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Abstract

Shear-wave velocity (V5) is an important parameter used for site characterization in geotechnical
engineering. However, dispersion curve inversion is challenging for most inversion methods due to its high
non-linearity and mix-determined trait. In order to overcome these problems, in this study, a joint inversion
strategy is proposed based on the particle swarm optimization (PSO) algorithm. The seismic data considered
for designing the objects are the Rayleigh wave dispersion curve and seismic refraction travel time. For joint
inversion, the objective functions are combined into a single function. The proposed algorithm is tested on
two synthetic datasets, and also on an experimental dataset. The synthetic models demonstrate that the joint
inversion of Rayleigh wave and travel time return a more accurate estimation of Vg in comparison with the
single inversion Rayleigh wave dispersion curves. To prove the applicability of the proposed method, we
apply it in a sample site in the city of Tabriz located in the NW of Iran. For a real dataset, we use refraction
microtremor (ReMi) as a passive method for getting the Rayleigh wave dispersion curves. Using the PSO
joint inversion, a three-layer subsurface model was delineated.The results obtained for the synthetic datasets
and field dataset show that the proposed joint inversion method significantly reduces the uncertainties in the

inverted models, and improves the revelation of boundaries.
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1. Introduction

Seismic surveying techniques provide relevant
data regarding soil behavior at a very low strain
level for large portions of soil, tested in an
undisturbed state using the procedures that are
time- and cost-effective [1]. Shallow shear-wave
velocity (Vs) has long been recognized as a key
factor in variable ground-motion amplification
and site response in sedimentary basins [2]. The
velocity profiles together with the depth of the
basement below the sediments are the useful data
used in geotechnical studies for the correct
construction of buildings [3]. The Vs structure is
important in site-effect studies and geotechnical
engineering, but it is quite difficult and expensive
to derive it from the conventional geophysical
techniques [4]. The current techniques of
estimating shallow shear-wave velocities for

assessment of earthquake site responses are too
costly for use at most construction sites [5].

The refraction microtremor (ReMi) method [5] is
a passive-source multi-channel method that uses a
linear array configuration. This method provides
effective and efficient means to obtain the general
information about large volumes of the sub-
surface in one dimension per setup, where the
appropriate setup length is related to the desired
depth of investigation [6]. ReMi is based on
obtaining the dispersion curve for the Rayleigh
waves, but in this case, using the ambient seismic
noise or microtremor. For the processing
procedure, as for the other surface wave methods,
after construction of the dispersion curves, the
next step is the inversion of the dispersion curve
to obtain a single Vs profile. The inversion stage
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in processing the ReMi data, due to its non-
linearity and multi-dimensionality, is an important
issue to achieve a reliable Vs profile.

Surface wave inversion is strongly non-linear, ill-
posed, and mix-determined, and this leads to
strong solution non-uniqueness, as evidenced by
several authors [1]. In order to overcome these
problems, constraining the interpretation, and
decreasing the uncertainty in estimating the
structures was proposed, which is based upon the
PSO algorithm. Inverting the recorded data sets
separately may lead to incorrect interpretation of
an underground structure, i.e. for an underground
model with a high-velocity layer overlying a low
velocity layer, neither refraction nor reflection
seismic alone is able to resolve the parameters of
the low-velocity layer [7]. The information
required for the water table, bed rock, and layer
interface can be obtained using the refraction
seismic, whereas dispersion curves do not give
any information about the number of layers, while
the refraction travel times, in principle, could [8].
Therefore, it is possible, by integration of the
surface waves and refraction travel time, to reduce
the intrinsic weakness of each method.

For joint inversion by particle swarm optimization
(PSO) algorithm, we used the global criterion
method, in which all misfit functions (i.e.
objective functions) were combined to form a
single function. By finding the global minimum of
the misfit function, the best solution to a problem
could be obtained. PSO algorithm is one of the
global optimization methods that belong to a
group of metaheuristic searching algorithms. In
geophysical surveys, several significant PSO
applications have recently been emerged.
Fernandez Martinez et al. [9] have presented the
application of a whole family of PSO algorithms
to analyze and solve a VES inverse problem
associated with a seawater intrusion in a coastal
aquifer in southern Spain. Peksen et al. [10] have
inverted the self-potential (SP) data by the
application of PSO algorithm. Poormirzaee et al.
[11] have proposed the seismic travel time
inversion scheme based on the particle swarm
optimization technique. Recently, Zarean et al.
[12] have presented the application of mutation-
based PSO algorithms to analyze the surface wave
dispersion curves using the microtremor records.
The proposed joint inversion algorithm was
written and processed in MATLAB, and tested on
the synthetic datasets. Finally, the reliability of the
PSO joint inversion was investigated in a sample
site in Tabriz located in the NW of Iran in order to
study the site effect. The results obtained for both
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the synthetic and real datasets were compared
with the single PSO inversion of ReMi data, and
also with a multi-objective  optimization
algorithm,  non-dominated  sorting  genetic
algorithm-11 (NSGA-II).

2. Methodology

2.1. Particle Swarm Optimization (PSO)

PSO is a stochastic evolutionary computation
optimization technique used in many engineering
fields. It is inspired by the social behavior of the
individuals (called particles) in groups in nature
like a flock (swarm) of birds searching for food
[13]. This algorithm searches the space for an
objective function by adjusting the trajectories of
individual agents, called particles, as these
trajectories form piecewise paths in a quasi-
stochastic manner [14]. The particles move
toward promising regions of the search space by
exploiting information springing from their own
experience during the search as well as the
experience of other particles. For this purpose, a
separate memory was used, where each particle
stores the best position (x;) it has ever visited in
the search space. The best position of each
particle experience the other comprised ones, and
then the best position, which belongs to a
minimum of misfit function, selected as the global
best (g*). This procedure (i.e. finding x; , g*) was
repeated for a certain iteration. Finally, the best
global g* was determined as the optimum
solution. The movement of particles was
schematically represented in Figure 1.

o

®
Figure 1. Schematic representation of motion of a
particle in PSO, moving towards global best g*and
current best x; for each particle [14].

Particle swarm consists of a swarm of particles,
each moving or flying through the search space
according to the velocity update Eq.1 [13]. The
velocity of each particle was modified iteratively
by its personal best position, and the best position
was found by the particles in its neighborhood. v;
is the velocity of the ith particle in the swarm, x;
is the particle position, x;" denotes the personal
best position, and g* is the best position found by
particles in its neighborhood.
vt = vf + ae,O(g" — xf)

+ Be,O(xf — xf) @
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In Eqg. 1, ¢; and €, are two random vectors and
each entry takes a value between 0 and 1. The
Hadamard product of the two matrices u ® Vv is
defined as the entry-wise product. The parameters
a and [ are the learning parameters or
acceleration constants, which can typically be
taken as, say, a = f = 2 [14].
The initial locations of all particles should
distribute relatively uniformly so that they can
sample over most regions, which are especially
important in multimodal problems. The initial
velocity of a particle can be taken as 0, i.e. vi=% =
0. The new position can then be updated by Eq. 2
[14].
Xt =x{ +vit )
A number of variations have been proposed on the
original PSO to overcome its shortcomings and
drawbacks such as slow convergence and
wandering near the global minimum in the final
stage of the search. One of the most notable steps
in these formulations is the introduction of an
inertia weight by Shi and Eberhart [15]. An inertia
term (i.e. static inertia weight), we(0,1), was
introduced into the original PSO velocity rule, as
follows:
vitt = wvf + ae; O(g" — x}) @)
+ Be, O(xi — x{)
So long as w € (0,1), Eg. 3 helps the particles
forget their lower-quality past positions in order to
be more affected by the higher-quality
information of late, which seems to make more
sense conceptually [16].
For w,a, and B, there are several popular
parameter sets in the literature (Table 1). Another

notable recent variation in the original PSO
algorithm is the introduction of the so-called
constriction factor by [17]. This method
introduces a constriction factor xe(0,1) into the
original velocity rule (i.e. Eg. 1), which has the
effect of reducing the velocity of the particles as
the search progresses, and thereby contracting the
overall swarm diameter. This, in turn, results in a
progressively smaller domain being searched [18].
Applying a constriction factor into PSO improves
the convergence of the particles (Eg. 4). The other
parameters used in different studies are listed in
Table 1.
vitt = x[vi + ae, O(g" — x})
* t (4)
+ Be, O(xf — x{)]
Using the constriction factor seems to be superior
to the introduction of the inertia term (for more
information, see [16]).
Another feature of the PSO algorithm is the
velocity clamping, which is important for its
improvement. Eberhart and Kennedy have
introduced velocity clamping, which helps
particles take reasonably sized steps in order to
comb through the search space rather than
bouncing almost excessively [16].
Like other evolutionary algorithms, the difficulty
in escaping from the local optimum still exists in
PSO. Some researchers have used the mutation
operator to make the PSO break away from the
local optimum. The PSO algorithm with mutation
operator not only has great advantages of
convergence property but also can avoid the
premature convergence problem [19].

Table 1. Proposed PSO parameter sets in different references.

PSO parameters

No. Set p B 1 . Reference
1 1.300 2.800 0.7298 - Schutte and Groenwold [20]
2 2.050 2.050 0.7290 - Evers [16]
3 0.948 2.041 - 0.729 Carlisle and Dozier [21]
4 1.700 1.700 - 0.600 Trelea [22]
5 1.494 1.494 - 0.729 Clerc and Kennedy [23]
6 2.000 1.800 - 0.800 Fernandez Martinez et al. [18]

2.2. Refraction Microtremor (Remi) And
Seismic Refraction Techniques

The ReMi technique is a cheap and quick
“passive” geophysical technique. It is based upon
the ambient noise measurements that are carried
out with seismic arrays to obtain information on
the surface wave velocity dispersion. Urban
conditions such as the existing underground
facilities and ambient noise due to cultural activity
restrict the general application of the conventional
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geophysical techniques [24]. The ReMi method
combines the urban utility and ease of
microtremor array techniques with the operational
simplicity of the spectral analysis of the surface
wave (SASW) technique and the shallow accuracy
of the multi-channel analysis of the surface wave
(MASW) technique. As for the SASW technique,
ReMi is based upon obtaining the dispersion
curve of the Rayleigh waves, but in this case, the
ambient seismic noise or microtremor is used.
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Configurations of 12-48 single vertical, 8-12 Hz
exploration geophones can give surface-wave
phase velocities at frequencies as low as 2 Hz and
as high as 26 Hz. This range is appropriate for
constraining the shear velocity profiles from the
surface to 100 m depth [5].

After Louei [5], the reliability and accuracy of the
ReMi method has been investigated in different
case studies. Rucker [6] has applied the ReMi
shear-wave technique for the geotechnical
characterizations, and several geotechnical
applications have been shown in his publication.
Scott et al. [25] have performed measurement of
the shear-wave velocity to 30 m depth (Vsz) for
the hazard assessment of Reno basin. They were
successful in obtaining the detailed shallow shear-
wave velocity transect across an entire urban
basin with a minimum effort. Coccia et al. [26]
have used the ReMi technique for determining the
1D shear-wave velocity in a landslide area, and
have concluded that in marginally stable slope
areas, the ReMi method can provide the data
needed for calculating the shear-wave velocity
vertical profiles down to a depth of few tens of
meters. This issue can be achieved even using an
array shorter than the commonly recommended
minimum value of 100 m. Panzera and Lombardo
[27] have successfully used the ReMi and MASW
techniques to investigate the dynamic properties
of the main lithotypes outcropping in the Siracusa
region and their relationships with the local
seismic response. Poormirzaee and Hamidzadeh
[28] applied the ReMi data to study the structure
of Vs in urban areas, while using other active
seismic methods was limited.

The seismic refraction surveying method uses the
seismic energy that returns to the surface after
traveling through the ground along the refracted
ray paths. The first arrival of the seismic energy at
a detector offset from a seismic source represents
either a direct ray or a refracted ray [29]. On the
local scale, the refraction surveys are widely used
in the foundation studies on the construction sites
to derive estimates of the depth to the rock head
beneath a cover of the superficial material.
Refraction surveys find wide applications in the
exploration programs for underground water
supplies in sedimentary sequences, often
employed in conjunction with the electrical
resistivity methods.

In general, the travel time t,, of a ray, critically
refracted along the top surface of the nth layer, is
given by the following relation:
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n-1 . .
. ZV_)iJF E{ 2z, (izsem 5)
Where
0,, =sin™(v; /v,)
In Eq. 5, x is the offset distance from shot point, v
is the velocity of layer, z is the depth of refractor,

and sin®=v, /v, is the Snell's Law [29].

2.3. Joint inversion of Rayleigh wave and
refraction travel time by PSO

The Rayleigh wave dispersion curves and
refraction travel times are jointly inverted through
a procedure based on the PSO technique. The
main goal of the proposed algorithm is to improve
the reconstruction of the subsurface structure by
exploiting the complementary information
attainable by the Rayleigh wave dispersion and
refraction travel times. The Rayleigh wave
dispersion inversion procedure was performed
using the fundamental mode.

The most important parameters that influence the
Rayleigh wave propagation are the shear-wave
velocity (Vs) and layer thickness, while density
(p) and P-wave velocity (Vp) play a minor role
[30]. On the other hand, the refraction travel time
depends on the longitudinal velocity and
thickness. In order to obtain accurate results, in
the joint inversion procedure, it was decided to
link Vp and Vs by means of the Poisson ratio (o).
In this way, in general, a wide range of Poisson
values [0.1,0.48] is allowed for each layer. Of
course, a suitable range of Poisson values depend
on the studied area, which can be determined by
the primary information. Using Eq. 6 and the
above Poisson values, a straight equation was
obtained (Eg. 6). For each particle (i.e. the
model), the Vp and Vs values were checked to
detect the Vp/Vg ratio. If this ratio exceeds the
imposed limits, the algorithm for satisfying Eg. 6
generates new random values for Vp and Vs.

v —v (\il—c)
S 1 (6)
——0
2
A%
15<-L<5 )
\%

S

Also the parameter density was fixed according to
the classical Gardner et al [31] empirical Vp—p
relationship:

p =10g(0.23+ (kVp)°*®) (8)

Where K =1/0.3048 is a constant to convert feet
to meter.
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For the joint inversion of ReMi and seismic
refraction data, the summation of the root mean
square (RMS) error was considered as the
objective function (OBF). In order to solve the
forward modeling, and estimate the theoretical
dispersion curve, the code based on the matrix
algorithm developed by Herrmann [32] was used.
The root mean square misfit between the observed
and calculated values for velocity was defined as
the objective function (OBF;) according to the
following equation:

Mp ¢\,0bs | caly2
OBF, = J ) ©)

o

where nj, is the number of samples, v°bs s the

observed phase velocity, and v is the calculated
one.

Also the forward algorithm used in the inversion
is based on a 1D ray-tracing for the P-wave travel
times. The root mean square misfit between the
observed and calculated refraction travel times are
defined as the object function (OBF;), according
to the following equation:

Np r40bs caly2
St
OBF2 :\/Zjl )

o

where n,, is the number of points, t°® is the

observed travel time, and t°@ is the calculated
travel time. Also, for the seismic refraction data,
the forward algorithm used in the inversion is
based on a 1D ray-tracing for the P-wave travel
times.

In the joint inversion procedure, the elements of
the objective function can have different physical
dimensions and various orders of magnitude. Thus
to have stable results, normalization is needed [7].
For normalization, the values for the parameters in

(10)

the objective function are divided into its
observed values (Eq. 11).
(Z?El Xobs _Xcal))2
OBF = X (1)
n

p
where x°PS is the observed value, and x! is the
calculated one. The general flowchart of the PSO
joint inversion algorithm is shown in Figure 2. We
investigated this algorithm in some synthetic and
real datasets.

2.4. Synthetic Dataset

In order to test the PSO joint inversion algorithm,
and evaluate its performance, we considered two
synthetic models (A and B). Also for an efficient
study of the proposed joint inversion algorithm
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(i.e. PSO joint Inv.), the obtained Vs profile was
compared with the estimated Vs profile of PSO
single inversion of ReMi data (i.e. PSO Inv.), and
also by the non-dominated sorting genetic
algorithm (NSGA-I1). In the PSO single inversion
approach [33], only the ReMi data was inverted.
NSGA-II, Proposed by Deb et al. [34], is a
modified version of the non-dominated sorting
genetic algorithm (NSGA), proposed by Srinivas
and Deb [35]. This algorithm, as a multi-objective
optimization algorithm, has been investigated in
many literatures [36].

To investigate the PSO joint inversion algorithm,
we first considered the 4-layer synthetic model
reported in Table 2 (model A). Also the particle
and maximum number of iterations were selected
to be 80 and 50, respectively. The adopted model
was designed in order to reproduce a typical
hidden-layer case, which is clearly prone to
erroneous refraction travel time interpretation.
The dispersion curve and the estimated travel time
values are showed in Figures 3a and 3b. Also the
mean results obtained for different inversion
algorithms for model A are shown in Table 3 and
Figure 3c.

The PSO joint inversion method is probed by a
four-layer model (model B). Table 4 shows model
B and the search space used for inversion. The
dispersion curve and the estimated travel time
values are showed in Figures 4a and 4b. The mean
results obtained for inversion in model B are
shown in Table 5 and Figure 4c.

2.5. Field Dataset

To further explore the applicability of the PSO
joint inversion algorithm described above, the
ReMi and seismic refraction data was acquired in
the city of Tabriz in the NW of Iran (Figure 5).
Then the dataset was reanalyzed in the present
study using the PSO joint inversion approach. The
data was collected in a profile line. In this study,
the ReMi and seismic refraction method was
performed using an OYO 24-channal seismograph
and 4.5Hz and 28 Hz geophones with a receiver
spacing of 5 m. Unfiltered 17 second records were
collected at the studied site. Also fourteen records
were gathered. The ReMi data processing
consisted of three steps: 1) preliminary detection
of surface waves 2) extracting the dispersion
curve 3) inversion of the dispersion curve. In this
study, the module Pickwnin/SW of the
commercial software package Seisimager v.3.1
[37] for detection of surface waves and getting
dispersion curve was used (Figure 6).
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Input dispersion curve and travel time

__________________________ e

- Initialization of swarm
- Finding x; 5 g*
- Till maximum of iterations
e Update velocity and positions
e Calculate OBF as follow:
OBF = OBF, + OBF,
e Mutation
- End
- Output the final result g*

Vs & Vp profile

Figure 2. PSO joint inversion algorithm to invert dispersion curve and travel time dataset.

Table 2. Parameters of synthetic model A and search space.

Layer Vs (m/s) Ve (Mfs) H (m) Search space
number Vp (M/s) Vs (m/s) H (m)
1 190 400 4 200-600 90-300 2-6
2 370 700 5 350-1050 150-550 2-7
3 220 430 5 200-600 100-300 2-7
4 700 1250 half space 700-2000 350-1000 -
Table 3. Mean model obtained from model A by different inversion algorithms.
Parameters PSO Inv. PSO joint Inv. NSGA-II
(ReMi data)
Vsl (m/s) 192 197 227
Vs2 (m/s) 442 358 283
Vs3 (m/s) 208 251 212
Vs4 (m/s) 670 720 560
H1 (m) 4.4 4 4.05
H2 (m) 4.3 4.8 5.2
H3 (m) 5.5 5.3 5.4
Vpl (m/s) 472 386 401
Vp2 (m/s) 668 664 705
Vp3 (m/s) 500 522 350
Ve (m/s) 1112 1119 965
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Figure 3. a) Inversion of dispersion curve using PSO joint inversion for model A b) Inversion of travel times
using PSO joint inversion for model A Vs profile using PSO joint Inv., PSO, and NSGA-II .

Table 4. Parameters of synthetic model B and search space.

Layer Search space
number Vs (m/s) Vp (M/s) H (m) Vo (M75) Ve (M) H(m)
1 285 700 3 350-1050 142-427 1-5
2 163 400 2 200-600 80-244 1-3
3 600 1470 10 700-2100 300-900 5-15
4 1328 2300 half space 1150-3400 664-1900 -
Table 5. Mean model obtained from model B.
Parameters PSO. Inv. PSO joint Inv. NSGA-II
(ReMi data)
Vsl (mls) 290 298 270
Vs2 (mls) 187 197 214
Vs3 (mls) 642 628 661
V4 (mls) 947 1326 1332
Vel (m/s) 539 610 661
Vp2 (m/s) 402 486 527
V53 (m/s) 1420 1134 1611
Vpd (m/s) 2158 2195 1304
H1 (m) 2.6 2.8 3
H2 (m) 2.4 1.8 3
H3 (m) 9.1 9.6 9.6
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Figure 6. Field dataset a) A sample record of ReMi data b) Dispersion curve (red points, maximum amplitudes
on phase velocity-frequency plot).

Also the sledge-hammer (12 kg) source was used
to generate the seismic signals for the seismic
refraction data. In case of the seismic refraction,
both the forward and reverse shootings were
carried out along with the profile over a lateral
distance of 115 m. The seismic results obtained
indicated that the area was composed of two main
layers that were nearly lateral (Figure 7).

For the joint inversion procedure, a line with a 55
m length was selected (Figure 8). Similar to the
inverse strategy of synthetic cases, we considered
Vs, Vp, and thickness (H) of the layers, as the
variables (Table 6). After a number of runs and
considering different models, by paying attention
to the observed dispersion curve, a 3-layer model

was adopted. The results obtained for the Vs
profile were shown in Figure 9, in which there
was a low velocity in depth (about 5 m). The
results shown in Table 7 and Figures 9 and 10,
have a good correlation with the geology. The
upper layer made up of soil consisting of alluvium
and sandy clay, and the second layer made up of
clay soil and Tuff also there is water table in depth
about 5m [38]. Moreover, the results obtained
showed the Vp profile in detail, and detected a thin
layer with a velocity of about 650 m/s (Figure 10).
Moreover, the PSO joint inversion compared with
the PSO inversion and NSGA-II approach.

Table 6. Search space for PSO joint inversion of field dataset.

Search space

Layer number thickness(m)

P-wave velocity (m/s)

S-wave velocity (m/s)

1 2-7
2 1-5
3 -

400- 700 150- 450
450- 900 200- 550
800-1600 350-750
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Table 7. Mean model obtained from field dataset.

parameters PSO Joint Inv. NSGA-Il PSO
H1 (m) 55 5.53 2.6
H2 (m) 2.8 1.98 4
Vpl (m/s) 507 523 680
Vp2 (m/s) 657 509 473
Vp3 (M/s) 1455 1114 1350
Vsl (m/s) 316 385 412
Vs2 (m/s) 280 373 332
Vs3 (m/s) 512 405 517
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Figure 7. Time-distance plot of refraction field dataset.
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Figure 9. S-wave structure obtained from experimental dataset using PSO joint inversion of ReMi and seismic
refraction data (PSO joint Inv.), PSO inversion of ReMi data (PSO), and NSGA-I11 algorithm in joint inversion of
ReMi and seismic refraction data (NSGA-I1).
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Figure 10. Vp structure obtained from experimental dataset using PSO joint inversion of ReMi and seismic
refraction data (PSO joint Inv.), PSO single inversion of seismic refraction data (PSO) and NSGA-I1 algorithm
in joint inversion of ReMi and seismic refraction data (NSGA-II).

3. Discussion

Surface wave studies and seismic refraction
technique are two main seismic methods in
engineering geology and geotechnical studies. The
surface wave dispersion analysis is an appropriate
tool for a near-surface seismic characterization.
However, the main problem is related to the non-
uniqueness of the nature of the dispersion curve
inversion. To overcome this problem, we need a
careful strategy for the inversion of the dispersion
curve. On the other hand, the seismic refraction
studies also suffer from the hidden layer and non-
uniqueness of the solution.

PSO algorithm is one of the global optimization
methods that belong to a group of metaheuristic
searching algorithm. In the proposed method, the
refraction microtremor and seismic refraction data
was concurrently inverted. This method was
investigated by means of two synthetic datasets,
and also by a real dataset. The PSO joint inversion
algorithm was compared with the PSO single
inversion and NSGA-II algorithm. Our findings
show that the PSO joint inversion used in
estimating the Vs and thickness of the layers is
more accurate than the PSO single inversion
algorithm. Also the PSO joint inversion is more
accurate, easier, and faster than NSGA-II. For
more probe, the PSO joint inversion was
investigated by the actual dataset performed in a
part of Tabriz city in the NW of Iran. The results
obtained show that the studied area is composed
of two main layers. The first layer is made up of a
soil consisting of alluvium and sandy clay soil, the
intermediate layer is a mixture of clay and sand
with moisture, and the last layer is made up of
clay soil and Tuff.
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4. Conclusions

Shear-wave velocity (V5) is the main parameter
for site characterization in  geotechnical
engineering. However, dispersion curve inversion
is challenging for most inversion methods due to
its high non-linearity and mixed-determined trait.
In order to overcome these problems, in this
study, a joint inversion strategy was proposed
based on the particle swarm optimization (PSO)
algorithm.

Therefore, in processing the geophysical data that
suffer from non-uniqueness, especially when
dealing with field datasets (necessarily including a
variable amount of noise) by joint inversion, the
final results appeared to be quite robust. The
proposed PSO joint inversion algorithm is a high-
performance approach in the joint inversion of the
seismic data.
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