[1]. Mandelbrot, B. B. (1983). The Fractal Geometry of Nature, W. H. Freeman, San Francisco.
[2]. Bansal, A.R., Gabriel, G, and Dimri, V.P. (2010). Power law distribution of susceptibility and density and its relation to seismic properties: An example from the German Continental Deep Drilling Program: Journal of Applied Geophysics. 72 (2): 123-128.
[3]. Fedi, M., Quarta, T. and De Santis, A. (1997). Improvements to the Spector and Grant method of source depth estimation using the power law decay of magnetic field power spectra, Geophysics. 62: 1143-1150.
[4]. Spector, A. and Grant, F.S., (1970). Statistical Models for Interpreting Aeromagnetic Data, Geophysics. 35: 293-302.
[5]. Pilkington, M. and Todoeschuck, J.P. (1993). Fractal magnetization of continental crust, Geophys. Res. Lett. 20: 627-630.
[6]. Pilkington, M., Todoeschuck, J.P. and Gregotski, M.E. (1994). Using fractal crustal magnetization models in magnetic interpretation, Geophysical Prospecting. 42: 677-692.
[7]. Maus, S. and Dimri, V.P. (1995). Potential field power spectrum inversion for scaling geology, J. Geophys. Res. 100: 12605-12616.
[8]. Maus, S., Gordon, D. and Fairhead, D. (1997). Curie temperature depth estimation using a self-similar magnetization model, Geophys. J. Int. 129: 163-168.
[9]. Ravat, D., Pignatelli, A., Nicolosi, I. and Chiappini, M. (2007). A study of spectral methods of estimating the depth to the bottom of magnetic sources from near-surface magnetic anomaly data, Geophys. J. Int. 169: 421-434.
[10]. Bouligand, C., Jonathan, M., Glen, G. and Blakely, J.R. (2009). Mapping Curie temperature depth in the western United States with a fractal model for crustal magnetization, J. Geophys. Res. 114: 1-25.
[11]. Bhattacharyya, B.K. and Leu, L.K. (1975). Spectral Analysis of Gravity and Magnetic Anomalies due to Two-dimensional Structures, Geophysics. 40: 993-1013.
[12]. Okubo, Y., Graf, R.J., Hansent, R.O., Ogawa, K. and Tsu, H. (1985). Curie point depths of the island of Kyushu and surrounding areas Japan, Geophysics.53: 481-494.
[13]. Shuey, R.T., Schellinger, D.K., Tripp, A.C. and Alley, L.B. (1977). Curie depth determination from aeromagnetic spectra, Geophys. J. Roy. Astr. Soc. 50: 75-101.
[14]. Blakely, R. (1988). Curie temperature isotherm analysis and tectonic implications of aeromagnetic data from Nevada, J. Geophys. Res. 93: 11817-11832.
[15]. Salem, A., Ushijima, K., Elsirafi, A. and Mizunaga, H. (2000). Spectral Analysis of Aeromagnetic Data for Geothermal Reconnaissance of Quseir area, Northern Red Sea, Egypt, Proceeding World Geothermal Congress, Kyushu, Japan. 1669-1674.
[16]. Bhattacharyya, B.K. and Leu, L.K. (1977). Spectral analysis of gravity and magnetic anomalies due to rectangular prismatic bodies, Geophysics. 41: 41-50.
[17]. Tanaka, A., Okubo,Y. and Matsubayashi, O. (1999). Curie point depth based on spectrum analysis of magnetic anomaly data in East and Southeast Asia, Tectonophysics. 306: 461-470.
[18]. Blakely, R.J. (1995). Potential theory in gravity and magnetic applications, Cambridge Univ. Press, Cambridge.
[19]. Bansal, A.R., Gabriel, G., Dimri, V.P. and Krawczyk, C.M. (2011). Estimation of depth to the bottom of magnetic sources by a modified centroid method for fractal distribution of sources: An application to aeromagnetic data in Germany, Geophysics. 76: 3: 11-22.
[20]. Salem, A., Green, C., Ravat, D., Singh, K.H., East, P., Fairhead, J.D., Mogren, S. and Biegert, E. (2014). Depth to Curie temperature across the central Red Sea from magnetic data using the de-fractal method. Tectonophysics. 75-86.
[21]. Ravat, D. (2004). Constructing full spectrum potential-field anomalies for enhanced geodynamical analysis through integration of surveys from different platforms (INVITED), EOS, Trans. Am. geophys. Un. 85 (47), Fall Meet. Suppl., Abstract G44A-03.
[22]. Finn, C.A. and Ravat, D. (2004). Magnetic Depth Estimates and Their Potential for Constraining Crustal Composition and Heat Flow in Antarctica, EOS, Trans. Am. geophys. Un, 85(47), Fall Meet. Suppl., Abstract T11A-1236.
[23]. Ross, H.E., Blakely, R.J. and Zoback, M.D. (2004). Testing the Utilization of Aeromagnetic Data for the Determination of Curie-Isotherm Depth, EOS, Trans. Am. geophys. Un., 85 (47), Fall Meet. Suppl., Abstract T31A-1287.
[24]. Connard, G., Couch, R., and Gemperle, M. (1983). Analysis of Aeromagnetic Measurements from Cascade Range in Central Oregon, Geophysics. 48: 376-390.
[25]. Ross, H.E., Blakely, R.J. and Zoback, M.D. (2006). Testing the use of aeromagnetic data for the determination of Curie depth in California: Geophysics. 71 (5): L51-L59.
[26]. Pilkington, M. and Todoeschuck, J.P. (1995). Scaling nature of crustal susceptibilities. Geophys. Res. Lett. 22: 779-782.
[27]. Maus, S. and Dimri, V.P. (1994). Scaling properties of potential fields due to scaling sources. Geophys. Res. Lett. 21: 891-894.
[28]. SKM (Sinclair Knight Merz). (2005). Resource review of the Northwest Sabalan geothermal project. Report submitted to SUNA. 61P.
[29]. KML. (1998). Sabalan geothermal project, stage 1-Surface exploration, final exploration report. Kingston Morrison Limited Co., report 2505-RPT-GE-003 for the Renewable Energy Organization of Iran, Tehran. 83 P.
[30]. Okubo, Y., Matsushima, J. and Correia, A. (2003). Magnetic spectral analysis in Portugal and its adjacent seas, Phys. Chem. Earth. 28: 511-519.
[31]. Hisarli, Z.M., Dolmaz, M.N., Okyar, M., Etiz, A. and Orbay, N. (2011). Investigation into regional thermal structure of the Thrace Region, NW Turkey, from aeromagnetic and borehole data, Stud. Geophys. Geod. 56: 269-291.
[32]. Ghaedrahmati, R., Moradzadeh, A., Fathianpour, N., Lee, S.K. and Porkhial, S. (2013). 3-D inversion of MT data from the Sabalan geothermal field, Ardabil, Iran, Journal of Applied Geophysics. 93: 12-24.