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Abstract

In this research work, the frequency domain (FD) of surface geochemical data was analyzed to decompose
the complex geochemical patterns related to different depths of the mineral deposit. In order to predict the
variation in mineralization in the depth and identify the deep geochemical anomalies and blind
mineralization using the surface geochemical data for the Dalli Cu-Au porphyry deposit, a newly developed
approach was proposed based on the coupling Fourier transform and principal component analysis. The
surface geochemical data was transferred to FD using Fourier transformation and high and low pass filters
were performed on FD. Then the principal component analysis method was employed on these frequency
bands separately. This new combined approach demonstrated desirably the relationship between the high and
low frequencies in the surface geochemical distribution map and the deposit depth. This new combined
approach is a valuable data-processing tool and pattern-recognition technique to identify the promising
anomalies, and to determine the mineralization trends in the depth without drilling. The information obtained
from the exploration drillings such as boreholes confirms the results obtained from this method. The new
exploratory information obtained from FD of the surface geochemical distribution map was not achieved in
the spatial domain. This approach is quite inexpensive compared to the traditional exploration methods.

Keywords: Principal Component Analysis, Frequency Domain (FD), 2D Fourier Transformation, Blind
Mineralization, Pattern Recognition.

1. Introduction
The geo-chemical interpretations are usually transforms the signal from the time domain or
carried out in the spatial domain. In addition to the spatial domain to FD, in which many

spatial domain methods for anomaly separation,
the frequency domain (FD) of the geochemical
data has been used to decompose the complex
geo-chemical patterns and separate the syngenetic
component related to very low frequencies from
anomalous factors. The power spectrum-area (SA)
fractal method has been applied for the separation
of geochemical patterns on the basis of distinct
self-similarity in FD of the geochemical data [1-
10]. The SA fractal method can decompose the
complex geochemical patterns into anomalies and
backgrounds. The Fourier method is the most
powerful technique used for signal analysis. It

characteristics of the signal are revealed [6].
Grigorian has propounded a zonality model in the
spatial domain to recognize a blind mineralization
zone from a dispersed mineralization one [11, 12].
Several methods have been performed to
determine the hidden ore bodies in the spatial
domain of geochemical data based on the horizons
of the erosional surface [11-16]. Ziaii et al. have
successfully separated a dispersed mineralization
from blind mineralization using the neuro-fuzzy
modeling-based genetic algorithms [17].

To investigate the mineralization characteristics
and to identify the mineralization factor(s), the
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PCA method has frequently been applied to the
analysis of geochemical and geo science data [18-
21].

PCA is a multivariate statistical method for the
geo-information identification and integration of
geo-datasets [22]. Correlated variables in geo-
datasets with high dimensionality are transformed
into several uncorrelated principal components
(PCs) based on a covariance or correlation matrix
[23]. The reduced number of PCs obtained
increases the interpretability of the information
available for specific objectives [24]. In this
research work, in order to determine the
exploratory features of the geochemical data from
the Dalli area in different frequencies, the high-
pass and low-pass filters are performed on FD of
geochemical data based on the wave number
values, and the principal component analysis
(PCA) method is employed on these different
frequency bands separately, and as a result, the
mineralization components are evaluated.

2. Geological particulars, alteration,and

mineralogical structure in studied area

The Dalli porphyry deposit was formed in the
Uremia—Dokhtar magmatic belt, which is located
in the central Iran [25, 26]. In this belt, the
plutonic ~ rocks mostly include diorite,
granodiorite, and granitoid, and the oligo-Miocene
volcanic rocks include andesite, dacite, and
pyroclastics. The mineralized Cu-Au zone in this
area was formed in the igneous diorite, quartz
diorite porphyry (QDP), and the volcanic rocks
such as porphyritic amphibole andesite, andesite,
dacite, and pyroclastics were formed during the
late Miocene to Pliocene (Figure 1) [27]. There
are different types of alterations such as potassic,
propylitic, silicic, and locally phyllic in the Dalli
area. The potassic alteration was formed during
the tonalitic intrusion that includes a high amount
of mineralization, consisting of quartz-potassium,
feldspar-magnetite, and biotite. Potassic alteration
occurred in the center of the area, and was
progressively surrounded by the sericitic, sericite-
chlorite, and propylitic alteration zones towards
the border in the porphyry deposits. In the QDP
and andesite rocks, the Cu-Au mineralization is
related to the potassic-phyllic and propylitic-
silicic alteration Zones, respectively.
Mineralization in the northern part of Dalli occurs
in the granodiorite plutonic complex (tonalite),
quartz diorite, and andesite rocks. The QDP rocks
indicate a high quartz-magnetite vein and a
mineralization with high potassic alteration.
Mineralization in the northern Dalli occurs in the
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quartz veins as a stockwork. Chalcopyrite is the
main sulfide mineral, and pyrite and bornite also
exist in the studied area. Malachite, iron oxide,
pyrite, and chalcopyrite can also be observed in
the drilled trenches. The supergene, transition, and
hypogene zones have been identified using
malachite, native Cu, and bornite. Molybdenum
increases near the center of the granodiorite
intrusion. The potassic alteration includes gold,
bornite,  chalcopyrite,  pyrite, = magnetite,
hematitetsericite, biotite, and quartz [25].

3. Fourier transform

Two-dimensional Fourier transform (2D-FT)
allows us to represent and interpret the spatial data
such as the images in FD [28]. The spatial domain
responses can be considered as superimposed
signals of different frequencies [7]. The spatial
data can be transferred to FD, based on 2D-FT
[29, 30], which decomposes the signals to
different frequencies. Fourier transformation
decomposes the signals into different frequencies.
One of the equations used to conduct FT has been
presented by Dobrin and Savit [31]:

o0 0

F(Ky Ky)= j Jf (x,y)cos(Ky x + K, y)dxdy —
w o (1)

i J. J.f (x,y)sin(Ky x + Ky )dxdy

—00 —00

Where f(x,y) is the signal in the spatial domain,
Ky and K, are “wave numbers” with respect to the
X and y axes. Wave number is the spatial
counterpart of frequency, increasing proportional
to wavelengths, as follows:

A =2xlK, and A4 =2z/K,

or A=2r, f(l/ KE+1/K})

Therefore, the function f(x,y) in the spatial
domain, which is the geochemical map in this
study, can be converted to F(K,,K,). It consists of
the real and imaginary parts R(K,,Ky) and I(K,,
Ky), respectively. The power spectrum is defined
based on the following equation [32, 33]:

E(K,. K,)=R*(K, K,)+1*(K,,K,)

)

©)

In FD, we have the power spectrum values and
wave numbers in the X and Y directions instead
of the geochemical map of the elements.

Processing of the geo science data in FD often
involves operations such as filtering and reducing
the noise from signal [34]. The filter function,
G(KxKy), can modify the functions R(K,K,) and
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(K« Ky) by multiplying, so that some ranges of
wave numbers can be eliminated and others
enhanced [18]. Therefore, the filter function
represents the decomposed function. Signal
patterns are enhanced in certain frequencies and
eliminated in the others. It can be applied to the
geochemical anomaly separation. The
conventional filters in physics, electrical
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engineering, and geophysics include the low-pass,
high-pass, band pass, and directional band pass
filters [18]. A low-pass filter generally eliminates
the signals with high frequencies, and a high-pass
filter eliminates low frequencies. These filters
may be performed on the K,-K, map only based
on the wave number values, without considering
the power-spectrum values [35].
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Figure 1. Geological map of northern part of Dalli area (scale 1:1000) [27].

4. Discussion

Through systematic soil sampling, a grid net of
50x50 m°was used for sampling (Figure 2). 165
samples with a size fraction of —200 mesh were
collected and analyzed for 30 elements using the
ICP-MS method.

In this research work, a new combined approach
was represented to predict and delineate the
mineralization trend in the depth using FD of the
surface geochemical data. The implementation of
this scenario was defined, step by step, as follows:
Step 1: Transformation of the geochemical data
for all the elements, separately, from the spatial
domain to FD using 2D-FT.
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Step 2: Designing filter functions based on the
wave numbers obtained in the X and Y directions
and power spectrum values.

Step 3: Applying the filter functions on the FD
data, and separating the frequency bands from
each other.

Step 4: Analysis of the frequency bands using the
PCA method, identification of the mineralization
factor, and surveying the relationship between the
mineralization elements in different frequency
bands.

Step 5: Delineation of the mineralization trend,
and variation in the concentrations from surface to
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depth using the mineralization factors of
frequency bands obtained based on the high-, low-
, and band-pass filters.

The spatial domain geochemical data for 30
elements was transferred to FD using 2D-FT. The
FD data included the wave numbers in the x and y
directions and their power spectrum (PS) values.
The power spectrum (PS) map created from the

molybdenum content values is shown in Figure3
to illustrate the application of the high-, low-, and
band-pass filters, and distribution of the PS
values. High values of PS were mainly distributed
around the center of the map, corresponding to
low frequencies. In general, the PS values
decreased, moving away from the center.
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Figure 2. Blank sheet of soil sample locations in northern part of Dalli area.
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Figure 3. Molybdenum PS map obtained by Fourier transformation.

The geochemical halos of the mineral deposits at
different depths cause various frequencies in the
surface geochemical distribution map. In order to
survey the mineralization features, and determine
the elements related to the mineralizing phase in
the deferent frequency bands, a newly-developed
approach was proposed based on coupling 2D-FT
and PCA. Therefore, 10 frequency bands were
considered based on the wave number values
(Table 1). These high-, band-, and low-pass filters
were performed on FD of the geochemical data
for 30 elements. The filters 3 and 5 on the

228

molybdenum PS map were depicted in Figure 4.
Therefore, these filters were used based on the
wave number values in the X and Y directions.
The high-pass filters preserve the high frequencies
related to the high wave number values, and the
low-pass filters preserve the low frequencies. The
filter function G(K,,K,) modify the function
E(KxK,) by multiplying, so that some ranges of
wave numbers are eliminated and the others
enhanced.
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Tablel. Frequency bands and their applied filters on FD of geochemical data.

Frequency Filter
Band 1 Sk k) = 1 [ky|>023 and |ky|>0.23
o otherwise
Band 2 G(erky) _ 1 |kX| 2 020 ) |ky| > 020
o0 otherwise
o otherwise
0.15<|ky|<0.20
Band4 o ky)- 1 |kx| . [ky|<020 and | OR

0.15s|ky| <0.20

Q otherwise

0.10<|ky|<0.15
1 |k . |k,|<0.15 and { OR
Band 5 Gl k) = k| [y < an
0.10<k,|<015

0 otherwise

0.05<|k,|<0.10

1 (k| , |ky[<0.10 and ¢ OR
Band 6 G(kx,ky): | x| | y|
0.05<|ky|<0.10
othenwise
1 |k k <0.05
Band 7 G(ky.ky) el |
0 otherwise
1 |k k <0.02
Band 8 ky) = el |
0 otherwise
1 |k k <0.005
Band 9 G(ky ky) = { el |
0 otherwise
lky| + [ky| <0.0025
Band 10 Gk, k)=
X1y .
0 otherwise
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Figure 4. Molybdenum PS map obtained by Fourier transformation and applied filters in a: frequency band3; b:
frequency band 5.
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The PCA method was applied to the different
frequency  bands, separately, and the
mineralization components were evaluated. The
PCA method was considered based on the wave
numbers and their PS values for 30 elements. The
obtained results are shown in Tables 2, 3, and 4.
The mineralization principal component (MPC)
was specified, and the mineralization elements
were highlighted for the frequency bands. A value
bigger than 0.5 is an evaluation criterion for
determination of the mineralization elements
based on the rotated component matrix in the PCA
method.

In some complicated geological environments,
extraction of exploratory features in the spatial
domain is impossible but these patterns become
clear in FD. The frequency attributes caused by
different geological processes can be useful for
the identification of mineralization features. The
high frequencies in the surface geochemical
distribution maps may be related to the surface
anomalies and geochemical noises. According to
the PCA method, the high frequencies were
classified into 6 and 5 principal components (PCs)
in the frequency bands (FBs) 1 and 2,
respectively. PC4 in FB1, which was recognized
as MPC, consists of the elements Cu, Au, Cr, Ba,
and Ni. MPC in FB2 concludes the elements Cu
and Au. Mo is not related to Au and Cu in these
high-frequency bands.

Blind and deep geochemical anomalies may create
very weak and invisible effects in the surface
concentration of the elements, and these assays
may be less than the background values. The
background patterns related to regional geological
processes, and the deep and blind mineralizations
can create low frequencies in the surface
geochemical data. Therefore, PCA can be applied
on low FBs to classify the low frequencies of the
elements into the background and deep anomalies.
The results of this analysis for the low FBs 6, 7, 8,
and 9 desirably identified the mineralizing
elements Au, Cu, and Mo, and also showed the
mineralization component much better than the
PCA results for the high FBs.

According to the PCA method, the 30 elements
were classified into the second components in
FB10 (very low frequencies). 29 elements were
classified together into the first component, and
Mo was in the second component, separately.
Very low frequencies in the PS map did not have
the effects of surface geochemical noises, while
they can relate to the background values and very
deep geochemical anomalies. The second
principal component, which was recognized as
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MPC, showed a deep Mo geochemical anomaly.
There is a direct relationship between the deposit
depth and the frequencies of the surface
geochemical distribution map. With increase in
the mineralization depth, the geochemical
frequencies in the surface were reduced, while the
near-surface deposits usually created the high
frequencies.

The MPC coefficients in the rotated component
matrix in the PCA method show the importance
and intensity of the elements in a mineral deposit.
These MPC values, related to Au, Cu, and Mo for
a variety of FBs, were extracted, and their
diagrams were plotted. The MPC values vs. FBs
in these diagrams can demonstrate the variability
of anomalies in the deferent depths. Distribution
of the Mo, Au, and Cu elements in the borehole
DDHO3, and variability of the MPC values are
illustrated in Figure 5. The results obtained from
the exploration drillings desirably confirm the
results obtained from this new interesting idea;
there is a complete compliance between them. The
Au and Cu elements have a decreasing trend and
Mo has an increasing trend, from FB1 to FB10
(surface to depth). This is confirmed by the results
obtained for the borehole. The exploratory studies
show that there is a sequence of Au (Cu)—Cu
(Au)— Mo from surface to depth in the borehole,
and the mineralization zones to the wall rock.

This sequence was clearly predicted in the MPC
values diagrams. The results obtained for the new
approach and the boreholes clearly show the same
variation in Cu, Au, and Mo in the studied area.
There was a deep Mo geochemical anomaly from
240m to down in the borehole, which is properly
predicted from the MPC values diagram. The
MPC values for Cu and Au show two peaks for
the high and intermediate FBs related to the
surface and deep anomalies. The high correlation
between Cu and Au in the MPC diagram is related
to their correlation in the hypogene and supergene
zones. The hypogene zone was characterized by a
relative increase in the Cu-Au values in the QDP
rocks, and in a deeper depth, decrease in Au in the
andesite rocks. The MPC values for Au strongly
decreased in very low FBs (FB9 and 10),showing
decrease in the Au value in the depth. This
interesting result was also confirmed by the
results obtained for the borehole DDHO03 (Figure
5). The valuable proposed method, by combining
FT and PCA, is an effective pattern recognition
approach for decomposing the mixed geochemical
populations, and for identifying the deep
geochemical anomalies. The results obtained from
the FT-PCA approach demonstrated that the very
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low frequency bands are generally related to the surface geochemical data for the mineral deposits
favorable rock types and background values. MPC can provide important insights of the mineral
in this FB represents a very low frequency systems and significant implications for mineral
anomaly, which can be related to the deep exploration.

geochemical anomaly. The FD analysis of the

Table 2. Rotated component matrix in PCA method for frequency bands 1 and 2.
PCs inFB1 PCs inFB2

1 2 3 4 5 6 1 2 3 4 5

Au .027 -135 | -.009 .817 -.024 132 Au 192 .041 137 .860 176
Al .852 .096 -.274 129 190 -.093 Al 872 344 .218 .208 .037
As 199 .508 318 244 .346 .094 As .648 611 .250 .285 -.032
B .091 .627 105 412 274 375 B .640 .618 297 .306 .027
Ba | -.027 .270 -414 .538 -114 | -.402 Ba 145 | -019 | -.193 244 799
Ca | -.048 | -.296 | -.030 | -.067 796 .187 Ca 248 | -.041 .758 .169 -.152
Ce | -.149 912 .082 -.057 -244 | -.005 Ce 408 875 -.047 .085 130
Co .895 -.078 .024 -.133 151 -174 Co .905 72 .070 132 -201
Cr 170 438 136 .620 229 -.164 Cr .635 .555 .228 .362 .086
Cu | -.029 | -.089 .257 .870 .005 .230 Cu 406 .382 243 .758 .036
Fe | -.198 294 232 .035 297 .681 Fe 574 .633 .365 292 -.010
Ga .870 -074 | -351 .058 -058 | -.092 Ga .933 226 114 159 .042
K 170 .008 -.870 .030 .055 136 K .698 27 333 -.009 .460
La | -.155 929 .062 -.057 -.142 .038 La 467 .846 .051 .099 130
Li .582 .536 -.063 402 .285 .065 Li 745 .543 243 271 .054
Mg | .709 .020 -570 | -.021 .296 .003 Mg .864 337 .295 146 121
Mn | .815 .289 -.021 .325 116 .054 Mn .785 495 217 275 -.001
Mo | .148 -127 -.116 .255 .146 .689 Mo .649 488 .388 .280 -.004
Na | -.332 .610 232 -294 | -223 320 Na .049 .887 .005 -073 | -.044
Ni .359 .620 .061 .505 279 .255 Ni .689 591 278 .299 .030
P -055 | -224 | -123 122 .396 373 P 195 .079 74 .093 .034
Pb 129 -.160 429 -.107 -211 | -133 Pb 566 | -.064 | -.428 .155 -578
S .578 -.092 .018 .017 -.155 .381 S 157 459 .259 .245 -.056
Sc | -.067 A71 .803 176 -.076 301 Sc 241 .684 077 .458 -.403
Sr .061 -.014 .043 .066 .885 142 Sr .618 399 .536 .280 -.031
Ti -124 323 .761 172 .233 074 Ti .282 .664 .205 405 -.349
\Y -.096 .503 .265 -.054 176 .760 \% .596 .678 324 239 -.035
Y .256 .785 -.097 -099 [ -225 | -.247 Y .594 .681 -.184 .010 126
Zn .828 .080 -.064 .027 -.200 104 Zn .842 434 113 .206 -.038
Zr 401 .589 193 .367 -.241 .058 Zr .660 .643 113 .287 .005
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Table 3. Rotated component matrix in PCA method for frequency bands 3, 4, 5, and 6.

PCs inFB3 PCs inFB4 PCs inFB5 PCs inFB6
1 2 3 1 2 3 1 2 3 1 2
Au | .106 | .210 | .970 | Au 106 | 210 | 970 | Au | .104 | .207 | .971 | Au | .458 | .834
Al 901 | .151 | .220 | Al .902 149 218 | Al 901 | .147 | .218 | Al 943 | .332
As 182 | .897 | .371 | As 182 .898 369 | As 180 | .897 | .372 | As | 911 | 412
B 348 | 361 | 862 | B 349 | 363 | 861 | B | .345 | .358 | .864 | B | .932 | .361
Ba | .084 | .215 | .966 | Ba .085 | 216 | 966 | Ba | .082 | .213 | .967 | Ba | .939 | .343
Ca | 151 | 932 | 314 | Ca 150 933 312 | Ca | 148 | 932 | .314 | Ca | .866 | .476
Ce | .286 | 431 | .847 | Ce 286 | 433 | 846 | Ce | .282 | .428 | .850 | Ce | .943 | .331
Co | .291 | .764 | 567 | Co 290 | .766 | .565 | Co | .288 | .764 | 569 | Co | .942 | .335
Cr | .720 | .179 | .653 | Cr 123 178 650 | Cr | .719 | .176 | .655 | Cr | .938 | .347
Cu | .197 | 423 | .876 | Cu 196 425 875 | Cu | .193 | 419 | .878 | Cu | .570 | .786
Fe | .649 | .685 | .312 | Fe 648 | 687 | 310 | Fe | .648 | .686 | .311 | Fe | .943 | .333
Ga | .803 | 454 | 372 | Ga .804 454 370 | Ga | .804 | 453 | .372 | Ga | .944 | .330
K | .400 | .013 | .900 | K 403 | 011 | 899 | K | .396 | .011 | .902 | K | .942 | .336
La | 425 | .682 | 586 | La 424 | 684 | 584 | La | 422 | 682 | 588 | La | .943 | .331
Li .835 | .302 | .453 Li .837 .302 450 Li .835 | .300 | .454 | Li 938 | .346
Mg | 971 | 176 | .033 | Mg | .971 | .175 | 033 | Mg | .971 | .174 | .031 | Mg | .944 | .330
Mn | 849 | 112 | 509 | Mn | 851 | .110 | 505 | Mn | .848 | .109 | .510 | Mn | .934 | .356
Mo | .692 | .669 | .225 | Mo .692 .669 223 | Mo | .692 | .669 | .223 | Mo | .076 | .958
Na | .676 | .686 | .178 | Na 676 .687 A77 | Na | .675 | .688 | .175 | Na | .939 | .343
Ni 721 | .216 | .639 Ni 123 215 .637 | Ni 720 | .213 | .641 | Ni 920 | .392
P A57 | 975 | 071 P 157 975 .072 P 55 | 975 | .069 P 944 | .330
Pb .629 | .713 | .268 Pb .628 714 267 | Pb 628 | .713 | .269 | Pb | .939 | .343
S 962 | 179 | .021 S .962 178 .020 S 962 | .178 | .019 S 497 | 793
Sc 247 | 779 | 071 Sc 241 782 071 | Sc 243 | .780 | .068 | Sc | .940 | .342
Sr | -.002 | .926 | .370 | Sr -004 | 926 | .368 | Sr | -.005 | .925 | .370 | Sr | .924 | .381
Ti 270 | .618 | .725 Ti .269 .621 723 | Ti 269 | 615 | .727 | Ti 938 | .345
V 14 | 657 | 131 \Y 713 .657 129 \Y 13 | 657 | 127 | V 940 | .342
Y 374 | .884 | .245 Y 372 .886 .245 Y 371 | 886 | 244 | Y 945 | .328
Zn 859 | 227 | 316 | Zn .861 226 313 | Zn 858 | 225 | 316 | Zn | 943 | .332
Zr .859 | .196 | .165 Zr .860 195 163 | Zr .859 | .193 | .161 | Zr | .933 | .360
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Table 4. Rotated component matrix in PCA method for frequency bands 7, 8, 9, and 10.

PCs inFB7 PCs inFB8 PCs inFB9 PCs inFB10
1 2 1 2 1 2 1 2

Au 459 833 [ Au | 468 | 823 | Au | 614 | 681 | Au | 868 | .212
Al 943 332 Al 943 | 334 | Al 960 | 281 | Al 990 | .136
As 911 412 As | 911 | 412 | As | 945 | 326 | As | 986 | .169
B 932 361 B 932 | .362 B 955 | .298 B 990 | .141
Ba 939 343 Ba | 939 | 343 | Ba | 960 | 279 | Ba | .992 | .123
Ca 866 476 Ca | 870 | 467 | Ca | 942 | 303 | ca | .982 | .133
Ce 943 331 Ce | 943 | 333 | Ce | 960 | .280 | Ce | .990 | .137
Co 942 336 Co | 941 | 337 | Co | 959 | 285 | Co | .990 | .138
Cr 938 347 Cr 937 | 348 | or 956 | 293 | Cr 989 | .148
Cu 571 786 Cu'| 576 | 781 |"Cu'| 678 | 684 | Ccu | .863 | .359
Fe 943 334 Fe 942 | 335 Fe 960 | .281 Fe 991 | .136
Ga 944 330 Ga | 943 | 332 | Ga | 960 | 279 | Ga | .991 | .135
K 942 336 K 942 | 337 K 961 | .276 K 991 | .134
La 943 331 La | 943 | 333 | La | 960 | 280 | La | .990 | .136
Li 938 346 Li 938 | .348 Li 957 | .289 Li 990 | .137
Mg 944 330 Mg | 943 | 331 | Mg | 961 | 277 | Mg | 991 | .133
Mn 934 356 Mn | 934 | 357 | Mn | 955 | 296 | Mn | .990 | .143
Mo | .076 958 |"Mo | 073 | 957 |'Mo | .0s6 | .952 ["Mo | .113 | .990
Na 939 343 Na | .939 | 343 | Na | 960 | .279 | Na | .991 | .129
Ni 920 392 Ni 919 | .393 Ni 944 | 330 Ni 985 | .174
P 944 330 P 943 | 332 P 960 | .279 P 990 | .136
Pb 939 343 Pb 939 | 344 | Pb | 960 | 281 | Pb | 992 | .126
S 499 791 S 521 | .773 S 810 | 447 S 917 | 275
Sc 939 342 Sc 939 | 343 | Sc 957 | 289 | Sc 989 | .149
Sr 924 381 Sr 924 | 379 Sr 959 | .282 Sr 992 | 122
Ti 938 345 Ti 938 | .345 Ti 959 | .282 Ti 991 | .137
v 939 342 Y% 939 | .343 Y% 958 | .285 Y% 990 | .141
Y 944 328 Y 944 | 330 Y 960 | .278 Y 990 | .136
Zn 943 332 Zn | 943 | 333 | zn | 91 | 277 | zn | 991 | .129
Zr 933 360 zr 932 | .361 zZr 952 | .306 zZr 986 | .164
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Figure 5. Diagrams of MPC values vs.FBs comparing with variations in Mo, Au and Cu values and their trends
in borehole DDHO03.

The increasing and decreasing trends of MPC
values diagram in FD can provide a basis for the
development and application of this approach for
exploration of the hidden mineral deposits. The
introduced technique can identify the blind
mineralization, and predict the variation in
mineralization in depth without exploration
drilling. Finally, this finding shows a possibility
for an extensive mineralization in this area. The
presented methodology, which is based on 2D-FT,
is quite inexpensive compared to the traditional
exploration methods.

5. Conclusions

The results obtained from the newly developed
approach that is based on coupling 2D-FT and
PCA revealed significant and valuable exploratory
information that were not achievable in the spatial
domain. The introduced technique makes it
possible, without exploration drilling, to identify
the deep and blind mineralization, and predict the
variation in mineralization in the depth. This idea
demonstrated that there was a direct relationship
between the deposit depth and the frequencies of
the surface geochemical distribution maps. The
high frequencies in the surface geochemical
distribution maps may be related to the surface

234

anomalies and geochemical noises. Very low
frequencies can relate to the background values
and very deep geochemical anomalies. The MPC
coefficients in the rotated component matrix in the
PCA method can show the importance and
intensity of the elements in a mineral deposit. The
diagram of the MPC values vs.FBs can show the
variability of anomalies in the deferent depth. The
mineralization sequence of Au (Cu)—Cu
(Au)—»Mo from surface to depth, and the
mineralization zones to the wall rock in the Dalli
area, were properly and clearly predicted in the
MPC values diagrams. There was a deep Mo
geochemical anomaly from 240m to down in the
borehole that was predicted in the MPC values
diagram. The MPC values for Cu and Au were
shown to correspond to two peaks for the high and
intermediate FBs related to the surface and deep
anomalies. The high correlation between Cu and
Au in the MPC diagram is related to their
correlation in the hypogene and supergene zones.
The proposed valuable method was an effective
pattern recognition approach for decomposing
mixed geochemical populations, and for
identifying deep geochemical anomalies.
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