signal in the spatial domain, 

Kx and Ky are “wave numbers” with respect to the 

x and y axes. Wave number is the spatial 

counterpart of frequency, increasing proportional 

to wavelengths, as follows: 

2 /x xK       and   2 /y yK  ,     

or    2 22 (1/ 1/ ) x yK K   
(2) 

Therefore, the function f(x,y) in the spatial 

domain, which is the geochemical map in this 

study, can be converted to F(Kx,Ky). It consists of 

the real and imaginary parts R(Kx,Ky) and I(Kx, 

Ky), respectively. The power spectrum is defined 

based on the following equation [32, 33]: 

2 2(K ,K ) (K ,K ) (K ,K ) x y x y x yE R I  (3) 

In FD, we have the power spectrum values and 

wave numbers in the X and Y directions instead 

of the geochemical map of the elements. 

Processing of the geo science data in FD often 

involves operations such as filtering and reducing 

the noise from signal [34]. The filter function, 

G(Kx,Ky), can modify the functions R(Kx,Ky) and 
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I(Kx,Ky) by multiplying, so that some ranges of 

wave numbers can be eliminated and others 

enhanced [18]. Therefore, the filter function 

represents the decomposed function. Signal 

patterns are enhanced in certain frequencies and 

eliminated in the others. It can be applied to the 

geochemical anomaly separation. The 

conventional filters in physics, electrical 

engineering, and geophysics include the low-pass, 

high-pass, band pass, and directional band pass 

filters [18]. A low-pass filter generally eliminates 

the signals with high frequencies, and a high-pass 

filter eliminates low frequencies. These filters 

may be performed on the Kx-Ky map only based 

on the wave number values, without considering 

the power-spectrum values [35]. 

 

 
Figure 1. Geological map of northern part of Dalli area (scale 1:1000) [27]. 

4. Discussion 

Through systematic soil sampling, a grid net of 

50×50 m
2
was used for sampling (Figure 2). 165 

samples with a size fraction of −200 mesh were 

collected and analyzed for 30 elements using the 

ICP-MS method. 

In this research work, a new combined approach 

was represented to predict and delineate the 

mineralization trend in the depth using FD of the 

surface geochemical data. The implementation of 

this scenario was defined, step by step, as follows: 

Step 1: Transformation of the geochemical data 

for all the elements, separately, from the spatial 

domain to FD using 2D-FT. 

Step 2: Designing filter functions based on the 

wave numbers obtained in the X and Y directions 

and power spectrum values. 

Step 3: Applying the filter functions on the FD 

data, and separating the frequency bands from 

each other. 

Step 4: Analysis of the frequency bands using the 

PCA method, identification of the mineralization 

factor, and surveying the relationship between the 

mineralization elements in different frequency 

bands. 

Step 5: Delineation of the mineralization trend, 

and variation in the concentrations from surface to 
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depth using the mineralization factors of 

frequency bands obtained based on the high-, low-

, and band-pass filters. 

The spatial domain geochemical data for 30 

elements was transferred to FD using 2D-FT. The 

FD data included the wave numbers in the x and y 

directions and their power spectrum (PS) values. 

The power spectrum (PS) map created from the 

molybdenum content values is shown in Figure3 

to illustrate the application of the high-, low-, and 

band-pass filters, and distribution of the PS 

values. High values of PS were mainly distributed 

around the center of the map, corresponding to 

low frequencies. In general, the PS values 

decreased, moving away from the center. 

 
Figure 2. Blank sheet of soil sample locations in northern part of Dalli area. 
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 Figure 3. Molybdenum PS map obtained by Fourier transformation. 

 

The geochemical halos of the mineral deposits at 

different depths cause various frequencies in the 

surface geochemical distribution map. In order to 

survey the mineralization features, and determine 

the elements related to the mineralizing phase in 

the deferent frequency bands, a newly-developed 

approach was proposed based on coupling 2D-FT 

and PCA. Therefore, 10 frequency bands were 

considered based on the wave number values 

(Table 1). These high-, band-, and low-pass filters 

were performed on FD of the geochemical data 

for 30 elements. The filters 3 and 5 on the 

molybdenum PS map were depicted in Figure 4. 

Therefore, these filters were used based on the 

wave number values in the X and Y directions. 

The high-pass filters preserve the high frequencies 

related to the high wave number values, and the 

low-pass filters preserve the low frequencies. The 

filter function G(Kx,Ky) modify the function 

E(Kx,Ky) by multiplying, so that some ranges of 

wave numbers are eliminated and the others 

enhanced. 
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Table1. Frequency bands and their applied filters on FD of geochemical data. 

Filter Frequency 

x y

x y

1 k 0.23 and k 0.23
G(k ,k )

o otherwise


 

 



 Band 1 

x y

x y

1 k 0.20 , k 0.20
G(k ,k )

o otherwise


 

 



 Band 2 

x y

x y

1 k 0.20 OR k 0.20
G(k ,k )

o otherwise


 

 



 Band 3 

0.15 k 0.20

1 k , k 0.20 and OR
G(k ,k )

0.15 k 0.20

0 otherwise

x

x y
x y

y

     
    

   
   

 


 
Band 4 

x

x y
x y

y

0.10 k 0.15

1 k , k 0.15 and OR
G(k ,k )

0.10 k 0.15

0 otherwise

   
  

    
   

    



 
Band 5 

x

x y
x y

y

0.05 k 0.10

1 k , k 0.10 and OR
G(k ,k )

0.05 k 0.10

0 otherwise

   
  

    
   

    


 
Band 6 

x y

x y

1 k , k 0.05
G(k ,k )

o otherwise

 
 



 Band 7 

x y

x y

1 k , k 0.02
G(k ,k )

o otherwise

 
 



 Band 8 

x y

x y

1 k , k 0.005
G(k ,k )

o otherwise

 
 



 Band 9 

x y

x y

1 k , k 0.0025

G(k ,k )
o otherwise

 


 



 Band 10 

 
Figure 4. Molybdenum PS map obtained by Fourier transformation and applied filters in a: frequency band3; b: 

frequency band 5. 
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The PCA method was applied to the different 

frequency bands, separately, and the 

mineralization components were evaluated. The 

PCA method was considered based on the wave 

numbers and their PS values for 30 elements. The 

obtained results are shown in Tables 2, 3, and 4. 

The mineralization principal component (MPC) 

was specified, and the mineralization elements 

were highlighted for the frequency bands. A value 

bigger than 0.5 is an evaluation criterion for 

determination of the mineralization elements 

based on the rotated component matrix in the PCA 

method. 

In some complicated geological environments, 

extraction of exploratory features in the spatial 

domain is impossible but these patterns become 

clear in FD. The frequency attributes caused by 

different geological processes can be useful for 

the identification of mineralization features. The 

high frequencies in the surface geochemical 

distribution maps may be related to the surface 

anomalies and geochemical noises. According to 

the PCA method, the high frequencies were 

classified into 6 and 5 principal components (PCs) 

in the frequency bands (FBs) 1 and 2, 

respectively. PC4 in FB1, which was recognized 

as MPC, consists of the elements Cu, Au, Cr, Ba, 

and Ni. MPC in FB2 concludes the elements Cu 

and Au. Mo is not related to Au and Cu in these 

high-frequency bands. 

Blind and deep geochemical anomalies may create 

very weak and invisible effects in the surface 

concentration of the elements, and these assays 

may be less than the background values. The 

background patterns related to regional geological 

processes, and the deep and blind mineralizations 

can create low frequencies in the surface 

geochemical data. Therefore, PCA can be applied 

on low FBs to classify the low frequencies of the 

elements into the background and deep anomalies. 

The results of this analysis for the low FBs 6, 7, 8, 

and 9 desirably identified the mineralizing 

elements Au, Cu, and Mo, and also showed the 

mineralization component much better than the 

PCA results for the high FBs. 

According to the PCA method, the 30 elements 

were classified into the second components in 

FB10 (very low frequencies). 29 elements were 

classified together into the first component, and 

Mo was in the second component, separately. 

Very low frequencies in the PS map did not have 

the effects of surface geochemical noises, while 

they can relate to the background values and very 

deep geochemical anomalies. The second 

principal component, which was recognized as 

MPC, showed a deep Mo geochemical anomaly. 

There is a direct relationship between the deposit 

depth and the frequencies of the surface 

geochemical distribution map. With increase in 

the mineralization depth, the geochemical 

frequencies in the surface were reduced, while the 

near-surface deposits usually created the high 

frequencies. 

The MPC coefficients in the rotated component 

matrix in the PCA method show the importance 

and intensity of the elements in a mineral deposit. 

These MPC values, related to Au, Cu, and Mo for 

a variety of FBs, were extracted, and their 

diagrams were plotted. The MPC values vs. FBs 

in these diagrams can demonstrate the variability 

of anomalies in the deferent depths. Distribution 

of the Mo, Au, and Cu elements in the borehole 

DDH03, and variability of the MPC values are 

illustrated in Figure 5. The results obtained from 

the exploration drillings desirably confirm the 

results obtained from this new interesting idea; 

there is a complete compliance between them. The 

Au and Cu elements have a decreasing trend and 

Mo has an increasing trend, from FB1 to FB10 

(surface to depth). This is confirmed by the results 

obtained for the borehole. The exploratory studies 

show that there is a sequence of Au (Cu)→Cu 

(Au)→ Mo from surface to depth in the borehole, 

and the mineralization zones to the wall rock. 

This sequence was clearly predicted in the MPC 

values diagrams. The results obtained for the new 

approach and the boreholes clearly show the same 

variation in Cu, Au, and Mo in the studied area. 

There was a deep Mo geochemical anomaly from 

240m to down in the borehole, which is properly 

predicted from the MPC values diagram. The 

MPC values for Cu and Au show two peaks for 

the high and intermediate FBs related to the 

surface and deep anomalies. The high correlation 

between Cu and Au in the MPC diagram is related 

to their correlation in the hypogene and supergene 

zones. The hypogene zone was characterized by a 

relative increase in the Cu-Au values in the QDP 

rocks, and in a deeper depth, decrease in Au in the 

andesite rocks. The MPC values for Au strongly 

decreased in very low FBs (FB9 and 10),showing 

decrease in the Au value in the depth. This 

interesting result was also confirmed by the 

results obtained for the borehole DDH03 (Figure 

5). The valuable proposed method, by combining 

FT and PCA, is an effective pattern recognition 

approach for decomposing the mixed geochemical 

populations, and for identifying the deep 

geochemical anomalies. The results obtained from 

the FT-PCA approach demonstrated that the very 
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low frequency bands are generally related to the 

favorable rock types and background values. MPC 

in this FB represents a very low frequency 

anomaly, which can be related to the deep 

geochemical anomaly. The FD analysis of the 

surface geochemical data for the mineral deposits 

can provide important insights of the mineral 

systems and significant implications for mineral 

exploration. 

 
Table 2. Rotated component matrix in PCA method for frequency bands 1 and 2. 

 
PCs inFB1 

 
PCs inFB2 

1 2 3 4 5 6 1 2 3 4 5 

Au .027 -.135 -.009 .817 -.024 .132 Au .192 .041 .137 .860 .176 

Al .852 .096 -.274 .129 .190 -.093 Al .872 .344 .218 .208 .037 

As .199 .508 .318 .244 .346 .094 As .648 .611 .250 .285 -.032 

B .091 .627 .105 .412 .274 .375 B .640 .618 .297 .306 .027 

Ba -.027 .270 -.414 .538 -.114 -.402 Ba .145 -.019 -.193 .244 .799 

Ca -.048 -.296 -.030 -.067 .796 .187 Ca .248 -.041 .758 .169 -.152 

Ce -.149 .912 .082 -.057 -.244 -.005 Ce .408 .875 -.047 .085 .130 

Co .895 -.078 .024 -.133 .151 -.174 Co .905 .172 .070 .132 -.201 

Cr .170 .438 .136 .620 .229 -.164 Cr .635 .555 .228 .362 .086 

Cu -.029 -.089 .257 .870 .005 .230 Cu .406 .382 .243 .758 .036 

Fe -.198 .294 .232 .035 .297 .681 Fe .574 .633 .365 .292 -.010 

Ga .870 -.074 -.351 .058 -.058 -.092 Ga .933 .226 .114 .159 .042 

K .170 .008 -.870 .030 .055 .136 K .698 .127 .333 -.009 .460 

La -.155 .929 .062 -.057 -.142 .038 La .467 .846 .051 .099 .130 

Li .582 .536 -.063 .402 .285 .065 Li .745 .543 .243 .271 .054 

Mg .709 .020 -.570 -.021 .296 .003 Mg .864 .337 .295 .146 .121 

Mn .815 .289 -.021 .325 .116 .054 Mn .785 .495 .217 .275 -.001 

Mo .148 -.127 -.116 .255 .146 .689 Mo .649 .488 .388 .280 -.004 

Na -.332 .610 .232 -.294 -.223 .320 Na .049 .887 .005 -.073 -.044 

Ni .359 .620 .061 .505 .279 .255 Ni .689 .591 .278 .299 .030 

P -.055 -.224 -.123 .122 .396 .373 P .195 .079 .774 .093 .034 

Pb .729 -.160 .429 -.107 -.211 -.133 Pb .566 -.064 -.428 .155 -.578 

S .578 -.092 .018 .017 -.155 .381 S .757 .459 .259 .245 -.056 

Sc -.067 .171 .803 .176 -.076 .301 Sc .241 .684 .077 .458 -.403 

Sr .061 -.014 .043 .066 .885 .142 Sr .618 .399 .536 .280 -.031 

Ti -.124 .323 .761 .172 .233 .074 Ti .282 .664 .205 .405 -.349 

V -.096 .503 .265 -.054 .176 .760 V .596 .678 .324 .239 -.035 

Y .256 .785 -.097 -.099 -.225 -.247 Y .594 .681 -.184 .010 .126 

Zn .828 .080 -.064 .027 -.200 .104 Zn .842 .434 .113 .206 -.038 

Zr .401 .589 .193 .367 -.241 .058 Zr .660 .643 .113 .287 .005 
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Table 3. Rotated component matrix in PCA method for frequency bands 3, 4, 5, and 6. 

 
PCs inFB3 

 
PCs inFB4 

 
PCs inFB5 

 
PCs inFB6 

1 2 3 1 2 3 1 2 3 1 2 

Au .106 .210 .970 Au .106 .210 .970 Au .104 .207 .971 Au .458 .834 

Al .901 .151 .220 Al .902 .149 .218 Al .901 .147 .218 Al .943 .332 

As .182 .897 .371 As .182 .898 .369 As .180 .897 .372 As .911 .412 

B .348 .361 .862 B .349 .363 .861 B .345 .358 .864 B .932 .361 

Ba .084 .215 .966 Ba .085 .216 .966 Ba .082 .213 .967 Ba .939 .343 

Ca .151 .932 .314 Ca .150 .933 .312 Ca .148 .932 .314 Ca .866 .476 

Ce .286 .431 .847 Ce .286 .433 .846 Ce .282 .428 .850 Ce .943 .331 

Co .291 .764 .567 Co .290 .766 .565 Co .288 .764 .569 Co .942 .335 

Cr .720 .179 .653 Cr .723 .178 .650 Cr .719 .176 .655 Cr .938 .347 

Cu .197 .423 .876 Cu .196 .425 .875 Cu .193 .419 .878 Cu .570 .786 

Fe .649 .685 .312 Fe .648 .687 .310 Fe .648 .686 .311 Fe .943 .333 

Ga .803 .454 .372 Ga .804 .454 .370 Ga .804 .453 .372 Ga .944 .330 

K .400 .013 .900 K .403 .011 .899 K .396 .011 .902 K .942 .336 

La .425 .682 .586 La .424 .684 .584 La .422 .682 .588 La .943 .331 

Li .835 .302 .453 Li .837 .302 .450 Li .835 .300 .454 Li .938 .346 

Mg .971 .176 .033 Mg .971 .175 .033 Mg .971 .174 .031 Mg .944 .330 

Mn .849 .112 .509 Mn .851 .110 .505 Mn .848 .109 .510 Mn .934 .356 

Mo .692 .669 .225 Mo .692 .669 .223 Mo .692 .669 .223 Mo .076 .958 

Na .676 .686 .178 Na .676 .687 .177 Na .675 .688 .175 Na .939 .343 

Ni .721 .216 .639 Ni .723 .215 .637 Ni .720 .213 .641 Ni .920 .392 

P .157 .975 .071 P .157 .975 .072 P .155 .975 .069 P .944 .330 

Pb .629 .713 .268 Pb .628 .714 .267 Pb .628 .713 .269 Pb .939 .343 

S .962 .179 .021 S .962 .178 .020 S .962 .178 .019 S .497 .793 

Sc .247 .779 .071 Sc .241 .782 .071 Sc .243 .780 .068 Sc .940 .342 

Sr -.002 .926 .370 Sr -.004 .926 .368 Sr -.005 .925 .370 Sr .924 .381 

Ti .270 .618 .725 Ti .269 .621 .723 Ti .269 .615 .727 Ti .938 .345 

V .714 .657 .131 V .713 .657 .129 V .713 .657 .127 V .940 .342 

Y .374 .884 .245 Y .372 .886 .245 Y .371 .886 .244 Y .945 .328 

Zn .859 .227 .316 Zn .861 .226 .313 Zn .858 .225 .316 Zn .943 .332 

Zr .859 .196 .165 Zr .860 .195 .163 Zr .859 .193 .161 Zr .933 .360 
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Table 4. Rotated component matrix in PCA method for frequency bands 7, 8, 9, and 10. 

 
PCs inFB7 PCs inFB8 PCs inFB9 PCs inFB10 

1 2  1 2  1 2  1 2 

Au .459 .833 Au .468 .823 Au .614 .681 Au .868 .212 

Al .943 .332 Al .943 .334 Al .960 .281 Al .990 .136 

As .911 .412 As .911 .412 As .945 .326 As .986 .169 

B .932 .361 B .932 .362 B .955 .298 B .990 .141 

Ba .939 .343 Ba .939 .343 Ba .960 .279 Ba .992 .123 

Ca .866 .476 Ca .870 .467 Ca .942 .303 Ca .982 .133 

Ce .943 .331 Ce .943 .333 Ce .960 .280 Ce .990 .137 

Co .942 .336 Co .941 .337 Co .959 .285 Co .990 .138 

Cr .938 .347 Cr .937 .348 Cr .956 .293 Cr .989 .148 

Cu .571 .786 Cu .576 .781 Cu .678 .684 Cu .863 .359 

Fe .943 .334 Fe .942 .335 Fe .960 .281 Fe .991 .136 

Ga .944 .330 Ga .943 .332 Ga .960 .279 Ga .991 .135 

K .942 .336 K .942 .337 K .961 .276 K .991 .134 

La .943 .331 La .943 .333 La .960 .280 La .990 .136 

Li .938 .346 Li .938 .348 Li .957 .289 Li .990 .137 

Mg .944 .330 Mg .943 .331 Mg .961 .277 Mg .991 .133 

Mn .934 .356 Mn .934 .357 Mn .955 .296 Mn .990 .143 

Mo .076 .958 Mo .073 .957 Mo .056 .952 Mo .113 .990 

Na .939 .343 Na .939 .343 Na .960 .279 Na .991 .129 

Ni .920 .392 Ni .919 .393 Ni .944 .330 Ni .985 .174 

P .944 .330 P .943 .332 P .960 .279 P .990 .136 

Pb .939 .343 Pb .939 .344 Pb .960 .281 Pb .992 .126 

S .499 .791 S .521 .773 S .810 .447 S .917 .275 

Sc .939 .342 Sc .939 .343 Sc .957 .289 Sc .989 .149 

Sr .924 .381 Sr .924 .379 Sr .959 .282 Sr .992 .122 

Ti .938 .345 Ti .938 .345 Ti .959 .282 Ti .991 .137 

V .939 .342 V .939 .343 V .958 .285 V .990 .141 

Y .944 .328 Y .944 .330 Y .960 .278 Y .990 .136 

Zn .943 .332 Zn .943 .333 Zn .961 .277 Zn .991 .129 

Zr .933 .360 Zr .932 .361 Zr .952 .306 Zr .986 .164 
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Figure 5. Diagrams of MPC values vs.FBs comparing with variations in Mo, Au and Cu values and their trends 

in borehole DDH03. 

The increasing and decreasing trends of MPC 

values diagram in FD can provide a basis for the 

development and application of this approach for 

exploration of the hidden mineral deposits. The 

introduced technique can identify the blind 

mineralization, and predict the variation in 

mineralization in depth without exploration 

drilling. Finally, this finding shows a possibility 

for an extensive mineralization in this area. The 

presented methodology, which is based on 2D-FT, 

is quite inexpensive compared to the traditional 

exploration methods. 

5. Conclusions 

The results obtained from the newly developed 

approach that is based on coupling 2D-FT and 

PCA revealed significant and valuable exploratory 

information that were not achievable in the spatial 

domain. The introduced technique makes it 

possible, without exploration drilling, to identify 

the deep and blind mineralization, and predict the 

variation in mineralization in the depth. This idea 

demonstrated that there was a direct relationship 

between the deposit depth and the frequencies of 

the surface geochemical distribution maps. The 

high frequencies in the surface geochemical 

distribution maps may be related to the surface 

anomalies and geochemical noises. Very low 

frequencies can relate to the background values 

and very deep geochemical anomalies. The MPC 

coefficients in the rotated component matrix in the 

PCA method can show the importance and 

intensity of the elements in a mineral deposit. The 

diagram of the MPC values vs.FBs can show the 

variability of anomalies in the deferent depth. The 

mineralization sequence of Au (Cu)→Cu 

(Au)→Mo from surface to depth, and the 

mineralization zones to the wall rock in the Dalli 

area, were properly and clearly predicted in the 

MPC values diagrams. There was a deep Mo 

geochemical anomaly from 240m to down in the 

borehole that was predicted in the MPC values 

diagram. The MPC values for Cu and Au were 

shown to correspond to two peaks for the high and 

intermediate FBs related to the surface and deep 

anomalies. The high correlation between Cu and 

Au in the MPC diagram is related to their 

correlation in the hypogene and supergene zones. 

The proposed valuable method was an effective 

pattern recognition approach for decomposing 

mixed geochemical populations, and for 

identifying deep geochemical anomalies. 
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 چکیده:

های ژئوشیمیایی سطحی مورد تحلیل  رلرار   معدنی، حوزه فرکانس داده رهیذختجزیه الگوهای پیچیده ژئوشیمیایی مربوط به اعماق مختلف  منظور بهدر این تحقیق 

های ژئوشلیمیایی سلطحی   سازی پنهان با استفاده از دادههای ژئوشیمیایی عمیق و کانیسازی در عمق و شناسایی آنومالیبینی تغییرات کانیپیش منظور بهگرفت. 

هلای ژئوشلیمیایی   د. دادهشل های اصلی پیشلنهاد  های تبدی  فوریه و تحلی  مؤلفهاساس ترکیب روشطلای پورفیری دالی، یک روش پیشرفته بر  -در کانسار مس

های حوزه فرکانس انجام شد سلسس روش تحلیل    گذر بر روی داده و پایین گذر بالاسطحی با استفاده از تبدی  فوریه به حوزه فرکانس انتقال داده شد و فیلترهای 

هلای بلالا و پلایین در نقشله توزیل       ترکیبی، ارتبلاط بلین فرکلانس    اگانه بر روی این باندهای فرکانسی اعمال گردید. این روش جدیدصورت جدهای اصلی بهمؤلفه

هلای  تشلخی  الگلو جهلت شناسلایی آنوملالی      ی نشان داد. این روش ترکیبی یک ابزار ارزشمند برای پردازش داده وخوب  بهژئوشیمیایی سطحی را با عمق کانسار 

ها، نتلای  حاصل  از ایلن روش    های اکتشافی مانند گمانهاز حفاری آمده دست به. اطلاعات استسازی در عمق بدون استفاده از حفاری هان و تعیین روندهای کانیپن

ی نیسلت. ایلن روش در مقایسله بلا     یاباز حوزه فرکانس نقشه توزی  ژئوشیمیایی سطحی، در حوزه مکان راب  دست آمده دست بهکند. اطلاعات اکتشافی را تأیید می

 است. تر ارزانسنتی کاملاً  های اکتشافیروش

 .سازی پنهان، تشخی  الگوی، کانیدوبعدهای اصلی، حوزه فرکانس، تبدی  فوریه تحلی  مؤلفه کلمات کلیدی:


